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Abstract. Runtime verification (RV) facilitates the formal analysis of execution
traces. In particular, it permits monitoring the execution of a system and checking
it against a temporal specification. Online RV observes, at any moment, a prefix of
the complete monitored execution and is required to provide a verdict whether all
the complete executions that share that prefix satisfy or falsify the specification.
Not every property (and for every kind of verdict) lends itself to obtaining such
an early verdict. Monitorability of a temporal property is defined as the ability
to provide positive (success) or negative (failure) verdicts after observing a finite
prefix of the execution. We classify temporal properties based on their monitora-
bility and present related monitoring algorithms. A common practice in runtime
verification is to concentrate on the class of safety properties, where a failure
to satisfy the specification can always be detected in finite time. In the second
part of the paper we concentrate on monitoring safety properties and their place
among the other classes of properties in terms of algorithms and complexity.

1 Introduction

Runtime verification (RV) allows monitoring executions of a system, either online or
offline, checking them against a formal specification. It can be applied to improve the
reliability of critical systems, including safety as well as security aspects, and can more
generally be applied for processing streaming information. RV is not a comprehensive
verification method such as model checking [7,12,31], as it is applied separately to
executions of the system one at a time. On the other hand, due to its more modest goal,
RV lacks of some of the restrictions of more comprehensive formal methods related to
complexity and applicability.

The specifications, against which the system is checked during RV, are often ex-
pressed in linear temporal logic (LTL) [26]. These properties are traditionally inter-
preted over infinite execution sequences. This corresponds to the case where the number
of events that the monitored system can emit is unbounded'. Indeed, the input trace is
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often a priori not limited to a specific length, and checking it against a given specifica-
tion is supposed to follow it for as long as the monitored system is running. At any time,
only a finite prefix of the system is observed. For runtime verification to be useful, it is
necessary to be able to provide a verdict after observing a finite prefix of an execution
sequence (also referred to as just a prefix).

For example, consider the property Op (for some atomic proposition p), which
asserts that p always holds throughout the execution. A prefix of an execution can be
refuted by a runtime monitor, i.e., demonstrating a failure to satisfy Op, if p does not
hold in some observed event. At this point, no matter how the execution is extended, the
property fails to hold. On the other hand, no finite prefix of an execution can guarantee
a positive verdict that Op holds, since no matter how long we have observed that p has
been holding, it may still stop holding in some future. In a similar way, the property
<p, which asserts that p will eventually happen, cannot be refuted, since even if p has
not happened yet, it may hold at any time in the future; on the other hand, once p holds,
we have established that the property is satisfied, independent on any continuation, and
we can issue a positive (success) verdict. For the property O p we can never provide a
verdict in finite time, since for a finite prefix p can hold only finitely many times.

The monitorability problem of a temporal property was studied in [5, 14, 30]. Ac-
cordingly, a specification property is considered to be monitorable if after monitoring
any finite prefix, we still have a possibility to obtain a positive or a negative verdict in
a finite number of steps. Nevertheless, it is possible that a priori, or after some prefix,
only one type of verdicts is possible.

We follow [29] in classifying temporal properties as an extension of Lamport’s
safety and liveness properties. The class Guarantee was defined to be the dual of safety
in [26], i.e., the negation of a safety property is a guarantee property and vice versa. We
then defined morbidity as the dual of liveness. To complete this classification to cover
all possible temporal specification we added another class that we termed guaestio. In
particular the safety class includes the properties whose failure can be detected after
a finite prefix, and the liveness properties are those where one can never conclude a
failure after a finite prefix.

The second part of the paper focuses on safety properties. In RV, one often expresses
safety properties in the form D@, where @ is a past LTL formula. Furthermore, it is often
only the past property @ that is monitored, returning a yes/no verdict for the currently
observed prefix. We describe the algorithms for monitoring such safety properties and
compare them to the future LTL monitoring algorithm in terms of complexity. Mon-
itoring propositional past formulas was extended to first order safety properties [18,
3]. In particular, this was focused on monitoring past-time first order LTL properties
against traces that contain data. Although this resulted in quite efficient monitors, we
show some theoretical limitations on monitoring first order LTL properties.

