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Abstract. Runtime verification (RV) facilitates monitoring the executions of a
system, comparing them against a formal specification. A main challenge is to
keep the incremental complexity of updating its internal structure, each time a
new event is inspected, to a minimum. There is a tradeoff between achieving a
low incremental complexity and the expressive power of the used specification
formalism. We present an efficient RV tool that allows specifying properties of
executions that include data, with the possibility to apply arithmetic operations
and comparisons on the data values. In order to be able to apply efficient RV
for specifications with these capabilities, we combine two RV methodologies: the
first one is capable of performing arithmetic operations and comparisons based
on the most recent events; the second is capable of handling many events with
data and relating events that occur at arbitrary distance in the observed execution.
This is done by two phase RV, where the first phase, which monitors the input
events directly and is responsible to the arithmetic calculations and comparisons,
feeds the second phase with modified events for further processing. This is im-
plemented as a tool called TP-DEJAVU, which extends the DEJAVU tool.

1 Introduction

Runtime verification (RV) allows monitoring the execution of systems, checking them
against a formal specification. RV is often restricted to checking one execution at a time
and viewing a prefix of the execution at any given moment, providing a verdict, which
is often true or false. With these limitations, RV is devoid of some of the complexity
and computability restrictions of more comprehensive formal methods such as formal
verification and model checking [9].

Monitoring of executions with data against a first-order specification is challenging
because of the need to keep and handle a large number of data values that appear in
the observed prefix and the relationship between them. We are interested here in the
capability of applying arithmetic operations and comparisons between data elements. In
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FIG. 1: Two phase monitoring

a general setting, a specification language should enable comparing different values that
appear in distant events in the inspected execution. For example, checking that a new
value that appears in the current event is exactly twice as big as some value observed
in some previous event; this would require a comparison of the newly inspected value
to the set of previously observed values. However, we have observed that in practice,
in many cases the operations and comparisons required by the specification are limited,
and can be performed using a fixed amount of memory. This includes in particular
arithmetic operations that are based on past events within a limited distance, or on
aggregate functions for calculating, e.g., sum, count, average, etc.

We introduce the TP-DEJAVU tool, for Two Phase DEJAVU. It combines two RV
techniques: one that is capable of performing a rich collection of arithmetic, Boolean
and string calculations, although restricted to using a fixed amount of memory elements,
and based on the most recently seen or kept (through aggregation) values. The other one
facilitates efficient processing of relational data but devoid of arithmetic operations and
comparisons. This is done by applying a two phase RV processing (Figure 1), where
the first phase, which we also call the preprocessing, is responsible for the arithmetic
manipulations, and the second part implements first-order based checks. The two parts
interact through events sent by the first phase to the second one. These events can be
modified from the original monitored events observed by the first phase.

RV algorithms typically maintain a summary that contains enough information for
deciding on future verdicts without having to keep the full observed prefix. The imple-
mentation typically keeps a set of variables and updates them upon inspecting a new
event. One can classify two main dichotomies for specifications for RV. The first one is
operational specification. There, the specification describes the dynamics of changing
the summary performed based on inspected events. This can be done by means of a
set of assignments to summary variables, which are updated each time a new event is
intercepted.

The second dichotomy is declarative specification, where constraints on the moni-
tored sequence of events are given. An example of a declarative specification formalism
is propositional temporal logic. It can express the relation between Boolean values that
represent some inspected or measured properties (e.g. the light is on, a communication
was successful) at different (not necessarily adjacent) time points during the monitored
execution. First-order temporal logic extends this to also allow relating data values oc-
curring in different events, e.g., requiring that a value is read from a file only if that
file was opened and not closed yet. RV for declarative specification typically involves
a translation into an internal operational form, involving updates to the summary per-
formed when a new event occurs.

For past time propositional LTL, there is a direct and efficient translation from the
specification [22], where the truth value of each subformula of the specification, based
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on the currently inspected prefix, is represented using a Boolean variable in the sum-
mary. RV algorithms may require the use of more general objects in the summary than
Boolean variables. These variables can be numeric, e.g., integers or (fixed precision)
reals. The incremental complexity of updating the summary is an important factor to
consider for online RV algorithms, since these updates need to keep up with the speed
of appearing events.

