
 

 

Does Every Computer Scientist Need to Know 

Formal Methods? 
 
 
Manfred Broy (0000-0003-2649-1752), Technische Universität München, Germany, 
broy@in.tum.de 
Achim D. Brucker (0000-0002-6355-1200), University of Exeter, UK a.brucker@exeter.ac.uk 
Alessandro Fantechi (0000-0002-4648-4667),  University of Florence, Italy. 
alessandro.fantechi@unifi.it 
Mario Gleirscher (0000-0002-9445-6863), University of Bremen, Germany, 
mario.gleirscher@uni-bremen.de 
Klaus Havelund (0000-0001-7079-0472), Jet Propulsion Laboratory, California Inst. of 
Technology, US, klaus.havelund@jpl.nasa.gov  
Markus Kuppe (0000-0002-6972-2031), Microsoft Research, US, makuppe@microsoft.com 
Alexandra Mendes (0000-0001-8060-5920), INESC TEC, Faculty of Engineering, University of 
Porto, Portugal, alexandra@archimendes.com 
André Platzer (0000-0001-7238-5710), Carnegie Mellon University, US, aplatzer@cs.cmu.edu 
Jan Oliver Ringert (0000-0002-3610-3920), Bauhaus-University Weimar, Germany, 
jan.ringert@uni-weimar.de 
Allison Sullivan (0000-0001-7400-2218), University of Texas at Arlington,  US, 
allison.sullivan@uta.edu 

 
Abstract. We focus on the integration of Formal Methods as mandatory theme in any Computer 
Science University curriculum. In particular, when considering the ACM Curriculum for 
Computer Science, the inclusion of Formal Methods as a mandatory Knowledge Area needs 
arguing for why and how does every computer science graduate benefit from such knowledge. We 
do not agree with the sentence “While there is a belief that formal methods are important and they 
are growing in importance, we cannot state that every computer science graduate will need to use 
formal methods in their career.” We argue that formal methods are and have to be an integral part 
of every computer science curriculum. Just as not all graduates will need to know how to work 
with databases either, it is still important for students to have a basic understanding of how data is 
stored and managed efficiently. The same way, students have to understand why and how methods 
work, what their formal background is, and how they are justified. No engineer should be ignorant 
of the foundations of their subject and the formal methods based on these.  

In this paper, we aim to highlight why every computer scientist needs to be familiar with formal 
methods. We argue that education in formal methods plays a key role by shaping students' 
programming mindset, fostering an appreciation for underlying principles, and encouraging the 
practice of thoughtful program design and justification, rather than simply writing programs 
without reflection and deeper understanding. Since integrating formal methods into the computer 
science curriculum is not a straightforward process, we explore the additional question: what are 
the trade-offs between one dedicated knowledge area of formal methods in a computer science 
curriculum versus having formal methods scattered across all knowledge areas? Solving problems 
while designing software and software-intensive systems demands an understanding of what is 

mailto:klaus.havelund@jpl.nasa.gov


 

 

required, followed by a specification and formalizing a solution in a programming language. How 
to do this systematically and correctly on solid grounds is exactly the supported by Formal 
Methods. 

1 Introduction 
Computer science has to establish itself not only as a powerful engineering discipline, but as a 
reliable one as well, supported by precise methods that ensure the well-functioning of its systems, 
keeping the discipline from causing considerable damage and/or loss of trust from the public.  
Formal methods help to achieve such reliability. In this paper, we argue that computer science and, 
in particular, the science of data and software, can be understood as the “engineering discipline of 
logic”. With this view, data and programs are formal objects, logical entities described by formal 
techniques such as formal languages with formal semantics. Since digital data and computer 
programs are formal objects, the ultimate way of dealing with them is using formal techniques. 
  Any reputable curriculum in computer science has to include teaching some formal foundations, 
such as logics and formal languages, but formal methods are systematically prescribed not in all 
curricula. In this paper, our goal is to show convincingly that formal methods constitute an integral 
element of computer science and have to be part of a standard computer science curriculum. This 
includes teaching what it means to work with formal methods in terms of specifying and designing 
software systems, implementing them, and proving properties about them.   

A fundamental theme that arises throughout this paper is that engineering software always 
includes a step from the informal to the formal, which further illustrates the importance of 
incorporating formal methods into any computer science curriculum. To help facilitate adoption 
of this integration, we compare two different approaches: creating a dedicated knowledge area 
versus enhancing existing knowledge areas by their specific formal methods. The aim of this paper 
is not to provide an exhaustive literature review: we use citations parsimoniously only to support 
our arguments, with no claim that such references fully represent the vast literature about formal 
methods and their applications.  

The paper is organized as follows. Section 2 overviews the mathematical background for formal 
methods. Section 3 provides a description of what a formal method is. Section 4 discusses the use 
of formal methods in some computer science sub-disciplines. Section 5 addresses the role of formal 
methods in engineering and consequently in industry. Section 6 discusses the integration of formal 
methods in computer science curricula. Finally, Section 7 closes the paper by some concluding 
remarks. We do not give a separate section on related work, but include all references to related 
work into the general discussion wherever appropriate. Although this paper was triggered by the 
ACM computer science curricula recommendations, we do not discuss these recommendations in 
detail, but rather show why formal methods need to be integrated explicitly into computer science 
curricula. We address, in particular, young lecturers in computer science, giving hints how they 
may improve their lectures by a solid integration of formal methods. 

2 Mathematical Background 
Mathematics, and in particular discrete mathematics and logic, is the theoretical basis of computer 
science. In particular, the foundation of formal methods is the mathematics used to give semantics 
to these methods and to inspire their formalisms. As such, it is commonly used to explain computer 
science concepts, for example, in terms of type systems and semantics, whether static (such as 



 

 

abstract interpretation) or dynamic (such as axiomatic, denotational, or operational semantics). 
There is a body of formal, mathematically based foundations of computer science that forms the 
subject of the theoretical computer science field. This includes for example, set theory, logic, 
formal languages, transition systems, automata theory, data structures, algorithms, computability, 
computational complexity, semantics of programming languages, logics of programming, the 
theory of concurrency, probabilistic computation, cryptography, and machine learning. Moreover, 
the foundation also includes topics from continuous mathematics, such as differential equations 
for cyber-physical systems modeling and quantitative analysis, or topics from probability, 
optimization theory and linear algebra for AI.  

In addition, there are specific formal foundations in subfields of computer science, for instance, 
relational models in databases, or the logical theory of binary circuits in computer architectures. 
Such formal foundations consist of theories, concepts, and structures in computer science without 
necessarily relating them to engineering methods. Formal methods themselves employ these 
formal foundations, for example, propositional logic for analyzing software configurations and 
software product lines, or interactive provers based on temporal logics for showing general safety 
and liveness properties. This way, formal methods bring to bear the mathematics and logic needed 
for supporting, or even guiding, the rigorous tool-based development or maintenance of critical 
pieces of software, electronic hardware, or similar systems [15].  