2 Preliminaries

2.1 Runtime Verification

Runtime verification [2, 19] refers to the use of rigorous (formal) techniques for pro-
cessing execution traces emitted by a system being observed. In general, the purpose



of RV is to evaluate the state of the observed system. Since only single executions (or
collections thereof) are analyzed, RV is devoid of some of the complexity and compu-
tational restrictions that some of the more comprehensive formal methods have. But on
the other hand, RV does not provide a comprehensive coverage.

An execution trace is generated by the observed executing system, typically by in-
strumenting the system to generate events when important transitions take place. In-
strumentation can be manual, by inserting logging statements in the code, or it can be
automated using instrumentation software, such as aspect-oriented programming frame-
works. Processing of RV can take place online, as the system executes, or offline, by
processing log files produced by the system. In the case of online processing, observa-
tions can be used to control (shield) the monitored system [6].

In specification-based runtime verification, an execution trace is checked against
a property expressed in a formal (often temporal) logic or using automata notation.
More formally, assume a finite prefix of an execution of an observed system up to a
certain point is captured as an execution trace ¢ = ej.e;. ... .e,, which is a sequence
of observed events. Then the RV problem can be formulated as constructing a program,
which when applied to the trace G, returns some data value in a domain of interest D. In
specification-based RV, the monitor is generated from a formal specification, given e.g.
as a temporal logic formula, a state machine, or a regular expression. The domain of
interest D is often the Boolean domain or some extension of it [4] (in particular adding
a third value “?” for yet unknown) indicating whether the execution trace conforms to
the specification.

The input trace for RV is typically observed one event at a time and the monitoring
algorithm updates a summary that contains enough information to provide given ver-
dicts without observing the previous events. This summary can be, e.g., a state in an
automaton that implements the monitor, or a vector of Boolean values representing the
subformulas of the specification that hold given the observed prefix. Updating the sum-
mary upon seeing a new event needs to be performed efficiently, in particular in online
RV, to keep up with the speed of reported events. The complexity of updating the sum-
mary is called the incremental complexity and needs to be kept minimal. In particular,
this complexity need not depend on the length of the prefixed observed so far, which
can grow arbitrarily.

Monitored execution traces are often unbounded in length, representing the fact that
the observed system “keeps running”, without a known termination point. Hence it is
important that the monitoring program is capable of producing verdicts based on finite
prefixes of the execution trace observed so far. Monitorability focuses on the kind of
verdicts that can be produced based finite prefixes given a specific property.

2.2 Linear Temporal Logic

The classical definition of (future) linear temporal logic is based on future modal oper-
ators [26] with the following syntax:

Qo u=true|p[(@AQ)[-0[ (@ UQ) | O

where p is a proposition from a finite set of propositions P, with U standing for until,
and O standing for next-time. One can also write false = —true, (QV ) = = (=@ A —Y),



(0 —y) = (—oVV), Co = (true U ) (for eventually @) and O = =@ (for always
P).

An event e consists of a subset of the propositions in P. These are the propositions
that were observed to hold or to be true during that event. A frace G = ej.ez.€3... is
an infinite sequence of events. We denote the event e; in 6 by 6(i). LTL formulas are
interpreted over an infinite sequence of events. LTL semantics is defined as follows:

- 0,i = true.

- o,i = piff p e o(i).

- 0,i E—oiffnotc,i = ¢.

- ciE(pAVY)iffo,iE¢@and 6,i = .

- o,iEO0iffc,i+1E=o.

- 0,i = (¢ Uv) iff for some j > i, 6,j =, and for each k such that i < k < j,
c.kEo.

Then define 6 = ¢ when 6,1 = o.

3 Monitorability

Online runtime verification observes at each point a prefix of the monitored execution
sequence and provides a verdict against a specification. There are three kinds of ver-
dicts:

— failed (or refuted or negative) when the current prefix cannot be extended in any
way into an infinite execution that satisfies the specification. Then the current prefix
is called a bad prefix [5].

— satisfied (or established or positive) when any infinite extension of the current prefix
satisfies the specification. Then the current prefix is called a good prefix [5].

— undecided when the current prefix can be extended into an infinite execution that
satisfies the specification but also extended into an infinite execution that satisfies
its negation.

