
Feature

High-Integrity Runtime Verification
Alwyn E. Goodloe, NASA Langley Research Center, Hampton, Va. USA

Klaus Havelund, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. USA

Abstract—High-integrity

systems must be very reliable, but their increasing complexity makes

them difficult to test or formally verify. We introduce the concept of runtime

verification that can be a critical element of an assurance case by guaranteeing

that specifications hold at runtime. We show how runtime verification can be a

trustworthy approach to assuring that critical systems are safe and dependable.

Introduction

The failure of high-integrity computing systems

in application domains such as automobiles, aircraft,

chemical plants, financial, and robotic systems can

result in the loss of life, significant property damage,

or large monetary loss. Recent incidents involving

autonomous vehicles highlight the danger such sys-

tems pose to the public. Hence their correctness has

become critical to maintaining a smoothly running

society. High-integrity systems are often subject to

regulatory oversight, where great emphasis is placed

on assuring that the systems are safe, secure, and

correct.

Within the field of software development, it is

common to refer to the term “Verification & Val-

idation” (V&V). Validation usually refers to ensur-

ing that “the system does the right thing”, and

is typically a manual process involving inspecting

the requirements and the behavior of a program to

confirm they are what was intended. Verification, on

the other hand, consists of ensuring that “the system

does the thing right”, and involves checking that the

execution of the program satisfies certain assertions

under all or many circumstances. Checking that it

satisfies the assertions under all circumstances is

usually performed using formal verification tech-

niques, such as theorem proving and model check-

ing. Checking that it satisfies the assertions under

some (a finite set of) circumstances is referred to as

testing. The activity of checking that one particular

XXXX-XXX © IEEE

Digital Object Identifier 10.1109/XXX.0000.0000000

execution satisfies its specification is referred to as

Runtime Verification [1], also commonly referred to

with the acronym RV. RV can be applied to a system

under observation (SUO) during test, but can, in

particular, be applied after deployment of the system

in the field during its entire operation. RV can be

applied to log files produced by previous runs of a

system, referred to as offline RV, or it can be applied

during the execution of the system, referred to as

online RV. Given that testing can fail to cover off-

nominal conditions and formal proofs often rest on

assumptions that may not hold in the field, RV should

still be employed to ensure operational correctness.

When a violation of the specification is detected,

the RV system can either alert a responsible party,

such as a drone safety pilot, or invoke an automated

procedure that takes corrective action by steering

the system into a safe state. Hence well engineered

RV can provide guarantees against unsafe behavior.

We shall provide an introduction to RV in the

context of high-integrity systems, drawing examples

from case studies applying RV to aerospace systems.

In the next section, we will present fundamental con-

cepts and terminology. This is followed by sections

dedicated to performing RV offline and performing

RV online. We then address how to ensure that the

RV system itself is trustworthy, a critical part of an

assurance argument.

Fundamentals of Runtime
Verification

Published by the IEEE Computer Society 1

Basic Concepts
Runtime verification is a dynamic software analysis

technique that detects if a formally specified prop-

erty is violated during an execution of a program

or system. This can be applied offline by collecting a

trace as a log file or online by monitoring the system

whilst it is running. Runtime verification is therefore

in some sense very limited in focusing on just one

execution1. However, this focus in research over the

last couple of decades has brought forward many

interesting techniques, allowing for more interesting

execution properties to be verified more efficiently

and using more elegant specification languages.

In RV, the execution of a system is usually ab-

stracted as an execution trace [2] of events or states.

Say E is the set of events (or states) and E∗ is the

set of all finite sequences of elements of E , then a

trace σ ∈ E∗ is a finite sequence of observed events

or states. Traces in RV are always finite, in contrast

to traces in formal verification, which are generally

considered to be infinite in theory. In RV, a trace

is checked against a formal specification ϕ ∈ Φ in

some specification logic Φ. Sometimes such a logic

is referred to a specification language, or a Domain-

Specific Language (DSL) for RV. A specification de-

notes the set of traces that satisfy it. That is, the

semantics of the specification logic is modeled as

a function L that maps a specification to a set of

traces, formally L : Φ → P(E∗). The RV problem

then becomes that of checking that a trace σ is a

member of the language of a specification ϕ, formally

σ ∈ L(ϕ). We also write this as σ |= ϕ, stating that σ

satisfies the specification ϕ.