3 What is a Formal Method? 
This section addresses the question of what constitutes a formal method. We first address the 
question broadly, defining the core characteristics of a formal method (Section 3.1). We then 
discuss what formal methods thinking is, suggesting that it goes beyond just applying formal 
methods (Section 3.2). Finally, we consider the role of formal methods in the software 
development process (Section 3.3). 

3.1 The Core Characteristics of a Formal Method 
The word “method” literally means a systematic pursuit of knowledge investigation and a certain 
mode of proceeding when solving a problem. In recent centuries, a method has been described as 
a process for completing a task, which means that methods have something in common with 
algorithms. However, in contrast to algorithms where all steps are defined precisely such that the 
algorithm can be “executed” completely schematically without additional inventiveness, in 
general, the application of a method requires human creativity and expertise. Nonetheless, methods 
have with the notion of algorithm in common that their purpose, result and effort are all aimed at 
solving a problem or pursuing a task.  Roughly, we may classify methods with respect to their 
degree of formality as follows: 

● Informal methods: informally described methods that can be applied without using 
formalisms (example: “informal code review”), 

● Semi-formal methods: methods using formalisms and formal artifacts, such as for example 
formal syntax or graphics, in combination with informal steps (example: “informal code 
review on the basis of formal assertions”), 

● Formal methods: methods using formally defined steps on formal artifacts (example: 
“formal specification of a program and proof that a program satisfies the specification”) with 
proven guarantees provided the method is successfully and properly applied. 



 

 

With a formal method one can provide a provable formal chain of arguments that provides 
evidence for the correctness of claims. There seems to be no doubt regarding the meaning of 
“formal” in “formal methods”: a solid and rigorous mathematical and logical argument based on 
a carefully worked out theory. Equally important is the “methods” part of formal methods: 
systematic procedures for purposeful and pragmatic applications following clear goals leaving 
room for and requiring creativity. Examples that do not qualify as formal methods based on this 
understanding are, for example, informal software process models, which lack required 
mathematical foundations, as well as formal theories, such as lambda calculus, that do not directly 
provide methods. 

Formal methods have multiple characterizations in the literature (see [1], [5], [28]) as languages 
and techniques with rigorous mathematical foundations. In addition, many formal methods are 
automated and supported by a number of tools such as model checkers and theorem provers. For 
example, in model checking, transition systems and temporal logics represent the mathematical 
theories (“formal” part) for modeling of reactive systems, while the specification and analysis of 
safety properties are supported by systematic procedures and techniques (“methods” part).  

Formal methods exist in many engineering areas (e.g. mechanical or electrical engineering) not 
just in computer science. However, in computer science, there is a rich field of application areas 
(e.g. assurance of critical software and hardware) where formal methods are exceedingly useful. 
This is a consequence of the fact that computer science is a discipline with formal objects as its 
subject.   

Formal methods are rigorous. They guarantee to achieve results justified by formal theories. 
Applying theories for creating a proof requires some understanding of the formalisms and the 
theory, and some discipline to follow the rules and creativity to apply these in a way that leads to 
the intended results. In fact, proofs provide fundamental insights, particularly, into the behavior of 
a system. Interesting examples are invariants for state-oriented programs, which characterize what 
properties of a state are maintained when the program is executed. Loop invariants are used to deal 
with iteration in computing. Invariant proofs of program correctness can be rigorously formalized. 
Here, the difference between formal foundations and formal methods becomes apparent. State 
machines can be used as a formal foundation of invariants in computations. Invariants are defined 
as predicates that hold for sets of reachable states. However, loop invariants, in general, cannot be 
generated in a completely automatic way, their formulation requires human creativity. Even 
though the concept of invariants does not require a lot of formalism beyond the programming 
language, in order to understand why invariants help and how we can profit from using invariants, 
it is crucial to understand the theory behind invariants. Most important, by the theory of invariants 
it is guaranteed that if an invariant holds at the beginning of a loop, then it holds throughout the 
loop and after it has terminated. 

Of the range of formal methods that have emerged over time, some focus more on automation 
and others interpret the term “methods” in an engineering-oriented way, guiding software or 
systems engineers through the construction steps they typically perform to arrive reliably at a 
suitable solution or to transform a preliminary solution into a better or more appropriate one. 
Hence, formal methods come in many shapes and sizes, from lightweight automated analysis 
engines that check if a specific hard-coded property is true about a system to more heavyweight 
interactive theorem provers that handle complex properties and need human guidance to help 
complete the proof. In either case, the formal method technique is helping to provide the user with 
a guarantee of correctness of the design or implementation of their system with respect to some 
explicit or implicit specification. An example of lightweight verification with an implicit 



 

 

specification is an automated correctness check of null-pointer dereferencing used in almost all of 
today’s integrated development environments, which is helpful, even when this can neither be 
checked fully automatically nor establish all desirable properties of a program. An example of 
heavyweight verification with explicit specifications are security proofs showing the absence of 
side-channel attacks in cryptographic algorithms1. Tools are and can be built based on formal 
methods supporting their application. However, for a professional use of such tools, the 
understanding of formal methods is indispensable. 

Regarding explicit specifications, the typical interfaces to the users of formal methods are 
specification languages to formulate abstractions. These languages may range from intuitive visual 
representations through textual domain-specific languages to rich higher-order and modal logics. 
Unsurprisingly, the pragmatic aspects of formal methods also range from checking product 
configurations for consistency of multiple views on software architecture to synthesizing code for 
efficient parallel execution of complex system behaviors. This range of formal methods across all 
levels opens opportunities to embed these methods into daily software-engineering practice. 

The wide spectrum of useful applications of formal methods – as well as capabilities needed to 
apply them, including understanding their theoretical foundations, grasping how certain tasks can 
be supported by formal theories and knowing how a method can be applied to achieve a task is 
evidenced by Garavel et al. [13], where opinions and position statements were collected from more 
than one hundred experts in the field. 

3.2 Formal Methods Thinking 
A fundamental aspect of formal methods is the underlying approach to think about a problem and 
its solutions. Programmers typically apply some lightweight formal methods and associated 
thinking in their daily work. As an example, a very common use of formal methods by 
programmers is that of type systems, which support defining formal requirements on value 
expressions and then checking that the expressions produce values of the given types. As a 
syntactic method for enforcing levels of abstraction in programs [24], type systems also aid 
programmers in decomposing and structuring their programs and allow programmers to reason 
using high-level abstractions. Some programming languages have very powerful type systems, 
which require a clear and formal understanding of types and of the type checking process, as well 
as the ability to employ helpful abstraction. 