Undecided prefixes that cannot be extended to either a good or a bad prefix are called
ugly [5], as no further monitoring information will be obtained by continuing the mon-
itoring. As will be shown in Section 3.2, at the expense of a more complex algorithm,
one can also decide and report when the current prefix is ugly.

Monitorability of a property ¢ is defined in [5] as the lack of ugly prefixes for
the property @. This requirement means that during monitoring, we never “lose hope”
to obtain a verdict. This definition is consistent with an early definition in [30]. The
definition of monitorability is a bit crude in the sense that it only distinguish between
specifications for which during monitoring one can always still expect a verdict, and
those for which this is not the case. But it lumps together specifications where only a
positive verdict or only a negative verdict can be expected. We study here monitorability
in a wider context, classifying the temporal properties into families according to the
ability to produce particular verdicts.



3.1 Characterizing Temporal Properties According to Monitorability

Safety and liveness temporal properties were defined informally on infinite execution
sequences by Lamport [25] as something bad cannot happen and something good will
happen. These informal definitions were later formalized by Alpern and Schneider [1].
Guarantee properties where defined by Manna and Pnueli [26]. We add to this classes
the morbidity properties, which is the dual class of liveness properties. This leads us to
the following classical way of describing these four classes of properties.

safety: A property @ is a safety property, if for every execution that does not satisfy
it, there is a finite prefix such that completing it in any possible way into an infinite
sequence would violate @.

guarantee (co-safety): A property @ is a guarantee property if for every execution
satisfying it, there is a finite prefix such that completing it in any possible way into
an infinite sequence satisfies Q.

liveness: A property @ is a liveness property if every finite sequence of events can
be extended into an execution that satisfies .

morbidity (co-liveness): A property @ is a morbidity property if every finite se-
quence of events can be extended to an execution that violates @.

Safety, guarantee, liveness and morbidity can be seen as characterizing different
cases related to the monitorability of temporal properties: if a safety property is vio-
lated, there will be a finite bad prefix witnessing it; on the other hand, for a liveness
property, one can never provide such a finite negative evidence. We suggest the fol-
lowing alternative definitions of classes of temporal properties, given in terms of the
verdicts available for the different classes. The adverbs always and never in the def-
initions of the classes below correspond to for all the executions and for none of the
executions, correspondingly. The four classes of properties mentioned above, however,
do not cover the entire set of possible temporal properties, and we need to add two more
classes to complete the classification.

— AFR (safety): Always Finitely Refutable: for each execution where the property
does not hold, refutation can be identified after a finite (bad) prefix, which cannot
be extended to an (infinite) execution that satisfies the property.

— AFS (guarantee): Always Finitely Satisfiable: For each execution in which the
property is satisfied, satisfaction can be identified after a finite (good) prefix, where
each extension of it will satisfy the property.

— NFR (liveness): Never Finitely Refutable: For no execution, can a bad prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that satisfies the property.

— NFS (morbidity): Never Finitely Satisfiable: For no execution can a good prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that does not satisfy the property.

— SFR: Sometimes Finitely Refutable: for some infinite executions that violate the
property, refutation can be identified after a finite (bad) prefix; for other infinite
executions violating the property, this is not the case.



— SFS: Sometimes Finitely Satisfiable: for some infinite executions that satisfy the
property, satisfaction can be identified after a finite (good) prefix; for other infinite
executions satisfying the property, this is not the case.

Let ¢ be any property expressible in LTL. Then ¢ represents the set of executions
satisfying it. It is clear by definition that ¢ must be either in AFR, SFR or in NFR (since
this covers all possibilities). It also holds that ¢ must be in either AFS, SES or in NFS.
Every temporal property must belong then to one class of the form XFR, where X stands
for A, S or N, and also to one class of the form XFS, again with X is A, S or N. The
possible intersections between classes is shown in Figure 1. Below we give examples
for the nine combinations of XFR and XFS, appearing in clockwise order according to
Figure 1, ending with the intersection SFRNSFS, termed Quaetio that appears in the
middle.