Traces are extracted from the executing pro-

gram. Assuming that Prog is the set of all programs,

the execution function is denoted by Exec : Prog ×
Input → Output , and the execution of a particular

program P on input i by Exec(P, i). Note that in the

case of concurrent/interactive programs the situa-

tion is more complex. Of course one can attempt

to monitor the output produced by the program, in

which case we have our trace for free. Formally

Exec(P, i) |= ϕ. However, it is more common to in-

strument the program to produce a trace specifically

for monitoring. Instrumentation is often performed

manually by the programmer inserting logging state-

ments in the code, but can also be automated. Au-

1As will be discussed later, runtime verification can also

be focused on multiple executions.

tomated instrumentation consists of modifying the

original program with an instrumentation function

Instr : Prog → Prog, to produce a new program,

which when executed delivers the execution trace to

be analyzed. This way the verification problem can

for formulated as:

Exec(Instr (P), i) |= ϕ

In the following, we shall elaborate more on

traces, specification logics, and code instrumenta-

tion. As an example, we shall consider monitoring

something as simple as opening, reading, writing and

closing of files.

Traces

There is no commonly agreed upon definition of what

a trace is in the RV literature, neither with respect to

what it should contain, nor what the format should

be. With respect to contents, it completely depends

on the application and the kind of properties one

wants to monitor. It is, however, common for events

to have a name indicating what kind of event it

is, e.g. opening a file, reading a file, or closing a

file. An example of a log consisting of three events

(reporting opening, reading, and closing a file) is

shown in Figure 1, in Comma Separated Value (CSV)

format2, JavaScript Object Notation (JSON) format3,

and Extensible Markup Language (XML) format4

respectively. However, even within one format, one

can represent a log in many different ways; we have

just shown a few.

Note that in online monitoring, events are gen-

erated on the fly, and may appear as special mes-

sages in text format or even as data structures in

a programming language. An example of this would

be if a monitor is a process running in parallel with

the monitored program, and events are messages

sent from the monitored program to the monitor. In

the case where a monitor is tightly inlined in the

monitored program, it may even be able to see the

internal state of the program, yielding yet a very

different notion of trace.

2CSV format: https://datatracker.ietf.org/doc/html/rfc4180
3JSON format: https://datatracker.ietf.org/doc/html/rfc7159
4XML format: https://www.w3.org/TR/REC-xml

2

CSV:

open,log1,rd
read,log1,1024
close,log1

JSON:

[
{"event" :"open", "file": "log1", "mode": "rd"},
{"event" :"read", "file": "log1", "bytes": 1024},
{"event" :"close", "file": "log1"},

]

XML:

<log>
<event>

<name>open</name><file>log1</file><mode>rd</mode>
</event>
<event>

<name>read</name><file>log1</file><bytes>1024</bytes>
</event>
<event>

<name>close</name><file>log1</file>
</event>

</log>

FIGURE 1. A log represented in CSV format, JSON format,

and XML format.

Logics

As previously mentioned, a specification ϕ of a re-

quired trace property is expressed in a property

specification logic Φ, formally ϕ ∈ Φ. Numerous

different formalisms have been used for runtime ver-

ification. Some of the most commonly used include

state machines, regular expressions and temporal

logics. Such high-level property specifications are

translated to monitors in a programming language,

which then performs the actual trace analysis. A

rich literature exists outlining different logics and

how they are translated to monitors, or even directly

executed as monitors.

Consider the file example. Suppose we want to

specify the property that for any file f , if opened in

read mode, it can only be read from, and if opened in

write mode, it can only be written to, and an opened

file should eventually be closed again. This property

is formalized as a state machine in Figure 2.

Note that this state machine actually also says

that after a file is opened it cannot be re-opened

before it is closed again, and after that it cannot

be closed again before opened again. This can also

be expressed as a regular expression, which is a

different way of expressing trace properties:

0

1

2

open(f , ‘rd ′)

open(f , ‘wr ′)

close(f)

read(f)

close(f)

write(f)

FIGURE 2. A state machine for the property: “for any file f ,

if opened in read-mode, it should only be read from, and if

opened in write mode, it should only be written to, and an

opened file should eventually be closed again”.

(open(f , ‘rd ′)read(f)∗close(f))∗|

(open(f , ‘wr ′)write(f)∗close(f))∗

In many RV systems, properties are alternatively

expressed as formulas in temporal logic. The follow-

ing properties P1 and P2, for example, state that P1:

always (□), if a file is opened in some mode, it should

eventually (♢) be closed, and P2: always, if a file is

read, then in the past it was opened in read mode,

and since (S) then it has not been closed.