In this process, abstraction is key [20]. As stated by Guttag [17]: “The essence of abstraction is 
preserving information that is relevant in a given context, and forgetting information that is 
irrelevant in that context”. The complexity of computer systems can be approached only through 
a collection of abstraction layers. In every aspect of software development, we use abstraction: we 
abstract from actual machines when programming with a high-level language; we abstract from 
the underlying network layers when we program a distributed web service; we abstract in 
representative test data all the possible inputs to a function when we test it; we abstract from the 
implementation of a library function when we call its interface. Every time we make such 
abstractions, we make an act of faith: we postulate that the abstracted underlying layers behave as 
expected and that the compiler does not introduce bugs. To transform our faith into certainty, the 
appropriate way is to formally prove that the underlying layers abide by a contract that can be 
trusted at the higher levels. Building on “acts of faith” may often seem unavoidable in practice, 
due to cost, complexity or even undecidability constraints regarding formal methods applications; 

 
1 For a definition of : lightweight and heavyweight interpretations of the perimeter and scope of formal 
methods we refer to [13].  



 

 

but even then formal thinking gives awareness that such “acts of faith” have a solid background 
and can become “acts of certainty”. 

Mathematics is a powerful abstraction “tool”, which can be applied to understand, design, and 
reason about software applications and systems in general. Formal methods provide a realization 
of these insights as they bridge the gap between pure mathematics and its application to software 
development. Formal methods thinking (see [39]) consists of describing a system to be understood 
or designed in terms of fundamental discrete mathematical entities such as sets, lists, maps, 
relations, functions, differential equations, probabilistic models, and constraints.  

Some formal methods focus on the description and analysis of concurrent systems, providing 
useful abstract notations and concepts to think in terms of, without being bogged down by 
implementation details. With these concepts, an application can often be described very succinctly 
in the initial phases of its development. The act of just writing down a mathematical formalization 
can reveal many issues and bring a group of people to an early shared vision.  

Consider the example of design by contract [21], which is increasingly supported in 
programming languages (e.g. Java/JML, Dafny). In the design-by-contract approach, software 
systems are viewed as families of software components that interact with each other according to 
precisely defined interface specifications of client-supplier obligations, referred to as contracts. 
Logical contracts are a key concept in formal methods, where the behavior of software is specified 
using preconditions, invariants, and postconditions. Preconditions specify the conditions that must 
be met when a function or method is called for it to operate as expected, while postconditions 
specify the conditions that must hold true when the function or method call terminates. Invariants 
(see Section 3.1) specify properties that are maintained from entry to exit and, thus, constitute 
some of the most important aspects of the state that the rest of the program can rely on. Thinking 
about programs in terms of such logical contracts instills in a programmer a mentality of “think 
about design first, program later”, allowing for the detection of design errors earlier in the process 
and forcing them to reflect and specify precisely what the intended behavior of the components is. 
This way of thinking supports modularity, encapsulation, information hiding, abstraction, problem 
decomposition, structured design, and the recognition of patterns in the problem, allowing for 
better code and systematic reuse. The contracts are then the specifications for the implementation 
of the components. 

3.3 Formal Methods as Part of the Software Development Process 
For software engineering, formal methods are used to specify and reason directly about the artifacts 
(e.g. programs) of concern since the artifacts themselves can be considered as formal objects. For 
example, reasoning about a program and proving that it satisfies a formal specification can be done 
all within one logical system. This is in contrast to traditional engineering disciplines, where the 
artifact being specified and reasoned about usually is of a physical nature and very far removed 
from its formalization (e.g. a building versus the equations that describe its structural 
characteristics). Notably, also compilers or machine designs, which – in case of being faulty – 
could undermine proofs, are artifacts that can be developed formally. Even more important than 
the ability to reason about a program after creation is the way in which formal foundations enable 
a design process in which correctness and verification play an integral part. 

Unfortunately, creating systems as well as software that do not completely comply with the 
final client’s wishes is a common experience for software engineers: the blame and the burden of 
improvement of software is put on software engineers and programmers. But in many such cases, 
the client’s wishes are not stated precisely, or are ambiguous, or even missing, hence the concept 



 

 

of correctness becomes questionable and sometimes questioned in legal disputes. Plenty of 
evidence for software problems and disputes can, for example, be found via the RISKS Digest.2 
Such disputes can be mitigated by having appropriate models and precise specifications. The 
survey in [13] provides anecdotes on the use and potential of formal methods for this purpose.  

Fundamental concepts in software engineering are requirements, specification, implementation, 
validation, and verification, all of which are formal objects and all of which have representations 
within the field of formal methods: 
l Identifying Requirements: When developing and evolving software and software-intensive 

systems it is challenging to come up with a valid understanding of the requirements. Different 
and potentially conflicting expectations of various stakeholders must be considered in a 
specification: developing this understanding is always a compromise. Requirements are 
usually stated informally, but it is advantageous being capable to formalize requirements to 
avoid ambiguity. 

l Modeling and Specification: The development of a formal specification must strike a balance 
between stakeholder expectations. A sufficiently formal specification can make intensions 
clear and avoid misunderstandings. For instance, a verification method can provide the 
missing assumptions needed to prove the implementation correct. Naturally, specifications do 
not only contain functional requirements, but also non-functional aspects.  

l Design and Implementation: Data and executable programs are developed according to the 
given specification, passing from the high level of abstraction of the specification to the 
concrete level of software architectures and programs. 

l Validation: The validity of requirements with respect to the user’s needs has to be confirmed. 
Since requirements are always the result of compromises between stakeholders, validation is 
most often challenging, if not supported by a shared formal understanding. 

l Verification: The correctness of the implementation with respect to the specification has to be 
shown. As soon as a specification is formal, and the implementation is formulated in a formal 
language with a formal semantics, the question of correctness translates to whether an 
implementation satisfies the specification. 

l Evolution: In software maintenance code is changed. There it is of high importance whether 
local changes have global effects and which additional parts have to be changed, too. 

Software is correct if it respects all its requirements, functional and non-functional. Correctness 
can only be claimed in reference to specifications. That is, correctness can be ascertained only by 
a comparison between the actual program behavior and the one expected according to the 
specification.  

A crucial point in any specification is to be precise about assumptions about the environment 
in which the created artifact will be deployed. A recurrent problem with specifications written in 
natural language is glossing over such assumptions. An enormously expensive and damaging 
example of missed assumptions is the security flaws that are costing computer users billions of 
dollars annually. Again, see the RISKS Digest for a plethora of anecdotes about software flaws, 
their costs and causes, as collected by the community over the past four decades. Proper use of 
formalism can identify which assumptions are required to meet a specification. For instance, a 
verification method can provide the missing assumptions needed to prove the implementation 
correct. Careful documentation of assumptions, for example, as done in contract-based 
development [21], is also key to the continued use and change of large software products because 
the assumptions act as a warning against modifications that could lead to disaster. 