- SFR N NFS: (¢pAQg)

- AFRNNFS: Op

- AFR N SFS: (pV Oq)

- AFR N AFS: Op

- SFR N AFS: (pA<q)

- NFR N AFS: Op

- NFR N SES: (OpV <©q)

- NFR N NFS: OCp

— SFR N SFS: ((pVvOOp) AOq)

Another way to cover all the temporal properties is as the union of safety (AFR),
guarantee (AFS), liveness ( NFR), morbidity ( NFS) and quaestio (SFRNSFS). Every
safety property is monitorable. Because guarantee properties are the negations of safety
properties, one obtains using a symmetric argument that every guarantee property is
also monitorable.

The shadowed areas in Figure 1 in the intersections between the classes of properties
NFS, SFS and the classes NFR, SFR correspond to the cases where monitorability is
not guaranteed. While in NFR N NFS there are no monitorable properties, in the other
three intersections there are both monitorable and nonmonitorable properties. Examples
for these cases appear in the following table.

Class  |monitorable example| non-monitorable example
SFR N SES| ((OrvOOp) AOgq) ((pvOOp)AOQq)
SFR N NFS (OpAQg) (OOpAOg)
NFR N SFS (OpVq) (mpUS(pAO—p))VOOD)

3.2 Runtime Verification Algorithms for Monitorability

The following algorithm [24, 9] monitors executions and provides success (positive) or
fail (negative) verdict of the checked property whenever a minimal good or a bad prefix
is detected, respectively.

A procedure for detecting the minimal good prefix when monitoring an execution
against the specification @ is as follows:
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Fig. 1: Classification of properties according to monitorability: filled space correspond
to nonmonitorable properties.

1. Construct a Biichi automaton A4 for =@, e.g., using the translation in [17]. This
automaton is not necessarily deterministic [35].

2. Using DFS, find the states of -, from which one cannot reach a cycle that contains
an accepting state and remove these states.

3. On-the-fly subset construction: While monitoring input events, maintain the current
subset of states that the automaton A, reaches after observing the current input as
follows:

— Start with the set of initial states of the automaton 4.

— Given the current set of successors S and a newly occurring event e € 2F that
extends the monitored prefix, the set of successors S’ contains the successors
of the states in S according to the transition relation A of 4. That is, §' =
{s'|s € SA(s,e,s) €A}

— Reaching the empty set of states, the monitored sequence is good and a positive
verdict is issued. This is because the empty subset of states means that follow-
ing the current inputs, the automaton A~ cannot complete the input into an
accepting execution.

A symmetric procedure constructs Ay for detecting minimal bad prefixes. One can
monitor using both A, and Ay at the same time, providing both failure and success



verdicts. Translating the formula @ into a Biichi automaton can result in an automaton
Ay of size 0(2“"‘ ). The subset construction described above has to keep in each state a
set of states. Thus, the incremental complexity of the RV monitoring algorithm is also
O(2!°!). The subsets of states that are constructed during monitoring form the summary
of the trace observed so far, which is needed to continue the monitoring further.

Instead of the on-the-fly subset construction, one can precalculate, before monitor-
ing, a deterministic automaton B based on the product 4y X A-,. Each state of the
automaton is a pair of subsets of states, of the two automata, as constructed above.
Then, each state of this automaton can be marked with L , T or ?, where L corresponds
to an empty subset of 4, states (a failed verdict) and T corresponds to an empty set
of A states (a success verdict). Instead of the on-the-fly updates in the above subset
construction, monitoring can be performed while updating the state of the automaton
based on the automaton B. The size of this automaton is 0(22“" ), but the size of each
state remains 0(2“"‘), as in the on-the-fly version. Thus, the incremental complexity
remains the same.

An advantage of the preliminary construction of the automaton B over the on-the-
fly subset construction described above is that it can be further used to predict at runtime
the kind of verdicts that can be expected after observing the current prefix. To allow this
prediction, each state of B is annotated, during the preliminary construction, with the
kind of verdicts, T (success), L (failed) or both, that mark the nodes that are reachable
from the current state. During monitoring, when neither verdicts is reachable anymore,
the current prefix is identified as ugly. When the initial state of B is marked as ugly, the
property is nonmonitorable.

3.3 A Lower Bound Example for LTL Monitoring

We present an example, following [24], to show that monitoring an LTL specification
requires a summary of size exponential in the length of the property.