P1 : ∀f ∈ File, ∀m ∈ Mode.

□(open(f , m) → ♢close(f))

P2 : ∀f ∈ File ∈ Mode.

□(read(f) → (¬close(f) S open(f , rd)))

Property P1 is also called a future time property

since the ♢ operator refers to the future, while the

property P2 is called a past time property since the

S operator refers to the past.

Instrumentation
We mentioned earlier the need for instrumenting

programs to emit events to a monitor, and that

this instrumentation can be manual or automated.

A common approach to automated instrumentation

is to use aspect-oriented programming. For exam-

ple, AspectJ [3] is an aspect-oriented framework for

Java. The AspectJ compiler takes as input a Java

program and one or more aspects, and produces a

new program, which is the original program plus

3

code weaved in as directed by the aspect. Figure

3 shows an aspect for inserting appropriate calls

to a monitor of a class Monitor (not shown here),

right before calls of functions for opening, reading,

writing, and closing files. The Monitor class can be

manually constructed to check our property, or it can

be generated automatically from a specification.

public aspect MonitorAspect {
pointcut open(int mode) : call(File.new(String,int)) &&

args(..,mode);
pointcut read(File file) : call(String File.read(..)) && target(file);
pointcut write(File file): call(void File.write(..)) && target(file);
pointcut close(File file): call(void File.close()) && target(file);

Monitor monitor = new Monitor();

after(int mode) returning (File file) : open(mode) {
monitor.open(file,mode);

}

before(File file) : read(file) {
monitor.read(file);

}

before(File file) : write(file) {
monitor.write(file);

}

before(File file) : close(file) {
monitor.close(file);

}
}

FIGURE 3. AspectJ aspect performing code instrumentation.

RV Frameworks
Runtime verification frameworks transform a formal

specification written in a suitable logic into an ex-

ecutable monitor. RV frameworks can also generate

supporting code to instrument the SUO in order to

capture the trace of the execution. Depending on

the framework, monitors can be implemented in a

range of executable languages such as Python, Java,

C, assembly language, or even as a Verilog program.

Examples of RV frameworks include [4]–[14].

Interestingly, static analysis tools can potentially

be used for (at least) offline monitoring. For example,

the Cobra static analyzer [15] was used for log

analysis as described in [16], where it is compared

with an RV tool.

A Broader Definition of RV
Runtime verification as presented is defined as the

activity of checking that an execution trace satisfies

a property. However, the term can be perceived more

broadly. In the broadest sense of the term, it repre-

sents the slogan: “get the most out of your runs”.

The field, for example, also includes computing data

beyond Boolean true/false verdicts from traces, and

therefore overlaps with the field of data analysis,

including production of statistics and visualization.

Other aspects of RV includes machine learning, e.g.

learning a specification of nominal behavior from a

set of traces. This specification can then be turned

into a monitor, checking that subsequent provided

traces satisfy the specification learned from previous

traces. Some systems allow formulating properties

on a set of traces [17], also referred to as hyper

properties (e.g. every pair of separate executions of

a system must agree on the position of occurrences

of some event e).

Offline Monitoring

In offline monitoring, the objective is to analyze

a log file produced by a previous run of the SUO.

Since the analysis is performed after the run, there is

usually less emphasis on the monitor being high per-

formance with respect to execution time, compared

to the online case. Of course execution time does

become a critical factor for very large log files with

millions of events. A characteristic of offline moni-

toring is that there are less constraints concerning

memory use, e.g. using dynamic memory allocation

in a garbage collected language is commonly seen.

These more relaxed constraints on the monitoring

framework opens up for more expressive monitoring

languages.

A classical distinction amongst Domain-Specific

Languages (DSLs) for RV is that of external versus

internal DSLs. An external DSL is a “small language”

with its own grammar and parser. An internal DSL

(sometimes referred to as an embedded DSL) is

a library in a general purpose programming host

language, such as Python, Java, or even C++ and C.

An advantage of an internal DSL is that it offers the

entire host language as part of the “logic”, making it

very expressive (Turing complete). When processing

log files, it is often necessary to perform computa-

tions on the data in the log, such as extracting sub

strings from strings in the log with regular expres-

sions, computing averages, storing data points for

later visualization, etc. For such purposes an internal

DSL becomes very useful and even necessary.