 
2https://catless.ncl.ac.uk/Risks/ 



 

 

In practice, testing is typically used to detect faults in software, but testing requires 
specifications and architecture modeling to reliably detect undesirable behavior. For testing, the 
comparison is made between the results given by a program that is executed over a finite set of 
test data and the expected output according to the specification for that test data. Testing can almost 
never be exhaustive and to estimate to which extent testing can help is again a topic for formal 
methods and can be done for example by measuring coverage of a formal model of the software, 
used for test case generation.  

Formal development and verification techniques can provide justified confidence on any 
desired notion of correctness that can be expected by the produced software. Standards like 
EN50128 [29], ISO 26262 [31] or Common Criteria [32] strongly recommend formal methods in 
critical applications. 

4 Formal Methods in Computer Science Sub-disciplines 
In this section we discuss the use and importance of formal methods for various areas of computer 
science. We first provide an overview of relevant disciplines (Section 4.1). We then draw out two 
particular disciplines, which are currently receiving a lot of interest from academia as well as 
industry, namely cyber-physical systems (Section 4.2) and AI (Section 4.3). 

4.1 Formal Methods Spread over Many Knowledge Areas 
Beyond the need for a knowledge area of formal methods in computer science education, as 
discussed in the previous section, there is a need for teaching formal methods in various specialized 
domains (see [41]). As systems and software become more complex, interconnected, and 
ubiquitous, the need for rigorous methods to ensure software correctness and therefore systems 
reliability increases. Examples of key areas in computer science in which formal methods are 
indispensable include: 

● Algorithmic Foundations, where formal methods are used to analyze the correctness and 
efficiency of algorithms and data structures. An example includes the verification of the 
TimSort sorting algorithm of the Java standard library using KeY, and the discovery of a 
bug in the algorithm as a result of this verification effort [7]. 

● Architecture and Organization, where formal methods are used to verify the correctness of 
hardware designs and to ensure that the integration of hardware and software components 
meets their specifications. An example is the verification of security requirements of com-
plex hardware security architectures [10]. 

● Artificial Intelligence, where formal methods are used, for instance, in deep neural networks 
(DNNs) for verification and for retraining by using counter examples and also to capture 
rigorously the assumptions made during their design [27]. The use of DNNs in large 
language models is attracting a lot of attention and promises to revolutionize the way people 
interact with computers; the need for formal methods certifications for DNNs is thus 
essential.  

● Security, where formal methods can be used to guarantee security requirements for 
algorithms and protocols, ensuring that they are secure and resistant to attacks. A recent 
example in industry is the use of formal methods at Amazon Web Services to prove 
properties about encryption, which highlights the power of formal methods in practice [6].  

● Software Engineering, where formal methods, as already mentioned, can be used in several 
development lifecycle phases including system specification and its validation alongside or 



 

 

in place of testing [22]. Further examples are static analysis tools such as Infer [8] which is 
used by well-known companies such as Facebook, Amazon Web Services, Microsoft, 
Mozilla, Uber, WhatsApp and many others. 

● Databases, where formal methods can be used for knowledge representation and for 
reasoning about data consistency. For example, Description Logic allows the rigorous 
analysis of database schemas [43]. In the treatment of and the search in large data sets, such 
abstractions and formal reasoning are highly relevant. 

When learning about formal methods, students get access to rigorous and systematic approaches 
for providing formal guarantees on the behavior of algorithms and systems, ensuring, respectively, 
their correctness and reliability, something that is undoubtedly in high demand across all 
knowledge areas of computer science. 

It is impossible to talk here about all computer science sub-disciplines and the way formal 
methods are helpful there. Therefore, we choose only two examples of highly relevant sub-
disciplines to demonstrate the significance of formal methods for them.  

4.2 Formal Methods for Cyber-Physical Systems 
We have already mentioned the general use of formal methods in software engineering. A special 
area where there are good reasons to integrate aspects of formal methods into computer science 
curricula is that of cyber-physical systems, where computer programs interact with the physical 
world. As a representative of similar courses taught  in other universities, we take for example the 
Logical Foundations of Cyber-Physical Systems (LFCPS) course [25] at Carnegie Mellon 
University, that teaches the foundations of cyber-physical systems, that is, systems that combine 
computer control with physical systems as in robots or aircrafts; this simultaneously serves as a 
first course on logic and formal methods. The course intentionally focuses on the heart of the 
matter, cyber-physical systems design, right away, bringing in the required background and formal 
methods aspects as much as needed.  

While this requires significant reorganization of materials (compared to a conventional linear 
presentation of the background of cyber-physical systems), the big advantage is a clear motivation 
of taught material by practical applications; this serves as a guiding motivation for the need of 
formal methods. In the LFCPS course, students also experience the difference between 
specification and verification by first informally developing robot controllers that they only specify 
and of which they conjecture correctness (called betabots) while subsequently developing formally 
verified robot controllers (veribots). What is a particular eye-opener for students in the course is 
that, despite their best intentions and best practice software development principles, cyber-physical 
systems have so many subtleties in store that their first designs still have bugs until they are being 
helped by formal methods. 

4.3 Formal Methods and AI 
Due to the rapid development within the AI field and its potentially extreme impact on society, it 
is essential to mention the use of formal methods specifically within this field. AI introduces new 
important applications and need for formal methods, both when it comes to verifying AI systems 
and to specifying and verifying software generated by AI. This is essential, not only because such 
systems are used in manifestly safety- or security-critical applications (e.g. for the detection of 
traffic signs by semi-autonomous cars [4]), but because they are becoming more and more 
entangled into every aspect of our lives, with unexpected critical threats in domains beyond 
security and safety, such as ethics. 

https://www.zotero.org/google-docs/?FKzcVh


 

 

Still, formally modeling, specifying, and analyzing such systems is an area that requires novel 
approaches from scientists and engineers educated in both formal methods and AI, in particular, 
machine learning (ML). This is mainly due to three reasons. Firstly, the behavior of ML/AI-driven 
systems is a result of training those systems with data. Hence, the selection of training data plays 
a crucial role in properties of the final systems. Secondly, these systems do not have human written 
algorithms that can be analyzed with existing formal methods because they defy standard 
comprehension. Even the internal representation of a particular learnt scenario is hardly 
understood. Thirdly, the properties that an ML/AI-driven system should satisfy are only specified 
to the extent that regulations (e.g. ANSI/UL4600) suggest sufficiently low error margins (e.g. for 
classifications) to be acceptable. Taking, for example, systems for classifying traffic signs: what 
does it mean in practice that a system recognizes a STOP sign in 99.99 % of the cases, when one 
misclassification of a STOP sign can result in an accident endangering the life of humans? Even 
worse, we currently do not even have good methods for modeling the inputs that are misclassified 
– and we have seen serious attacks on such models where attackers made small modifications to 
inputs that resulted in safety-critical misclassifications [9]. We currently see increased activities 
of the formal methods community to address these challenges, for example, using model-checking 
techniques [19] and interactive theorem proving [3]. 