The specification is a safety property. It asserts about a nonempty and finite se-
quence of blocks of 0 and 1 bits of length n. Each block starts with the symbol #. Then,
a final block, separated from the previous one by $ follows. After the last block, the
symbol & repeats indefinitely. The property asserts that if the trace has the above struc-
ture, the last block (the one after the $) is identical to one of the blocks that appeared
before. We denote by O a sequence of i occurrences of O in an LTL formula. The
formula has length quadratic in n.

(#A D(((#\/$) — /\151'91@[(0\/ 1)) A#— O"+l(#\/$)) A — O"+1D&))) —
O#AN<i<a((OOAD($ — O'0)) V(O1AD($ — O'1)))))

With n bits, one can encode 2" different blocks. During the monitoring, the sum-
mary must remember which subset of blocks we have seen before inspecting the last
block that appears after the $. Encoding the set of blocks that were observed requires
space of size O(2"). With less memory, there will be two prefixes with different sets of
occurring blocks, which have the same memory representation; this means that runtime
verification will not be able to check the execution correctly.



4 Monitoring Safety Properties

4.1 Past Propositional Temporal Logic

Safety properties are a subset of the (future) LTL properties. One can apply a decision
procedure [33] to check whether an LTL property forms a safety property. However,
there is an alternative way of expressing LTL safety properties, which guarantees syn-
tactically that the given property is safety. This is based on using past operators for LTL,
symmetric to the future operators. Let P be a finite set of propositions. The syntax of
past-time propositional linear time temporal logic PLTL is defined as follows.

¢ u=true|p[(@AQ)[-0[(9S9)[C@

where p € P.

The operator & (for previous-time) is the past mirror of the O operator, & is the
past mirror of &, H is the past mirror of O and § (for Since) is the past mirror of U.
We can use the following additional operators: false = —true, (@ V W) = =(—Q A V),
(@ =) =(—0VVY), & 0= (rueS¢9),Bo=-96 0.

Let 6 = e;...e, be a finite sequence of events, consisting each of a subset of the
propositions P. We denote the
Semantics. The semantics of a PLTL formula ¢ with respect to a finite trace ¢ is defined
as follows:

G,i |= true.

c,i | piff p e o(i).

c,iE=(pAvy)iffo,i|=@and 6,i = .

c,i =@ iff not 6,i = o.

o,iE=oeiff|o] > 1ando,i— 1 ¢.

c,i E (eSv) iff for some j < i, 6,j =, and for each k such that j < k < i,
G,k = o.

We can combine the past and future definitions of LTL. However, adding the past
operators does not increase the expressive power of (future) LTL [16]. Based on the
combined logic, we define four extensions of PLTL, which consist of a past property
prefixed with one or two future operators from {<, O}. All extensions are interpreted
over infinite sequences:

— OPLTL, which consists of PLTL formulas prefixed with the future O operator.
OPLTL, which is, similarly, PLTL formulas prefixed by the < operator.
OOPLTL, which consists of PLTL formulas prefixed with 0.

<OOPLTL, which consists of PLTL formulas prefixed with <O.

Note the duality between the first two classes, OPLTL and CPLTL: for every for-
mula ¢, 0@ = $—@. Thus, the negation of a OPLTL property is a CPLTL property
and vice versa. Similarly, for every ¢, -OC¢@ = OGO—@, making the latter two classes
also dual. Thus, the negation of a OCPLTL property is a SOPLTL property.

Manna and Pnueli [26] identified the LTL safety properties with OPLTL and the
guarantee properties with OPLTL. They have also called the properties of OOPLTL and



OOPLTL recurrence and obligation, respectively. The entire set of LTL properties can
be expressed as Boolean combination of recurrence and obligation properties. Except
for safety and liveness properties, the Manna and Pnueli classification is orthogonal to
the one that we explored here.

4.2 RV for Propositional Past Time LTL

Past properties play an important role in RV. Runtime verification of temporal specifi-
cations concentrates in many cases on the class of properties OPLTL. Further, instead
of checking a property of the form 0@, one often checks whether ¢ holds for the trace
observed so far, returning truel/false output. When the current trace violates ¢, then the
fact that O fails can be concluded.

The RV algorithm for past LTL, presented in [20] is based on the observation that
the semantics of the past time formulas ©¢ and (¢.S ) in the current state i is defined
in terms of the semantics of its subformula(s) in the previous state i — 1. This becomes
clearer when we rewrite the semantic definition of the § operator to a form that is more
applicable for runtime verification.