When moving from propositional to first-order temporal logic, instead of simple
variables, one can use relations that represent subformulas [20,6]; for a given subfor-
mula η of the given specification, such a relation represents all the assignments to its
free variables that satisfy η. The RV tool DEJAVU uses a BDD encoding of relations that
represent assignments that satisfy the subformulas of the specification. To achieve high
efficiency in time and space, exploiting BDD compactness [7], the individual objects
of these relations are bitstrings that encode enumerations of the observed values rather
than the values themselves. However, arithmetic operations and comparisons need to be
performed based on the observed values themselves.

An arithmetic comparison between values, e.g., <, is implemented in DEJAVU by
updating a relation R< that represents < where (v,w) ∈ R< iff v < w. The relation R<

is updated each time a new value v appears. This is done by comparing v against all
the previously seen values. Abstractly, this can be thought of as adding to R< the tuples
(v,w) when v<w and (w,v) when w< v, for values w observed so far in the trace. Since
making this update depends on the amount of values observed so far, this update can be
time consuming, affecting the incremental complexity: it can grow unbounded with the
length of the observed prefix. Furthermore, the need to perform arithmetic calculations
and comparisons may tame down some representation optimization.

Our solution is to combine two approaches: the operational one to do some lim-
ited amount of arithmetic calculations and comparisons that are restricted to a finite
amount of data, and the declarative one that is performed based on the QTL formalism
of DEJAVU. We observed through the industrial case studies in the H2020 EU project
FOCETA, from which we borrow some examples, that this is a powerful approach. On
the other hand, we point out that some specifications (see Property 4 below) cannot be
expressed using this combination.

The following examples show the complication involved in achieving a comparison
between values within first-order temporal logic (the formal semantics of the logic is in
Section 2.1), and gives a hint on where an alternative specification, based on combining
operational and declarative components, may be useful.

1. ∀x((p(x)∧x > 7)→∃y x q(x,y)). Here, the constraint (x > 7) is imposed only on
the most recent event. This can be checked by preprocessing the monitored event
and checking the condition x > 7 as this event is intercepted.

2. ∀x∀y((p(x)∧⊖q(y)∧ x < y) →x r(x,y)). The constraint (x < y) is between the
values observed within the current and the previous events. Remembering the value
of y from the previous event, one can easily make this comparison. Using a finite
amount of memory for past values will also work when ⊖ is replaced with some
fixed number of the ⊖ operator.

3. ∀x (p(x)→ (∀y (⊖x q(y)→ x > y)∧∃z ⊖x q(z))). This property formalizes that
when an event of the form p(x) occurs, the value of x is bigger than any value y

3



seen so far within an event of the form q(y), and further, that at least one such a q(z)
event has occurred. A straightforward implementation, used in DEJAVU, builds a
relation of tuples (x,y) where x > y, updating the relation as new values appear in
events. A closer look reveals that we could have used a simpler way to monitor this
property by keeping at each point the maximal value of y seen so far within q(y)
and comparing it with the new value x in a current event p(x).

4. ∀x (p(x)→ ∃y∃z(x q(y)∧x q(z)∧ y ̸= z∧ x = (y+ z)/2)). This case is difficult,
since the property requires that a new p event has a value that is the average of
two distinct values observed in previous q events. This requires remembering and
comparing against all the previous values that appeared in previously observed q
events. This case may necessitate comparison with an unboundedly growing num-
ber of past values. It cannot be handled by the particular two phase RV method
suggested in this paper, which allows arithmetic computations limited to a finite
amount of stored values.