In the emergence of AI for assisting in the development of software, it is foreseeable that some 
of the traditional programming skills are on the verge of being replaced by AI-based design 
automation. Indeed, it can be expected that recent AI technologies (e.g. ChatGPT,3 GitHub 
Copilot,4 and other tools going beyond search-based software engineering and traditional program 
synthesis) will revolutionize software development. Importantly, these technologies will broaden 
rather than lessen the necessity for software practitioners to properly specify the correctness of the 
resulting AI systems. Formal methods are well-positioned to play a crucial role in that paradigm 
shift by making prompt engineering (the process of creating and reviewing high-quality prompts) 
more formal, and by checking whether the generated code meets the specifications. We thus concur 
with Greengard’s view [16] that practitioners need to adopt a more abstract and rigorous notion of 
software engineering to reduce potentially subtle but still critical errors in AI-generated programs.  

5 Formal Methods in Software and Systems Engineering 
In this section we discuss on the role of formal methods in software and systems engineering in an 
industrial context. We first discuss their general role in computer science seen as an engineering 
discipline (Section 5.1). We then consider the role of formal methods as cross cutting between 
engineering disciplines and stakeholders (Section 5.2). 

5.1 Computer Science as an Engineering Discipline 
Engineering is the application of scientific methods to solve problems by designing and building 
systems. Engineers design and construct artifacts, which should be built to serve their intended 
purpose reliably. In most cases, the created objects should be designed to last and they should be 
built at a reasonable cost. Software systems, in particular, are among the largest and most 
complicated artifacts that humans have created [30]. The investment by industry and government 

 
3 https://openai.com/blog/chatgpt  
4 https://github.com/features/copilot  

https://openai.com/blog/chatgpt
https://github.com/features/copilot


 

 

in software is enormous, but today software cannot, in general, be considered to meet the highest 
engineering standards (see [40]). 

Engineers of physical artifacts need to learn methods that underpin documentation and 
reasoning about their designs; no engineer would be allowed to work on a bridge or aircraft design 
without having a grasp of appropriate mathematical concepts. By the same token, software 
engineers must learn how precise specifications are constructed and how their key design decisions 
are subject to rigorous justification. 

Building reliable systems requires rigorous development approaches based on abstract models, 
unambiguous specifications of the functional and non-functional requirements, rigorous tests, and 
verification methods to ensure that the final systems satisfy their requirements.  While software 
systems do not suffer wear and tear, the environments of software systems keep changing, leading 
to new and updated requirements that ask for long-term maintenance plans. Archetypically, 
computer science is different from traditional engineering disciplines, in that it fundamentally 
completely relies on formal concepts and methods. 

Education plays a major role in the adoption of formal methods in industry and the lack of a 
broad education in the field shows in their limited adoption. In many STEM5 fields (e.g. 
mechanical, civil, chemical, and electrical engineering) challenges of formalization seem to be less 
apparent. Decades ago, Tony Hoare stated: “I note with fear and horror that even in 1980, 
language designers and users have not learned this lesson. In any respectable branch of 
engineering, failure to observe such elementary precautions would have long been against the 
law” [18]. The situation motivating his observation has improved significantly since then. Indeed, 
in critical software domains, such as the railway industry [11], [42], formal methods are used and, 
for the highest safety integrity levels, even mandated by standards (e.g. EN 50128).  

Another historical success story is in hardware verification with, for example, Intel and AMD 
both using model checking and theorem proving to ensure the correctness of their processors (e.g. 
resolving the Pentium FDIV bug at Intel, using ACL2 for verifying the K5/K6 processors at 
AMD). In addition, formal methods have also found success in cyber security, as evidenced by 
formal methods being a top-level knowledge area in the Cyber Security Body Of Knowledge6 
(CyBOK). Cloudflare’s use of Tamarin7 highlights formal methods being successfully applied to 
industrial security applications. More broadly, formal methods have recently been applied in 
companies such as ARM (for verifying a security-critical firmware component [12]), Facebook 
(e.g. using Infer, see [8]), Amazon8 (for business-critical clouds, see [38]), and for Blockchain 
technology. 

Despite these success stories, instead of a revolution in the integration and use of formal 
methods in industrial contexts (e.g. cross-disciplinary, model-based, architecture-centric [2]), 
complex software practice adopts powerful and integrative abstraction techniques rather 
hesitatingly and severe software-caused problems keep occurring.  

We envisage three strategies for transferring formal methods to industry to mitigate the 
phenomena associated with Hoare’s observation and contribute to reducing software-caused 
errors: (i) making formal methods affordable by automation and integration, (ii) making formal 

 
5 Science, Technology, Engineering, and Mathematics 
6 https://www.cybok.org/knowledgebase1_1/ 
7 https://blog.cloudflare.com/post-quantum-formal-analysis/ 
8 https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods 

https://www.cybok.org/knowledgebase1_1/
https://blog.cloudflare.com/post-quantum-formal-analysis/
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods


 

 

methods more accessible, and (iii) improving formal methods education. These strategies are 
detailed next. 

First, the use of formal methods could be made more affordable, such that the costs are more 
easily counterbalanced by the need for high quality. For instance, David Parnas suggests quite 
radically to adopt the way engineers use mathematics for property calculation, resulting in practical 
formal methods with simpler specification and reasoning facilities [23]. The classical verification 
problem is addressed by the introduction of automated provers (model checkers/model finders, 
such as, e.g. SAT and SMT solvers), which perform automated analysis of specifications as well 
as code. Moreover, formal methods are now being incorporated into programming languages. 
Examples are Dafny [33], Eiffel [21], and SPARK/Ada [34]. 

Second, formal methods could be made more accessible, by supporting other more pragmatic 
methods that are more familiar to users, providing semantic underpinning and analysis. As 
examples, both SAT and SMT have been used to give semantics to SysML (see [35], [36]), and 
Event-B has been used to support UML (see [37]), including the traditional visualization 
capabilities of UML, but founded in formal semantics. However, one may argue that engineers 
using such tools in a professional way should have sufficient understanding of the formal methods 
behind the tools rather than using tools as just hidden black boxes. 

Third, universities could enforce a methodological school on their graduates and, overcoming 
industrial pragmatics, nurture their (under)graduate formal methods specialists. Such a school 
would, for example, respond to anticipated needs such as correct-by-construction AI-based 
software development as well as by discussing current technologies through the eyes of the 
underlying formal methods concepts. In general, a better and wider formal methods education 
could not only lower method adoption costs due to availability of skilled personnel but also enlarge 
the benefits of formal methods to many application domains. We discuss this in more depth in 
Section 6. 