- (0,i) = (¢Sv) if (0,i) =y, ori > 1 and both (0,i) =@ and (6,i—1) = (¢S V).

The semantic definition of past LTL is recursive in both the length of the prefix and
the structure of the property. Thus, subformulas are evaluated based on smaller subfor-
mulas, and the evaluation of subformulas in the previous state. The algorithm shown
below monitors a trace against a past temporal property M. It uses two vectors of values
indexed by subformulas: pre, which summarizes the truth values of the subformulas for
the observed prefix without its last event and now, for the observed prefix including its
last event.

Initially, for each subformula @ of M, now(@) := false.

Observe a new event e (as a set of propositions) as input.

Let pre := now.

Make the following updates for each subformula. If ¢ is a subformula of y then
now(@) is updated before now ().

e

- now(p):=p€e.

— now(true) := true.

- now((QAVY)) := now(®) and now(y).

— now(—Q) := not now (o).
(
(

|
>

ow((9SW)) := now(y) or (now(@) and pre((QSW))).
ow(& ¢) := pre(9).
5. If now(n) = false then report a violation, otherwise goto step 2.

|
>

As opposed to the monitoring algorithm for future LTL, presented in Section 3.2,
which uses a summary exponential in the size of the monitored property, this algorithm
has a summary and an incremental complexity that is linear in the length of the specifi-
cation.

10



4.3 From Monitoring Past Property ¢ to Monitoring O¢

We present an algorithm for specifications of the form OPLTL. Recall the algorithm
for future propositional LTL presented in Section 3.2. It identifies minimal good and
bad prefixes hence provides a success/failed verdicts for the monitored input trace with
respect to the specification.

For the case of OPLTL, a simpler construction can be used. A single deterministic
automaton Dge can be constructed for the specification O¢. Each state s of this au-
tomaton corresponds to the set of subformulas sf(s) of ¢ that hold after a trace that is
consistent with the inputs on any path that leads from the initial state to s. Calculating
the transition relation is similar to updating the summary in the RV algorithm for past
propositional LTL, as shown at the beginning of Section 4.2, using the two vectors pre

and now. Let s 5 s’ , where Q is the currently inspected set of propositions. Define pre
as follows: for a subformula 1 of the given specification, pre(n) = frue iff € sf(s).
For a propositional letter p, set now(p) = true iff p € Q. Now, for the subformulas in
sub(@) that do not consist solely of a proposition, calculate now as in Step 4 in the al-
gorithm in Section 4.2. Then, for 1| € sub(@), N € sf(s') iff now(n) = true. The initial
state consists of the empty set of subformulas. A state of Dng is accepting if it contains
the formula ¢ itself.

One can use Dny to decide on verdicts when monitoring against the specification
O¢. An (infinite) execution satisfies 0@ if it runs only through accepting states. Note
that the number of states is 0(2\(;’ ), but each state can be represented using space linear
of |@|. We mark the states from which all the future successors are accepting by T.
Initially, mark every accepting node by T. Then, repeatedly remove the T marking
from nodes that have a successor that is not marked by T. Keep doing that until there
is no T marking that can be removed’>. We mark states where there are no infinite
accepting continuations L. To do that, start by marking the non accepting nodes by L.
Repeatedly, mark by L nodes whose entire set of successors are already marked by L.
Keep doing this until no new node can be marked?. Finally, nodes that are not marked
by T or L are marked by ?.

Marking the states of the automaton Dpg is done as a preliminary step. Runtime
verification uses the marked automaton Dpe to monitor input traces and return the
corresponding verdict. The RV algorithm then needs to keep the current state, and can
figure out the successor state based on the two-vector update. Consequently, the size of
the summary, and the incremental complexity are linear in the size of ¢. This can be
compared to the automaton-based RV algorithm for future LTL from Section 3.2, which
needs to keep a set of states of the constructed automata, hence requiring exponential
space and time for each update.