As mentioned before, we split the specification into an operational part and a declar-
ative part (cf. Figure 1). The operational part, which specifies arithmetic operations
and comparisons, is handled as a preprocessing stage. The declarative part is restricted
not to include arithmetic components. The RV is then combined from the preprocess-
ing of the intercepted events by the operational part, which generates modified (aug-
mented) events for the declarative specification. The latter is handled by the old version
of DEJAVU. Without the capability of arithmetic comparisons, DEJAVU is an extremely
efficient tool for processing traces with data, see the experiments in [20]; using our two-
phase approach, we enhance its capabilities to perform with similar efficiency, albeit the
added expressiveness.

Related work Some early tools supported data comparison and computations as part of
the logic [2,4]. The version of MONPOLY tool in [5] supports comparisons and aggre-
gate operations such as sum and maximum/minimum within a first-order LTL formal-
ism. It uses a database-oriented implementation. Other tools supporting automata based
limited first-order capabilities include [10,26]. In [13], a framework that lifts the mon-
itor synthesis for a propositional temporal logic to a temporal logic over a first-order
theory, is described. A number of internal DSLs (libraries in a programming language)
for RV have been developed [11,16,18], which offer the full power of the host program-
ming language for writing monitors and therefore allow for arbitrary comparisons and
computations on data to be performed. The concept of phasing monitoring such that one
phase produces output to another phase has been explored in other frameworks, includ-
ing early frameworks such as [24] with a fixed number of phases, but with propositional
monitoring, and later frameworks with arbitrary user defined phases [4,17]. In partic-
ular, stream processing systems support this idea [12,23,25]. A more remotely related
work on increasing the expressive power of temporal logic is the extension of DEJAVU
with rules described in [21].

2 Combining Operational and Declarative RV

The structure of RV algorithms is typically simple and consists of capturing a monitored
event and updating its internal memory, which we call a summary, as it summarises
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the needed information from the observed prefix of events. In case that a verdict is
available, it is reported, sometimes also causing the verification procedure to terminate,
if this kind of verdict is stable for the given specification (e.g., a negative verdict for a
safety property).

2.1 Declarative specification in past time first-order temporal logic

The logic QTL, used by DEJAVU, and a core subset of the logic used by the MON-
POLY tool [6], is a formalism that allows expressing properties of executions that in-
clude data. The restriction to past time allows interpreting the formulas on finite traces.

Syntax. The formulas of the QTL logic are defined using the following grammar, where
p stands for a predicate symbol, a is a constant and x is a variable.

For simplicity of the presentation, we define here the QTL logic with unary pred-
icates, but this is not due to a principal restriction, and in fact QTL supports pred-
icates over multiple arguments, including zero arguments, corresponding to proposi-
tions. The DEJAVU system fully supports predicates over multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) | ¬ϕ | (ϕ S ϕ) | ⊖ϕ | ∃x ϕ

A formula can be interpreted over multiple types (domains), e.g., natural numbers or
strings. Accordingly, each variable, constant and parameter of a predicate is defined
over a specific type. Type matching is enforced, e.g., for p(a) (p(x), respectively), the
types of the parameter of p and of a (x, respectively) must be the same. We denote the
type of a variable x by type(x).

Propositional past time linear temporal logic is obtained by restricting the predicates
to be parameterless, essentially Boolean propositions; then, no variables, constants and
quantification are needed either.

Semantics. A QTL formula is interpreted over a trace, which is a finite sequence of
events. Each event consists of a predicate symbol and parameters, e.g., p(a), q(7). It is
assumed that parameters belong to particular domains that are associated with (places
in) the predicates. A more general semantics can allow each event to consist of a set of
predicates with multiple parameters. However, this is not implemented in DEJAVU.

QTL subformulas have the following informal meaning: p(a) is true if the last event
in the trace is p(a). The formula p(x), for some variable x, holds if x is bound to a
constant a such that p(a) is the last event in the trace. The formula (ϕ S ψ), which
reads as ϕ since ψ, means that ψ occurred in the past (including now) and since then
(beyond that state) ϕ has been true. (The since operator is the past dual of the future
time until modality in the commonly used future time temporal logic.) The property
⊖ ϕ means that ϕ is true in the trace that is obtained from the current one by omitting
the last event. The formula ∃x ϕ is true if there exists a value a such that ϕ is true with
x bound to a. We can also define the following additional derived operators: false =
¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ → ψ) = (¬ϕ∨ψ), x ϕ = (trueS ϕ) (“previously”),
⊟ ϕ = ¬x ¬ϕ (“always in the past” or “historically”), and ∀x ϕ = ¬∃x ¬ϕ.