An example of an internal DSL is PyCon-

4

tract5 [18], a Python library offering a way of writing

temporal properties using a combination of state

machines and rule-based programming. States can

be parameterized with data, effectively representing

facts, which are stored in the monitor memory, as

is typical for rule-based systems. As an example, we

shall illustrate how to program a monitor in PyCon-

tract for the following property about the execution

of commands on board a spacecaft. A command,

identified by a name, is first dispatched, after which

it must complete execution within 3 seconds (3000

milliseconds), without failing before then. Further-

more we would like to be informed of the average

execution time for each command, computed over

all executions of the command.

Figure 4 shows a monitor for the command ex-

ecution property. The monitor is defined as a class

(line 3) instantiating a statistics class (line 4) which

we shall not elaborate on. It just makes the point

that one can create any statistics desired as part

of a monitor. The transition function (lines 6-9) is

always enabled. Whenever an event is submitted to

the monitor, this function is applied to the event. In

this case, if the event is a dictionary with a name field

having the value dispatch, a cmd field and a time

field, then the monitor enters a DoComptete(c, t)

state, parameterized with the command c and time t.

The DoComplete state itself has a transition function,

which looks out for three types of events: the failure

of the command, a timeout of more than 3 seconds

since the dispatch, or a successful completion of the

command.

The monitor can be instantiated and fed a trace

to verify as shown in Figure 5. Here a trace, for illus-

tration purposes, consisting only of seven events, is

constructed directly as a Python list of dictionaries

(each dictionary representing an event). In practice,

a trace is typically read in from a file. The PyContract

API also supports feeding the monitor with events

one by one, instead of providing a trace. It can there-

fore technically also be used for online monitoring.

The trace in Figure 5 violates the specification twice:

the TURN command completes after 3 seconds, and

the THRUST command never completes. The SEND

command completes twice with an average execution

time of 750 milliseconds. The output is shown in

Figure 6.

5https://github.com/pyrv/pycontract

1 import pycontract as pc
2

3 class Commands(pc.Monitor):
4 statistics = Statistics()
5

6 def transition(self, event):
7 match event:
8 case {’name’: ’dispatch’, ’cmd’: c, ’time’: t}:
9 return Commands.DoComplete(c, t)

10

11 @pc.data
12 class DoComplete(pc.HotState):
13 cmd: str
14 time: int
15

16 def transition(self, event):
17 match event:
18 case {’name’: ’fail’, ’cmd’: self.cmd}:
19 return pc.error()
20 case {’time’: t} if t − self.time > 3000:
21 return pc.error()
22 case {’name’: ’complete’, ’cmd’: self.cmd, ’time’: t}:
23 self.monitor.statistics.add(self.cmd, t − self.time)
24 return pc.ok

FIGURE 4. Defining a monitor using the PyContract library.

1 m = Commands()
2 trace = [
3 {’name’: ’dispatch’, ’cmd’: ’TURN’, ’time’: 1000},
4 {’name’: ’dispatch’, ’cmd’: ’THRUST’, ’time’: 4000},
5 {’name’: ’complete’, ’cmd’: ’TURN’, ’time’: 6000},
6 {’name’: ’dispatch’, ’cmd’: ’SEND’, ’time’: 6000},
7 {’name’: ’complete’, ’cmd’: ’SEND’, ’time’: 7000},
8 {’name’: ’dispatch’, ’cmd’: ’SEND’, ’time’: 7500},
9 {’name’: ’complete’, ’cmd’: ’SEND’, ’time’: 8000},

10]
11 m.verify(trace)
12 m.statistics.show()

FIGURE 5. Applying the monitor defined in Figure 4.

1 *** error transition in Commands:
2 state DoComplete(’TURN’, 1000)
3 event 3 {’name’: ’complete’, ’cmd’: ’TURN’, ’time’: 6000}
4

5 *** error at end in Commands:
6 terminates in hot state DoComplete(’THRUST’, 4000)
7

8 Average command durations:
9 SEND: 750.00

FIGURE 6. Output from monitor application in Figure 5.

An application of PyContract to the analysis of

real telemetry from NASA’s Europa Clipper mission

is described in [19]. An application of the internal

DSL TraceContract to verify command sequences

before being sent to the Lunar spacecraft LADEE

is described in [20]. TraceContract is a library in

the Scala programming language, and is similar

5

https://github.com/pyrv/pycontract

to PyContract. Although this is a form of program

verification, it has similarities with log analysis.