There is of course an investment to be made by anyone who aspires to become a professional 
engineer: that cost is in time and study. Although structural engineers might build small one-off 
systems without having to apply the full force of the mathematics they learn at university, faced 
with a large project that will employ many people and expend large sums of money, professional 
engineers insist on precise specifications and use all the tools that they have learned to be as certain 
as possible that their design will yield a satisfactory engineered result. 

Fortunately, early computing pioneers realized how important it was to reason about programs: 
both von Neumann and Turing published papers in the 1940s that showed it was possible to record 
a proof that a program had its intended effect. Researchers over the intervening decades have 
increased the tractability of both specification and reasoning and have constructed software tools 
that support recording proofs. These tools do not remove the need for engineers to understand the 
formalism; on the contrary, they can only be used effectively by engineers who understand how 
abstract models can provide precise specifications. Just as structural engineers do not always apply 
their most rigorous techniques, not all software needs to be developed formally. Nevertheless, for 
any serious software engineer wanting to apply more rigorous methods, it is essential to be 
prepared for such applications. 

5.2 Formal Methods as Cross Cutting in Engineering  
Although computer science is an engineering discipline in its own right, it interacts with other 
engineering disciplines and gets more and more into the role of a coordinator and controller of the 
various involved engineering disciplines, with important demands on formality. Computer 



 

 

programs do not run in isolation but interface with the physical world. After all, computers are 
often intended to impact the real world. This is most obvious in cases where computer programs 
directly and visibly control electromechanical machines. Going beyond the limits of code reviews 
(e.g. error proneness, high cost, informal reasoning), even if one can observe the effect that a 
computer program has on a physical system through standard-compliance tests, trial and error, the 
resulting understanding is limited to the finite number of cases that were tested. All predictions 
beyond this negligible experience of finitely many tests out of the infinitely many possible 
scenarios need formal descriptions of the relevant objects in the physical world as well as 
specifications of their behavior. This is the basis of system design and its verification.  

Creating suitable formal descriptions of the physical world requires several formal methods 
skills, including 1) abstraction to identify both the relevant part of the physical world and the 
relevant level of detail, 2) rigor to obtain unambiguous descriptions, 3) clear understanding of the 
model’s semantics. Justifications of the role and correctness of a computer program that interacts 
with the physical world require even more formal methods skills related to formal specification, 
formal design and formal verification, as well as the taming of complexity. When software is used 
in cyber-physical systems, requirements typically come from domain experts. The communication 
between the software engineer and the domain expert is very often the reason why requirements 
are incomplete or wrong: domain experts are not aware of all the implicit assumptions they make 
and thus they do not explicitly formulate them for the software engineer to model and implement. 
Formal Methods can help by formalizing requirements and validating them, thus significantly 
reducing communication gaps.  

More generally, formal methods can be used for precise communication between stakeholders 
working in different areas. As already highlighted in Sec. 4.1 and in several surveys (e.g. [5, 11, 
13, 14]), formal methods have been used across many application domains (either critical or non-
critical), computing technologies (e.g. from digital circuits to programming languages), and 
development stages (e.g. from ideas and expectations to specification and to testing), spanning 
from academia to industry.  

This cross-cutting use demonstrates that rigorous analysis and knowledge transfer is intrinsic 
to engineering best practices at many development stages and abstraction levels. Although the 
style of formalization varies across tasks, the necessity of formalization seems to correlate more 
with the criticality of adequate knowledge transfer than with the type of task. One can argue that 
this criticality is higher in industry than in academia because of business risks and revenues at 
stake.  

6 Integrating Formal Methods into Computer Science Curricula 
As computer science continues to evolve, the integration of formal methods into the curriculum 
exactly now ensures that graduates are well-prepared to contribute to the software-powered society 
of tomorrow. This section delves into the importance of incorporating formal methods in computer 
science curricula, exploring the possibilities of either teaching a dedicated knowledge area for 
formal methods or integrating them throughout various knowledge areas. It discusses how to 
include formal methods into computer science education, ensuring that graduates understand the 
principles underlying their work, even if they may not need to apply these methods in their 
everyday practice explicitly. By weaving formal methods throughout the curriculum, educators 
can emphasize the significance of abstraction and formal precision in computer science.  



 

 

In teaching computer science, formal methods help both as a means for a theoretical 
understanding in the various subareas, to show the soundness of certain methods, and to manage 
certain tasks with guaranteed quality. Certainly, students must learn specific formal methods to 
understand how such methods form a firm basis for software and system design.  

This section first discusses formal methods as a knowledge area of computer science education 
(Section 6.1). Then it is argued how the role of formal methods can be integrated smoothly as part 
of programming education (Section 6.2). Finally formal methods are discussed as a connecting 
theme in computer science education (Section 6.3). 

6.1 Need for a Knowledge Area on Formal Methods 
There is a clear set of fundamental formal methods topics in computer science that forms a 
knowledge area. This includes the key concepts of formal specification, refinement, and 
verification. These topics are relevant for many areas in computer science and show up in 
numerous innovative applications. 

Currently, discrete mathematics courses, which are often taken within the first or second year 
of a computer science bachelor’s degree, have the reputation of purposely filtering out weaker 
students. The mathematical logic presented seems divorced from modern programming languages. 
However, dedicated early courses offer a springboard to introduce students to formal methods and 
their power. They impart to students the significance of getting into the habit of producing software 
models, and other formal artifacts, as a starting point and guide for programming. A knowledge 
area directly focused on formal methods can help contextualize discrete mathematics courses for 
students, and can demonstrate why such courses are taught so early as a starting foundation for a 
solid computer science education. 

6.2 Formal Methods as Part of Programming Classes 
Formal methods can naturally be integrated into the documentation given for programming 
assignments across other knowledge areas within the computer science curriculum. This 
integration can help alleviate current problems within the computer science education community. 
Namely, undergraduate students often rush into a programming assignment before understanding 
what is being asked of them [26]. This often results in students feeling frustrated, as they have 
wasted their time solving the wrong problem. A further consequence of this behavior is that by 
solving the wrong problem, students may not be learning the intended lessons for a programming 
assignment. This can only be mitigated by the adoption of software models and formal 
specifications in the assignment description.  

By their nature, software models force students to slow down and to fully understand their 
assignment before they start to code. Hence, integrating formal methods into computer science 
curricula does not need to displace other elements in a computer science curriculum. If taught 
early, formal methods can instead enhance the experience for students to access knowledge areas 
more successfully. 