Formally, let free(η) be the set of free (i.e., unquantified) variables of η ∈ sub(ϕ),
i.e. η is a subformula of ϕ. Let γ be an assignment to the variables free(η). We denote
by γ[v 7→ a] the assignment that differs from γ only by associating the value a to v. We
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also write [v 7→ a] to denote the assignment that consists of a single variable v mapped
to value a. Let σ be a trace of events of length |σ| and i a natural number, where i ≤ |σ|.
Then (γ,σ, i) |= η if η holds for the prefix of length i of σ with the assignment γ.

We denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free
variables appearing in ϕ. Let ε be an empty assignment. In any of the following cases,
(γ,σ, i) |= ϕ is defined when γ is an assignment over free(ϕ), and i ≥ 1.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if σ[i] = p(a).
– ([x 7→ a],σ, i) |= p(x) if σ[i] = p(a).
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|free(ψ),σ, j) |= ψ and for all j < k ≤ i,
(γ|free(ϕ),σ,k) |= ϕ.

– (γ,σ, i) |=⊖ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ type(x) such that (γ [x 7→ a],σ, i) |= ϕ.

2.2 RV monitoring first-order past LTL

We review the algorithm for monitoring first-order past LTL, implemented as part of
DEJAVU [20]. Consider a classical algorithm for past time propositional LTL [22]. For
propositional LTL, an event is a set of propositions. The summary consists of two vec-
tors of bits. One vector, pre, keeps the Boolean (truth) value for each subformula, based
on the trace observed so far except the last observed event. The other vector, now, keeps
the Boolean value for each subformula based on that trace including the last event.
When a new event e occurs, the vector now is copied to the vector pre; then a new ver-
sion of the vector now is calculated based on the vector pre and the event e as follows:

– now(true) = True
– now(p) = (p ∈ e)
– now((ϕ∧ψ)) = (now(ϕ)∧now(ψ))
– now(¬ϕ) = ¬now(ϕ)
– now((ϕ S ψ)) = (now(ψ)∨ (now(ϕ)∧pre((ϕ S ψ))))
– now(⊖ ϕ) = pre(ϕ)

The first-order monitoring algorithm replaces the two vectors of bits by two vectors
that represent assignments. The first vector, pre, contains, for each subformula η of the
specification, a relation that represents the set of assignments to the free variables of
η that satisfy η after the monitored trace seen so far except its last event. The second
vector, now, contains the assignments that satisfy η given the complete monitored trace
seen so far.

The updates in the first-order case replaces negation using complementation (de-
noted using an overline), conjunction with intersection ∩ and disjunction with union
∪. The intuition behind the connection of the Boolean operators for the propositional
logic and the set operators for QTL follows from redefining the semantics of QTL in
terms of sets. Let I[ϕ,σ, i] be the function that returns the set of assignments such that
(γ,σ, i) |= ϕ iff γ|free(ϕ) ∈ I[ϕ,σ, i]. Then, e.g., I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i]. For

other cases and further details of set semantics, see [20].
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The complementation, intersection and union are operators on relations. Note that
the relations for different subformulas can be over different (but typically not disjoint)
types of tuples. For example, one relation can be formed from a subformula with free
variables x,y,z and the other one over y,z,w, say with x, w over strings and y, z over
integers. Intersection actually operates as a database join, which matches tuples of its
two arguments when they have the same values for their common variables. Union is
actually a co-join. The symbol ⊥ represents the relation with no tuple, and ⊤ represents
the relation with all possible tuples over the given domains.