Online Monitoring

The objective of online monitoring is to verify

that the SUO adheres to a formal specification dur-

ing execution, meaning an execution trace must be

collected and analyzed while the system is running,

possibly requiring an action that steers the system to

a safe state if the specification is violated. Monitor-

ing languages and frameworks targeting online mon-

itoring are often customized for particular domains

such as network infrastructure, cloud computing,

and cyber-physical systems (CPS). In this section, we

will focus on RV for CPS.

Safety-critical cyber-physical systems are usually

subject to stringent restrictions such as hard real-

time deadlines, size, weight, and power, thus online

monitors of such systems must also conform to the

same restrictions. Resource limitations can restrict

online RV to monitors that run in constant time and

space, and limits the size of the trace that can be

kept in memory. Extensive instrumentation of the

SUO, allowing internal variables to be observable,

may complicate real-time scheduling and certifica-

tion. Hence, a rule of thumb often followed in online

monitoring is to go with light-weight instrumentation

when possible. Moreover, the monitor must detect

the specification violation in a timely manner, with

enough time for the corrective action to prevent

catastrophic failure.

NASA’s Copilot6 [7] is representative of RV frame-

works targeting online monitoring of CPS systems.

Copilot’s stream based specification language is an

internal DSL embedded in the programming lan-

guage Haskell. The framework generates semanti-

cally equivalent C99 monitors that execute in con-

stant space and constant time. Safety properties

of CPS systems are usually expressed in terms of

continuous physical values such as GPS coordinates

or airspeed; hence, Copilot and other similar RV

frameworks obtain a trace by sampling the sensor

data and system state at suitable rates.

Consider a fixed-wing unmanned aircraft con-

trolled by an AI enabled autopilot, where RV is being

used to ensure safe operation of the aircraft. A stall is

6https://github.com/Copilot-Language/copilot

an aerodynamic condition where the aircraft angle of

attack of a wing is greater than the designated crit-

ical value, causing the wing to cease generating lift.

To prevent the autopilot from accidentally putting

the aircraft into a stall, we can write a monitor

specification expressing that if the aircraft maintains

an angle of attack greater than the designated stall

angle (14◦) for 40 seconds, then invoke a function,

move_to_safe_AA (code not shown), that overrides

the autopilot putting the aircraft into a safe state.

Figure 7 shows a Copilot module DetectStall

specifying this property. A Haskell extension is used.

The first three lines of the module import the nec-

essary packages. The declarations angleOfAttack

and sysClk define streams obtained by sampling

system sensor data measuring the angle of attack

(angle_attack) as well as a stream of integral clock

values, (sys_clock), sampled at same rate as the

sensor data. Copilot’s past-time metric temporal

logic alwaysBeen operator is used to specify the

property. If the property is true, the trigger invokes

the function to lower the angle of attack. The last

line of the definition synthesizes a C monitor from

the high-level definition. There is a straightforward

translation from each Copilot stream value to a

C value, where compound stream values such as

structs and arrays are translated to C structs and

arrays with corresponding struct field names and

array lengths. While Copilot streams are concep-

tually infinite sequences, Copilot-generated C pro-

grams only use a finite amount of memory, with each

stream translated to a ring buffer. Copilot monitors

are scheduled as real-time tasks so that data and

events are sampled at the rate needed to produce

the desired trace.

In over a decade of use in NASA unmanned

aircraft flight tests, Copilot has been a foundational

element of fault-tolerant monitors [21] and has been

used to monitor properties such as aircraft stall,

battery life, safe air traffic separation, safe flight

mode transitions, and flight plan violation detection.

Copilot has been classified as a software engineering

tool by NASA so that the monitors generated by the

framework can be certified for use on mission critical

systems.