6.3 Formal Methods – a Connecting Theme in Computer Science Education 
The significance of integrating formal methods as an essential theme into computer science 
education shows to be obvious. Skills and knowledge acquired from studying formal methods 
provide a solid foundation that underpins the practice of almost all computer science domains. By 
understanding and appreciating the principles and techniques of formal methods, students develop 
an enhanced ability to identify requirements, to formulate specifications, to work out designs, to 



 

 

implement software systems, and to reason about their correctness, reliability, and security, across 
domains. Formal methods serve as a powerful tool for abstraction and communication, enabling 
students to understand and to articulate complex ideas better. To summarize, formal methods aid 
in addressing cross-cutting concerns which promote the maturity of computer science as a 
scientific engineering discipline. 

Undoubtedly, tools have changed the landscape of formal methods and contributed to the 
successes of formal methods in industry. The availability of tools and automation today is making 
it significantly easier to integrate formal methods into the curriculum compared to a decade ago. 
Students learn to use tools and this is a high motivator and catalyst for adopting formal methods.  

7 Conclusion 
Does every computer scientist need to know formal methods? Our stance, supported by the 
arguments made throughout this paper, is “yes, they do”. Even more, software developers not 
being aware of the various benefits of formal methods cannot be called computer scientists or 
software engineers. As we have argued, there is a rich spectrum of formal foundations and formal 
methods that builds the indispensable backbone of computer science. We have also explained that 
formalization is at the heart of crafting reliable abstractions, an essential skill of any computer 
scientist, being capable of reliable communication between stakeholders, building systems reliably 
fulfilling critical functional and non-functional requirements (e.g. safety, security), and, finally, 
formal methods help educating the software practitioner’s in forming a critical and rigorous mind. 
Consequently, it is key to know about, and to understand, the following categories of formal 
methods and their foundations: 

● Basics: formal foundations of computer science and formal methods, showing how 
foundations are used to achieve engineering goals, must be taught to all students in the field; 

● A careful selection of formal methods that are fundamental in major fields of computer 
science, forming an integral part of the knowledge areas, such as, for instance, axiomatic 
definitions of abstract data types in the field of programming languages or Hoare-style 
verification techniques must be taught to all students in the field; 

● Specialized formal methods designed for solving particular problems for specific fields of 
computer science should be taught to all students specializing in that field. 

When designing curricula in computer science, it is a major task to integrate formal methods as a 
fundamental theme and to identify which formal methods belong to which categories. This 
supports the structuring of curricula in a way that formal theories and methods form the 
underpinning of computer science education providing some blueprint for the various knowledge 
areas. 

To form a scientific curriculum in computer science, it is not enough to informally introduce 
the subjects of the various knowledge areas. A scientific curriculum needs a structure where solid 
foundations form the basis for concepts and formal methods which then are then applied in the 
various knowledge areas. Formal methods help as a connecting theme to relate the separate 
knowledge areas. Only in this way will students comprehend the inner content of our field with all 
its beauty, strength, power, and its nearly unlimited prospects. 

Acknowledgement 
We thank Cliff Jones for his constructive input. 



 

 

Funding 
The research performed by Klaus Havelund was carried out at Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and Space 
Administration. 

References 
[1]  Pierre Bourque and Richard E. Fairley (eds.). 2014. Guide to the Software Engineering 

Body of Knowledge (SWEBOK®): Version 3.0  (3rd ed.). IEEE Computer Society Press, 
Washington, DC, USA. 

[2]  Manfred Broy, Martin Feilkas, Markus Herrmannsdoerfer, Stefano Merenda, and Daniel 
Ratiu. 2010. Seamless Model-Based Development: From Isolated Tools to Integrated 
Model Engineering Environments. Proc. IEEE 98, 4 (April 2010), 526–545. DOI: 
https://doi.org/10.1109/JPROC.2009.2037771 

[3]  Achim D. Brucker and Amy Stell. 2023. Verifying Feedforward Neural Networks for 
Classification in Isabelle/HOL. In: International Symposium on Formal Methods, LNCS 
Vol. 14000, Springer, 427–444. DOI: https://doi.org/10.1007/978-3-031-27481-7_24 

[4]  Andrew Campbell, Alan Both, and Qian Sun. 2019. Detecting and mapping traffic signs 
from Google Street View images using deep learning and GIS. Computers Environment 
and Urban Systems 77 (June 2019), 101350. DOI: 
https://doi.org/10.1016/j.compenvurbsys.2019.101350 

[5]  Edmund M. Clarke, Jeannette M. Wing, et al. 1996. Formal methods: state of the art and 
future directions. ACM Comput. Surv. 28, 4 (December 1996), 626–643. DOI: 
https://doi.org/10.1145/242223.242257 

[6]  Byron Cook. 2018. Formal Reasoning About the Security of Amazon Web Services. In: 
Computer Aided Verification, 30th International Conference, LNCS Vol. 10981, Springer, 
38-47. DOI: https://doi.org/10.1007/978-3-319-96145-3_3 

[7]  Stijn De Gouw, Frank S. De Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and 
Dominic Steinhöfel. 2019. Verifying OpenJDK’s Sort Method for Generic Collections. J. 
Autom. Reason. 62, 1 (January 2019), 93–126. DOI: https://doi.org/10.1007/s10817-017-
9426-4 

[8]  Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O'Hearn. 2019. 
Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (August 2019), 62–70. DOI: 
https://doi.org/10.1145/3338112 

[9]  Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, 
Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust Physical-World Attacks on 
Deep Learning Visual Classification. In: IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 1625–1634. DOI: https://doi.org/10.1109/CVPR.2018.00175 

[10]  Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. 
Verification of a Practical Hardware Security Architecture Through Static Information 
Flow Analysis. In: 22nd International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS’17), ACM, New York, NY, 
USA, 555–568. DOI: https://doi.org/10.1145/3037697.3037739 

[11]  Alessio Ferrari and Maurice H. ter Beek. 2023. Formal Methods in Railways: A Systematic 
Mapping Study. ACM Comput. Surv. 55, 4 (April 2023), 1–37. DOI: 
https://doi.org/10.1145/3520480 



 

 

[12]  Anthony C. J. Fox, Gareth Stockwell, Shale Xiong, Hanno Becker, Dominic P. Mulligan, 
Gustavo Petri, and Nathan Chong. 2023. A Verification Methodology for the Arm® 
Confidential Computing Architecture: From a Secure Specification to Safe 
Implementations. Proc. ACM Program. Lang. 7, OOPSLA1 (April 2023), 88:376-88:405. 
DOI: https://doi.org/10.1145/3586040 

[13]   Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. 2020. The 2020 Expert Survey 
on Formal Methods, Formal Methods for Industrial Critical Systems (FMICS’20). LNCS 
Vol. 12327. Springer, 3-69. DOI: https://doi.org/10.1007/978-3-030-58298-2_1 

[14]  Mario Gleirscher and Diego Marmsoler. 2020. Formal methods in dependable systems 
engineering: a survey of professionals from Europe and North America. Empir. Softw. 
Eng. 25, 6 (November 2020), 4473–4546. DOI: https://doi.org/10.1007/s10664-020-09836-
5 

[15]  Mario Gleirscher, Jaco van de Pol, and Jim Woodcock. 2023. A Manifesto for Applicable 
Formal Methods. Soft. Sys. Mod. 22, 1737–1749. DOI: https://doi.org/10.1007/s10270-
023-01124-2 

[16] Samuel Greengard. 2023. AI Rewrites Coding, Commun. ACM 66, 4 (March 2023), 12–
14. DOI: https://doi.org/10.1145/3583083 

[17] John Guttag. 2013. Introduction to computation and programming using Python (Spring 
2013 edition). MIT Press, Cambridge, Mass. 