In order to form a finite representation of an unbounded domain, one can represent
the values that were already observed in previous events, plus a special notation for all
the values not yet seen, say “♯”. This representation is updated each time a new value is
observed in an input event. For example, the set {♯, 4, 9} represents all the values that
we have not seen so far in input events, and in addition, the values 5 and 7. This finite
representation allows using full negation in monitored formulas.

The RV algorithm for a QTL formula ϕ is as follows:

1. Initially, for each η ∈ sub(ϕ) of the specification ϕ, now(η) =⊥.
2. Observe a new event p(a) as input;
3. Let pre := now.
4. Make the following updates for the formulas sub(ϕ), where

if ψ ∈ sub(η) then now(ψ) is updated before now(η).
– now(true) =⊤
– now(p(a)) = if current event is p(a) then ⊤ else ⊥
– now(p(x)) = if current event is p(a) then {a} else ⊥
– now((η∧ψ)) = (now(η)∩now(ψ))
– now(¬η) = now(η)
– now((η S ψ)) = (now(ψ)∪ (now(η)∩pre((η S ψ))))
– now(⊖ η) = pre(η)
– now(∃x η) = now(η)x

5. Goto step 2.

In DEJAVU, for each value a seen for the first time in an input trace one assigns
an enumeration. Using hashing, subsequent occurrences of the value a obtain the same
enumeration. This value is then converted to a bitstring. For a subformula η of the
specification, now(η) is a BDD representation of concatenations of such bitrstrings,
corresponding to the tuples of values of the free variables of η that satisfy η. For fur-
ther details on the DEJAVU implementation, see [20]. The DEJAVU tool uses keyword
characters to express QTL formulas; it employs the following notation: forall and exists
stand for ∀ and ∃, respectively, P, H, S and @ forx, ⊟, S and ⊖, respectively, and |, &
and ! for ∨, ∧ and ¬, respectively.

2.3 The operational RV

An operational specification can be expressed using updates to variables that are in-
cluded in the summary. The next state, which is the updated summary, is obtained by
performing the assignments based on the values of the previous summary and the pa-
rameters appearing within the new event. The input to the first phase of RV is, as in
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DEJAVU, a sequence of events e1.e2.e3 . . ., where each event consists of a predicate
name with parameters, enclosed in parentheses and separated by commas, as in q(a,7).
The syntax of the specification consists of two parts:

Initialization. This part starts with the keyword initiate. It provides values to the vari-
ables in the initial summary, i.e., the summary before any event occurs.

Update. Depending on the input predicate p, the variables of the summary are updated
based on the values that are associated with the current event and the previous
values of the variables in the previous summary, as described below. An updated
event is then generated.

An update consists of a sequence of on clauses, starting with “on p(x,y, . . .)”, where p is
a predicate name and x, y, . . . are variables that are set to the positional arguments of p.
Thus, for the event p(3,“abc”), p(x, y) will cause x to be assigned to 3 and y to “abc”.
Such on clause is followed by a sequence of assignments to be executed when an event
that matches the on clause occurs. The assignments can include Boolean operations,
arithmetic operations (e.g., ∗, /,+,−), arithmetic comparisons (<,≤, >,≥) and string
operations.

The construct ite stands for if-then-else. Its first parameter is a Boolean expression
(obtained, e.g., from an arithmetic comparison). The second parameter corresponds to
the value returned when the Boolean expression calculates to true (the then case). The
third parameter is the value returned when the Boolean expression calculates to false
(the else case). The second and third parameters must be of the same type. This can be
also extended to string operators. The symbol @ prefixing a variable x means that we
refer to the value of x in the previous summary. Thus, x := ite(v > @x,v,@x), where v
is a value that appears in the current event, updates x to keep the maximal value of v that
was observed. If the value of @x is needed for the first event then x must be initialized.
If a summary variable is not assigned to, in the on clause that matches the current event,
then this variable retains its value from the previous summary. This helps to shorten the
description of the property.

The operational phase can deal with different types; the types of variables are de-
clared when they are assigned. We do not necessarily need to provide an on clause for
each predicate that can appear in an event; if some predicate is not intercepted by an
on clause in the operational phase, the event is forwarded unchanged to the declarative
phase.