Trustworthy RV
News reports are awash with stories of misplaced

trust in new technology resulting in unpleasant con-

sequences. If RV is to play a central role in assuring

6

https://github.com/Copilot-Language/copilot

{−# LANGUAGE RebindableSyntax #−}

module DetectStall where

import Language.Copilot
import Copilot.Compile.C99
import qualified Copilot.Library.MTL as

Q hiding (trigger)

sysClk :: Stream Word64
sysClk = extern "sys_clock" Nothing

angleOfAttack :: Stream Double
angleOfAttack = extern "angle_attack" Nothing

unsafeAngleOfAttack aattack clk’ =
Q.alwaysBeen 0 40 clk’ 1 (aattack > 14)

spec = do
trigger "move_to_safe_AA"

(unsafeAngleOfAttack angleOfAttack sysClk) []

main = reify spec >>= compile "stall_detect"

FIGURE 7. Defining a Copilot monitor for aircraft stall.

high-integrity systems, then the RV must be demon-

strated to be trustworthy [22]. To ensure that our

trust in RV is not misplaced, RV for high-integrity

systems must at least:

• Support critical certification requirements.

• Tolerate faults and security threats.

• Support validation that the specification of the

monitor is correct.

• Provide evidence that the synthesized monitor

does indeed implement the specification.

High-integrity systems are often subject to cer-

tification and regulatory requirements such as DO-

178C [23] in civil aviation. RV being used on such a

system will also have to satisfy the regulations. Let

us look at requirements commonly found across a

range of certification guidelines. To ensure that the

requirements and safety analyses performed early in

systems development are reflected throughout the

lifecycle, regulations often require documentation of

traceability from requirements to object code. To

satisfy this requirement, monitor generation frame-

works should produce documentation that supports

traceability from specification to monitor code. In

addition, verification must be performed to demon-

strate that the monitors do indeed implement their

specification. Although extensive testing is the con-

ventional means of verification, advances in auto-

mated formal verification have been successfully ap-

plied to the task [24], providing mathematical proof

that the monitor and specification are equivalent.

Another common guideline that RV monitors need

to respect is for software to have error handling

for out-of-bounds data. Thus it is essential for sound

software engineering practices to be applied to RV.

Writing formal specifications is an error prone

task and getting a RV specification wrong can have

disastrous consequences. However, the RV frame-

work can provide features to assist the user in

getting the specification right. Visualizing logical

specifications [25] can illuminate errors in complex

specifications. A feature allowing the direct execu-

tion of the specification on sample data while eliding

issues involving integration with the SUO can also

aid in validation. Many CPS systems are designed

using modern model-based engineering tools such

as MATLAB Simulink 7 that have a significant sim-

ulation capability. Including interfaces to such sim-

ulation tools can assist in validating specifications.

There are cases where the best means of validating

a specification is to prove theorems about it. Incor-

porating the capability to prove theorems about a

specification directly into an RV framework makes

this much easier.

The design process for high-integrity systems

typically includes a hazard analysis [26] to identify

hazards that can lead to catastrophic failure and

a threat analysis to identify security threats. When

integrated with an SUO, RV monitors need to be able

to tolerate the faults identified in the safety analy-

sis. Given that fault-tolerance is typically achieved

by architectural means, the monitors may have to

run on redundant hardware and employ voting to

achieve the desired level of fault tolerance or be

run in a separate partition to achieve an acceptable

level of independence. Many security threats can be

mitigated by following secure coding practices. How-

ever, one can envision situations where monitors and

associated steering actions are exploited in denial-of-

service attacks or are used to prevent a vehicle from

reaching its destination.

7MATLAB and Simulink are registered trademarks of The

MathWorks, Inc.

7

Conclusion
We have presented an overview of runtime veri-

fication, which has been the subject of active re-

search for over two decades. The technology is now

sufficiently mature that it is being transitioned into

practice, as is illustrated by examples of both offline

and online monitoring using RV frameworks devel-

oped in part at NASA. Offline RV can lower cost

and complexity by making log analysis easier, more

systematic, and repeatable from project to project,

whereas online RV enables the assurance of systems

that might otherwise be too complex to do so via

conventional means. However, it is not an end-run

around assurance as the monitors themselves must

be verified entailing some cost. Making RV trustwor-

thy enough to be a cornerstone of a certification ar-

gument will be a considerable engineering challenge

that the community will have to meet for RV to fulfill

its potential.

Acknowledgements
The research performed by Klaus Havelund was

carried out at Jet Propulsion Laboratory, Califor-

nia Institute of Technology, under a contract with

the National Aeronautics and Space Administration.

The research performed by Alwyn Goodloe was sup-

ported by the System-Wide Safety project in NASA’s

Airspace Operations and Safety Program. © 2023.

All rights reserved.