We need to take the fact that the algorithm for OPLTL has a linear incremental
complexity and a linear summary in the size of the specification with a grain of salt. The
example in Section 3.3 shows that the summary for the presented property needs to be
exponential in n. This (safety) property is presented in future LTL with a formula whose
size is quadratic in n. But for O with a past property @, a summary that is only linear

2 This is similar to the model checking algorithm for the CTL property AGT [7].
3 This is similar to the model checking algorithm for the CTL property AF L.
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in |@| is sufficient. Unfortunately, this implies that expressing this property in the form
O@ requires a formula whose length is exponential in n. A similar reasoning implies
that for a reversed property, where the block of length n that needs to repeat appears at
the beginning rather at the end, the property can be written with past LTL formula of
quadratic size in n, but the future LTL property needs to be of length exponential in 7.

Monitoring with respect to a past property @, rather than O¢, the verdict can change
between frue and false multiple times. However, for safety properties we may be mostly
interested in finding the case where the current prefix fails to satisfy ¢. When the verdict
for the current prefix is false, we can issue a fail verdict for O@. However, it is possible
that a prefix ¢ satisfies @, while 0@ does not hold for all extensions of this prefix to an
infinite execution. Consider as an example the property O(S ©falseV SO p), which be-
comes false only two events after the first event where —p holds (the disjunct © & false
is used to rule out failure due to fact that the failing prefix is shorter than two events).
Thus, although O¢ should return a fail verdict, performing RV on the past property ¢
will only reveal that two events later than on the minimal trace. Monitoring 0@ us-
ing Dpe would provide the fail verdict at the minimal trace that cannot be extended to
satisfy O@.

If @ holds for some observed prefix ¢ but 0@ fails on every infinite extension of G,
then we will eventually observe an extension G.p of G, where |p| depends on the size
of ¢ and where @ does not hold. Thus, if we do not want to use the automaton Dy to
decide when 0@ already holds, but instead check ¢ after each new event, then there is a
limit to the number of steps that we need to wait until —¢ will fail to hold that depends
on |@|. To see this, consider a finite trace ¢ where ¢ holds and where all the infinite
extensions of ¢ have some finite prefix that does not satisfy ¢. Let n be the number of
states of Do, which is known to be bounded by O(2/?!) [22]. Running the deterministic
automaton Dng on o, we end up in some state s. Suppose, for the contradiction, that
there is a path p from s with |p| > n, where all of its prefixes satisfy ¢. Then running
Dng on the input p from the state s, one must pass through at least one state of Dy
more than once. This allows constructing (“pumping”) an infinite path on Dgg, where
all of its states indicate that the prefix so far satisfies ¢, a contradiction.

4.4 From Monitoring Propositional to First Order Temporal Logic

Runtime verification was extended to specifications that contain data. In particular, the
tools DejaVu and MonPoly* allow specification that is based on first-order past LTL.
An event in this case consists of predicates with parameters, i.e., in the form ¢(3).
DejaVu algorithm is restricted to checking a first order past property @, rather than
checking O¢.

For first order RV, the problem of discovering that a finite trace ¢ cannot be extended
to satisfy O, although the trace itself still satisfies ¢ intensifies: in some cases, the
maximal number of events that are required to extend ¢ depends to the trace G itself,
and is not a function of the specification ¢. Consider the following specification @:

Vx((g(x) = =6 & q(0) Vg(x)) A (r(x) = (© © g(x) A =6 & r(x))))
4 MonPoly allows a limited use of finite future, but the monitoring is then actually resolved when

that future is reached.
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This property asserts that events of the form g(x) or r(x) can appear only once with the
same parameter each. Further, an r(x) event can occur only if a ¢(x) event happened
with the same parameter x. Moreover, after a ¢(0) event, no event of the form ¢(x) can
happen. Consequently, if the event ¢(0) has happened, no further g(x) events can occur,
and the only events that can occur are of the form r(x), where ¢(x) has already occurred
(with the same value x). Therefore, the maximal number of events that can extend the
trace until @ becomes false is the number of g(x) events that occurred for which a
matching r(x) event has not happened yet. Thus, once the event ¢(0) has occurred, the
verdict of D@ is fail, although ¢ may still be calculated to zrue for a long while.

In [28], an algorithm that calculates the possible values of ¢ for extensions up to a
given fixed size k is presented. However, it is shown, by a reduction from the Post Cor-
respondence Problem decision problem, that checking D¢ for a first order past property
¢ is undecidable.
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