Example 1. In this example we have events that include two data items: a car vendor
and speed. A true verdict is returned each time that a new vendor has broken the speed
record for the first time. Note that the verdict for the inspected traces can change from
true to false and back to true any number of times (the false verdict is not necessarily
stable, as is the case for safety properties [1]).

initiate
MaxSpeed: int := 0

on recorded(vendor: str , speed: int )
NewRecord: bool := @MaxSpeed <speed
MaxSpeed: int := ite (NewRecord == true, speed, @MaxSpeed)
output fast(vendor, NewRecord)
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exists x . ( fast (x, "true") & ! @ P fast (x, "true"))

Example 2. The following example records from time to time the temperature in one
of a collection of running cars. It calculates the temperature increase between the two
successive startMeasure and endMeasure events. If the increase in temperature is more
than 5 degrees (say Celsius), then it indicates an overheated car. The monitor reports if
some car is overheated more than twice.
on startMeasure(Car: str , temp: float )

output startMeasure(Car)
on endMeasure(Car: str , temp: float)

Warming: bool := (temp−⊖temp)> 5
output warmAlert(Car, Warming)

exists x . (warmAlert(x, "true") & @(startMeasure(x) & P (warmAlert(x, "true") &
@P (warmAlert(x, "true")))))

Example 3. The next property deals with temperature setting commands sent to air con-
ditioners (ac). In order to send a command, we must have turned the air conditioner on
(and not off since). However, if the command is out of temperature bounds, specifically,
below 17C or above 26C, then it is ignored as a faulty command, and there is no such
requirement.
on set(ac: str , temp: float )

WithinBound: bool := (temp >= 17 && temp <= 26)
output set(ac, temp, WithinBound)

forall ac . ((exists temp . set(ac, temp, "true")) ->(!turn off(ac) S turn on(ac)))

2.4 Examples from Use Cases of Autonomous Systems

In this subsection, we detail specifications developed for learning-enabled autonomous
systems (LEAS) as part of the H2020 European Union FOCETA project.

Prediction of obstacle behaviour in an automated valet parking system An auto-
mated valet parking (AVP) system is an L4 (level four) autonomous driving system. A
user owning a vehicle equipped with the AVP functionality can stop the car in front of
the parking lot entry area. Whenever the user triggers the AVP function, the vehicle will
communicate with the infrastructure and park the car at designated regions. The system
is expected to operate under mixed traffic, i.e., the parking lot will have other road users
including walking pedestrians and other vehicles.

The AVP system implements object detection capabilities for sensing the surround-
ing objects and localisation functions for inferring the system’s location on the map. It
also features mission and path planning functions, as well as trajectory tracking and a
prediction module that is based on the available information that predicts positions of
traffic participants (i.e., obstacle list) in the future. The position is given in x, y coor-
dinates. The prediction error is computed as the distance between an obstacle’s actual
position at cycle t and the predicted position for it at cycle t − 1. The prediction error
reported for an obstacle at any computation cycle is bounded within a certain value Epo.
Also, a maximum accumulated error Emax exists for the system.
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initiate
LErr:double := 0
SysErr:double := 0
NewPred:bool := false

on mk prediction(ru:str , px: int , py: int )
LErr:double := 0
NewPred:bool := true
output predicted(ru)

on obstacle(ru:str , x: int , y: int )
LErr:double := ite(@NewPred == true, (((x−@px)ˆ2)+((y−@py)ˆ2)ˆ0.5), 0)
SysErr:double := @SysErr+LErr
error :bool := (LErr > Epo) || (SysErr > Emax)
NewPred:bool := false
output valid(ru, error ,L err)

on exit (ru: str ,p err:double)
SysErr: double := @SysErr − p err
output exit(ru)

forall ru . ( exit (ru) | ((@predicted(ru) -> exists n . valid (ru,"false", n)) S entry(ru))

This specification states that a prediction can be made for the future position of any road
user (ru) that has entered the parking lot area (event entry) and has not yet exited (event
exit). Upon having a new prediction (NewPred), the prediction error (LErr) measured
when ru’s actual position is known (event obstacle) does not exceed Epo. Moreover, the
accumulated error (SysErr) for all road users that are still moving in the parking lot area
does not exceed Emax. When a ru leaves the parking space, the last reported prediction
error (p err) ceases to be considered in the accumulated error (SysErr).