REFERENCES

1. Y. Falcone, K. Havelund, and G. Reger, “A tutorial

on runtime verification,” in Engineering Dependable

Software Systems, ser. NATO Science for Peace and

Security Series, D: Information and Communication

Security, M. Broy, D. A. Peled, and G. Kalus, Eds. IOS

Press, 2013, vol. 34, pp. 141–175.

2. G. Reger and K. Havelund, “What is a trace? a run-

time verification perspective,” in ISoLA 2016: Lever-

aging Applications of Formal Methods, Verification

and Validation: Discussion, Dissemination, Applica-

tions, ser. Lecture Notes in Computer Science, 2016,

pp. 339–355, 7th International Symposium on Lever-

aging Applications of Formal Methods, Verification

and Validation (ISoLA 2016) ; Conference date: 05-

10-2016 Through 14-10-2016.

3. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold, “An overview of As-

pectJ,” in ECOOP 2001 – Object-Oriented Program-

ming, ser. LNCS, J. L. Knudsen, Ed., vol. 2072.

Springer, 2001, pp. 327–354.

4. C. Colombo, G. J. Pace, and G. Schneider, “LARVA

— safer monitoring of real-time Java programs (tool

paper),” in Proceedings of the 2009 Seventh IEEE

International Conference on Software Engineering

and Formal Methods, ser. SEFM ’09. Washington,

DC, USA: IEEE Computer Society, 2009, pp. 33–37.

[Online]. Available: http://dx.doi.org/10.1109/SEFM.

2009.13

5. P. O. Meredith, D. Jin, D. Griffith, F. Chen, and

G. Roşu, “An overview of the MOP runtime veri-

fication framework,” International Journal on Soft-

ware Techniques for Technology Transfer, pp. 249–

289, 2011, http://dx.doi.org/10.1007/s10009-011-

0198-6.

6. S. Hallé and R. Villemaire, “Runtime enforcement

of web service message contracts with data,” IEEE

Transactions on Services Computing, vol. 5, no. 2,

pp. 192–206, 2012.

7. I. Perez, F. Dedden, and A. Goodloe, “Copilot 3,”

NASA Langley Research Center, Tech. Rep., 2020.

8. D. A. Basin, F. Klaedtke, S. Marinovic, and E. Zăli-

nescu, “Monitoring of temporal first-order properties

with aggregations,” FMSD, vol. 46, no. 3, pp. 262–

285, 2015.

9. G. Reger, H. C. Cruz, and D. Rydeheard, “MarQ:

Monitoring at runtime with QEA,” in Proceedings

of the 21st International Conference on Tools and

Algorithms for the Construction and Analysis of

Systems (TACAS 2015), C. Baier and C. Tinelli, Eds.

Springer, 2015, pp. 596–610. [Online]. Available:

http://dx.doi.org/10.1007/978-3-662-46681-0_55

10. N. Decker, M. Leucker, and D. Thoma, “Monitoring

modulo theories,” Software Tools for Technology

Transfer (STTT), vol. 18, no. 2, pp. 205–225,

2016. [Online]. Available: http://dx.doi.org/10.1007/

s10009-015-0380-3

11. H. Kallwies, M. Leucker, M. Schmitz, A. Schulz,

D. Thoma, and A. Weiss, “TeSSLa – an ecosystem

for runtime verification,” in Runtime Verification

- 22nd International Conference, RV 2022, Tbil-

isi, Georgia, September 28-30, 2022, Proceedings,

ser. LNCS, T. Dang and V. Stolz, Eds., vol. 13498.

Springer, 2022, pp. 314–324.

12. F. Gorostiaga and C. Sánchez, “HStriver: A very func-

tional extensible tool for the runtime verification of

real-time event streams,” in Formal Methods, ser.

LNCS, M. Huisman, C. Păsăreanu, and N. Zhan, Eds.,

8

http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/s10009-015-0380-3
http://dx.doi.org/10.1007/s10009-015-0380-3

vol. 13047. Springer, 2021, pp. 563–580.

13. K. Havelund, “Data automata in Scala,” in 2014

Theoretical Aspects of Software Engineering Confer-

ence, TASE 2014, Changsha, China, September 1-3,

2014. IEEE Computer Society, 2014, pp. 1–9.

14. F. Chen and G. Roşu, “MOP: an efficient and generic

runtime verification framework,” in Object Oriented

Programming, Systems, Languages, and Applica-

tions, 2007, pp. 569–588.