[18] Charles Antony Richard Hoare. 1981. The emperor’s old clothes. Commun. ACM 24, 2 
(February 1981), 75–83. DOI: https://doi.org/10.1145/358549.358561 

[19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel 
Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. 
Kochenderfer, and Clark Barrett. 2019. The Marabou Framework for Verification and 
Analysis of Deep Neural Networks. In: Computer Aided Verification, LNCS Vol. 11561, 
Springer, 443–452. DOI: https://doi.org/10.1007/978-3-030-25540-4_26 

[20] Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4 (April 
2007), 36–42. DOI: https://doi.org/10.1145/1232743.1232745 

[21] Bertrand Meyer. 1992. Applying “design by contract.” Computer 25, 10 (October 1992), 
40–51. DOI: https://doi.org/10.1109/2.161279 

[22] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate. 
2013. Testing or Formal Verification: DO-178C Alternatives and Industrial Experience. 
IEEE Softw. 30, 3 (May 2013), 50–57. DOI: https://doi.org/10.1109/MS.2013.43 

[23] David Lorge Parnas. 2010. Really Rethinking “Formal Methods.” Computer 43, 1 (January 
2010), 28–34. DOI: https://doi.org/10.1109/MC.2010.22 

[24] Benjamin C. Pierce. 2002. Types and programming languages. MIT Press, Cambridge, 
Mass. 

[25] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer. DOI: 
https://doi.org/10.1007/978-3-319-63588-0 

[26] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and Maxine 
Cohen. 2018. Metacognitive Difficulties Faced by Novice Programmers in Automated 
Assessment Tools. In: ACM Conference on International Computing Education Research 
(ICER’18), ACM, New York, NY, USA, 41–50. DOI: 
https://doi.org/10.1145/3230977.3230981 

[27] Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, 
Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu Yue. 2018. 



 

 

Formal Specification for Deep Neural Networks. In: Automated Technology for 
Verification and Analysis, 16th International Symposium (ATVA’18), LNCS Vol. 11138, 
Springer, 20–34. DOI: https://doi.org/10.1007/978-3-030-01090-4_2 

[28] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal 
methods: Practice and experience. ACM Comput. Surv. 41, 4 (October 2009), 19:1-36. 
DOI: https://doi.org/10.1145/1592434.1592436 

[29] EN50128: Railway applications - Communication, signalling and processing systems 
Software for railway control and protection systems (2011) 

[30] Nick Rozanski and Eowin Woods. 2005. Applying viewpoints and views to software 
architecture. Open University White Paper. 

[31] ISO26262: Road Vehicles - Functional Safety. International standard (2011). 
[32] ISO15408: Common Criteria for Information Technology Security Evaluation. 

International standard (2009). 
[33] K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny. IEEE Software, 

34, 6 (November/December 2017), 94-97. DOI: 10.1109/MS.2017.4121212 
[34] Anthony Hall and Roderick Chapman. 2002. Correctness by construction: developing a 

commercial secure system. IEEE Software, 19, 1(January/February 2002), 18-25. DOI: 
https://doi.org/10.1109/52.976937 

[35]  Raphael Barbau and Conrad E. Bock. 2020. Verifying Executability of SysML Behavior 
Models using Satisfiability Modulo Theory solvers. NIST Technical Report 8283 
(February 14). URL: https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8283.pdf 

[36]  Jeremy Doerr, Conrad E. Bock, and Raphael Barbau. 2022. Verifying Executability of 
SysML Behavior Models Using Alloy Analyzer. NIST Technical Report 8388 (February 
2022). DOI: https://doi.org/10.6028/NIST.IR.8388 

[37]  Colin Snook, Michael Butler, Thai Son Hoang, Asieh Salehi Fathabadi, and Dana Dghaym. 
2022. Developing the UML-B Modelling Tools. Software Engineering and Formal 
Methods  (SEFM’22), LNCS Vol. 13765. Springer, 181–188. DOI: 
https://doi.org/10.1007/978-3-031-26236-4_16 

[38] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael 
Deardeuff. 2015. How Amazon Web Services Uses Formal Methods. Commun. ACM 58, 
4 (April 2015), 66–73. DOI: https://doi.org/10.1145/2699417 

[39]  Brijesh Dongol, Catherine Dubois, Stefan Hallerstede, Eric Hehner, Daniel Jackson, Carol 
Morgan, Peter Müller, Leila Ribeiro, A. Silva, Graeme Smith, and Eerke de Vink. 2023. 
On Formal Methods Thinking in Computer Science Education. Submitted to Form. Asp. 
Comput. 

[40]  Maurice H. ter Beek, Ron Chapman, Rance Cleaveland, Hubert Garavel, R. Gu, Ivo ter 
Horst, Jeroen J. A. Keiren, Thierry Lecomte, Michael Leuschel, Kristin Y. Rozier, Augusto 
Sampaio, Cristina Seceleanu, Martyn Thomas, Tim A. C. Willemse, and L. Zhang. 2023. 
Formal Methods in Industry. Submitted to Form. Asp. Comput. 

[41]  Emil Sekerinski, Marsha Chechik, Joao F. Ferreira, John Hatcliff, Michael Hicks, and K. 
Lano. 2023. Should We Teach Formal Methods or Algorithmic Problem Solving, Design 
Patterns, Model-Driven Engineering, Software Architecture, Software Product Lines, 
Requirements Engineering, and Security? In preparation. 

[42] Stefan Gruner, Apurva Kumar, and Tom Maibaum. 2015. Towards a Body of Knowledge 
in Formal Methods for the Railway Domain: Identification of Settled Knowledge. In: 
Formal Techniques for Safety-Critical Systems, 4th International Workshop (FTSCS’15), 

https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417


 

 

CCIS Vol. 596. Springer, 87–102. DOI: https://doi.org/10.1007/978-3-319-29510-7_5 
[43] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. 

Patel-Schneider (eds.). 2007. The Description Logic Handbook, Springer. 
 

https://doi.org/10.1007/978-3-319-29510-7_5