Monitoring the perception function of an AVP system The perception monitor takes
as input from the perception subsystem the computed free space area (event new -
fspace), obstacles (ru) and their localisation (event location). The dimensions of the
free space are given as a rectangle defined by its diagonally opposite corners. The di-
mensions of localised rus are given through reporting their detected 2D bounding boxes.
The perception monitor detects and alerts about inconsistencies in the perception pro-
cess. Specifically, the output of free space detection and localisation of rus should never
overlap, to ensure consistency of the overall perception function.

on new fspace(fs x1: int , fs y1: int , fs x2: int , fs y2: int )
output new fspace(fs x1, fs y1, fs x2, fs y2)

on location(ru: str , bb xa: int , bb ya: int , bb xb: int , bb yb: int )
overlap:bool := (bb xb >= fs x1) && (bb xa <= fs x2)
&& (bb yb <= fs y1) && (bb ya >= fs y2)
output error(ru,overlap)

on exit fspace(fs x1: int , fs y1: int , fs x2: int , fs y2: int )
output exit fspace(fs x1, fs y1, fs x2, fs y2)

exists x1 . exists y1 . exists x2 . exists y2 . ( exit fspace(x1,y1,x2,y2) |
( forall ru . ! error (ru, "true") & (!exit fspace(x1,y1,x2,y2) S new fspace(x1, y1, x2, y2)))
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3 The TP-DEJAVU Tool and Experimental Results

TP-DEJAVU is an extension of DEJAVU [29], both written in Scala. It facilitates two
phase RV processing. The first phase (the prepossessing) performs operational RV with
syntax as described in Section 2.3. Upon each intercepted event, it performs summary
update calculations and generates a modified event, which it passes to the declarative
phase tool. The second phase is based on the DEJAVU tool, and performs monitoring
against a first-order specification. The source of the TP-DEJAVU tool, with documenta-
tion and experiment files, including the examples described in this paper, appear in [28].

Next, we present experimental results on the relative efficiency of runtime monitor-
ing QTL specifications using DEJAVU tool versus the efficiency of two phase RV using
TP-DEJAVU. In all cases, the two specifications output exactly the same results. Our
benchmarks focused exclusively on the time and memory consumption during the eval-
uation phase, without the compilation time. The properties in our experiment were taken
from Section 1, specifically properties 1-3 (property 4 cannot be translated into TP-
DEJAVU); their adaptations for TP-DEJAVU are illustrated in Figure 2.
Traces: For properties 1 and 2, the event sequences and their respective values were
assigned at random. However, for property 3, we tried to construct traces such that
DEJAVU can process them within the given time limit of 1000 seconds. Out of every 100
events, one event is labelled as “p”, while the rest are labelled “q”. For our experiment,
we utilized traces comprising 10K, 100K, 500K, 1M, and 5M events.
Results Table 1 presents the results from our comparison experiments. These results
highlight the advantages of a two phase RV over the singular phase launched by DE-
JAVU when complex inequality operators are involved. Executions where the evaluation
process exceeded 1000 seconds are marked with the symbol ∞. For property 1, both
methods display a rise in execution times with increasing trace sizes. In this case, TP-
DEJAVU manages to be marginally faster but may need more memory. For Property 2
and 3, DEJAVU was unable to evaluate any of the traces (except one), as evidenced by
the consistently infinite execution times. On the other hand, TP-DEJAVU managed to
assess all traces successfully. However, this came with a significant increase in memory
consumption, especially evident with the larger trace files.