15. G. J. Holzmann, “Cobra: a light-weight tool for static

and dynamic program analysis,” Innov. Syst. Softw.

Eng., vol. 13, no. 1, pp. 35–49, 2017. [Online].

Available: http://spinroot.com/cobra/

16. K. Havelund and G. Holzmann, “Programming event

monitors,” International Journal on Software Tools

for Technology Transfer, 2023.

17. S. Stucki, C. Sánchez, G. Schneider, and

B. Bonakdarpour, “Gray-box monitoring of

hyperproperties,” in International Symposium

on Formal Methods: Formal Methods – The Next 30

Years, ser. LNCS, vol. 11800, September 2019, pp.

406—-424.

18. D. Dams, K. Havelund, and S. Kauffman, “A Python

library for trace analysis,” in 22nd International

Conference on Runtime Verification (RV), ser. LNCS,

T. Dang and V. Stolz, Eds., vol. 13498. Springer

International Publishing, 2022, p. 264–273.

19. B. Duckett, K. Havelund, and L. Stewart, “Space

telemetry analysis with PyContract,” in Applicable

Formal Methods for Safe Industrial Products - Essays

Dedicated to Jan Peleska on the Occasion of His 65th

Birthday, ser. LNCS, A. E. Haxthausen, W. Huang,

and M. Roggenbach, Eds., vol. 14165. Springer

International Publishing, 2023.

20. E. Kurklu and K. Havelund, “A flight rule checker for

the LADEE Lunar spacecraft,” in 17th International

Colloquium on Theoretical Aspects of Computing

(ICTAC’20), ser. lncs, vol. 12545, 2020.

21. L. Pike, N. Wegmann, S. Niller, and A. Goodloe,

“Copilot: monitoring embedded systems,” Innova-

tions in Systems and Software Engineering, vol. 9,

no. 4, pp. 235–255, 2013.

22. A. Goodloe, “Challenges in high-assurance runtime

verification,” in Leveraging Applications of Formal

Methods, Verification and Validation: Foundational

Techniques - 7th International Symposium, ISoLA

2016, Imperial, Corfu, Greece, October 10-14, 2016,

Proceedings, Part I, 2016, pp. 446–460.

23. RTCA, “Software considerations in airborne sys-

tems and equipment certification,” RTCA, Inc., 2011,

RCTA/DO-178C.

24. R. G. Scott, M. Dodds, I. Perez, A. E. Goodloe, and

R. Dockins, “Trustworthy runtime verification via

bisimulation (experience report),” in Proceedings of

the 28th ACM SIGPLAN International Conference on

Functional Programming. ACM, 2023.

25. J. Scott-Brown and A. Papachristodoulou, “Visualiza-

tion of temporal logic specifications,” in Proceedings

of the Eurographics/IEEE VGTC Conference on Visu-

alization: Posters, ser. EuroVis 2017. Eurographics

Association, 2017, p. 117–119.

26. SAE International, “Guidelines and methods for con-

ducting the safety assessment process on civil air-

borne systems and equipment,” SAE International,

1996, aRP 4761.

Alwyn E.Goodloe is a research

computer engineer at the NASA

Langley Research Center where

his research focuses on develop-

ing formal methods and tools tar-

geting the verification of safety-

critical systems. He received his

Ph.D. in Computer and Informa-

tion Science at the University of Pennsylvania. He

is a member of the IEEE and ACM. Contact at

a.goodloe@nasa.gov.

Klaus Havelund is a senior

research scientist at the NASA

Jet Propulsion Laboratory where

his research focuses on develop-

ing and applying formal meth-

ods and tools, and in particu-

lar such based on runtime ver-

ification. He received his Ph.D.

in Computer Science at the University of Copen-

hagen, in part carried out at École Normale

Supérieure in Paris, France, and University of Aal-

borg, Denmark. He is a member of ACM. Contact at

klaus.havelund@jpl.nasa.gov.

9

http://spinroot.com/cobra/

	Introduction
	Fundamentals of Runtime Verification
	Basic Concepts
	Traces
	Logics
	Instrumentation
	RV Frameworks
	A Broader Definition of RV

	Offline Monitoring
	Online Monitoring
	Trustworthy RV
	Conclusion
	Acknowledgements
	REFERENCES
	REFERENCES
	Biographies
	Alwyn E.Goodloe
	Klaus Havelund