on p(x: int )
in bound: bool := x > 7
output p(x, in bound)

forall x . (p(x, "true") ->
exists y q(x,y))

initiate
prev q: bool := false

on p(x: int )
x lt y: bool := x < y
prev q: bool := false
output p(x, x lt y)

on q(y: int )
prev q: bool := true
output q(y)

forall x . forall y .
((p(x, "true") & @q(y)) ->
P r(x, y))

initiate
MaxY: int := −1

on p(x: int )
xGTy: bool := x > MaxY
output p(x, xGTy)

on q(y: int )
NewMaxY: bool := @MaxY < y
MaxY: int :=
ite (NewMaxY, y, @MaxY)
output q(y)

forall x . forall w .
(p(x, w) -> (p(x, "true") &
exists y . @P q(y)))

FIG. 2: TP-DEJAVU properties corresponding to properties 1 (left), 2 (middle), and 3 (right).
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Property Method Trace 10K Trace 100K Trace 500K Trace 1M Trace 5M

P1
DEJAVU

0.64s
125.26MB

1.31s
335.52MB

4.76s
1.10GB

8.85s
1.88GB

185.65s
3.59GB

TP-DEJAVU
0.54

129.74MB
0.96s

311.24MB
3.25s

858.30MB
5.44s

1.21GB
41.18s
5.70GB

P2
DEJAVU

∞

-
∞

-
∞

-
∞

-
∞

-

TP-DEJAVU
0.56s

135.18MB
1.12s

308.72MB
4.12s

1.17GB
7.54s

1.78GB
56.78s
3.55GB

P3
DEJAVU

5.23s
805.47MB

∞

-
∞

-
∞

-
∞

-

TP-DEJAVU
0.64s

119.85MB
0.90s

326.38MB
2.39s

738.78MB
4.08s

1.11GB
21.30s
3.43GB

TABLE 1: TP-DEJAVU vs. DEJAVU.

In Table 2, we provide experimental results highlighting the efficiency of the two-
phase RV based on the examples detailed in Sections 2.3 and 2.4. This includes Exam-
ples 1 to 3 and the two LEAS applications.

4 Conclusions and Further Work

We presented an RV approach based on two phases. The first, operational RV phase,
takes care of algebraic (but also Boolean and string) calculations. The second, declar-
ative RV phase, takes care of relational computation. The experimental results indicate
that the two phase approach can gain considerable advantage in speed over incremen-
tally encoding relations that represent comparisons between the observed data by the
declarative RV, as is done in DEJAVU. It allows handling a rich number of algebraic
operators and comparisons. On the other hand, it is limited to applying these operations
to a fixed number of kept values, recently observed or aggregated from earlier events.
An extension that allows storing unbounded collections of values can be considered.
Currently, the operational phase of the TP-DEJAVU tool outputs a single event for ev-
ery input event. An extension of the tool can relax this rule and can generate several or
zero events, or even have several possibilities, depending on the data in the events.

Property # Objects Trace 10K Trace 100K Trace 500K Trace 1M Trace 5M

Example 1 10 cars 0.53s
105.68MB

0.92s
157.34MB

1.55s
229.31MB

2.35s
292.72MB

5.74s
303.02MB

Example 2 10 cars 0.67s
106.88MB

0.92s
150.04MB

1.52s
263.37MB

2.41s
288.28MB

11.12s
291.95MB

Example 3 10 ACs 0.58s
108.30MB

0.81s
165.85MB

1.68s
240.72MB

2.28s
297.82MB

7.22s
300.19MB

Use case 1 10 rus 0.72s
114.17MB

1.54s
169.08MB

1.95s
292.89MB

3.23s
296.25MB

8.81s
315.48MB

Use case 2 10 rus 0.64s
134.00MB

1.30s
189.15MB

3.37s
340.44MB

6.10s
349.80MB

22.72s
1.11GB

TABLE 2: Examples and use cases of Two Phase RV
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Data-Availability Statement

The TP-DEJAVU tool is open source and publicly available at https://doi.org/10.
5281/zenodo.8322559, as well as from the GitHub repository at https://github.
com/moraneus/TP-DejaVu.
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