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Abstract. Specifications define the expected behavior of software com-
ponents and systems. They are critical to software correctness yet writing
good specifications can be quite challenging. We examine the case of the
specification for a concurrent garbage collector that operates in conjunc-
tion with a cooperative mutator. We argue that many previous attempts
to specify the behavior of such a garbage collector are flawed. The typical
problem is that correctness is specified in terms of assertions that hold at
specific program points leaving a step of interpretation to be convinced
that the intended behavior has been properly formalized. We introduce
a notion of compositional refinement that serves as an acceptable spec-
ification for properties of components like a garbage collector that are
refined in the context of an assumed environment like a mutator.

1 Introduction

Cliff Jones is celebrated for his work on Rely/Guarantee compositional verifi-
cation, data refinement, and software specification particularly in the context
of the Vienna Definition Method (VDM). We present a treatment of garbage
collection that integrates all of these strands. Though there have been many at-
tempts at specifying and proving garbage collectors, we argue that they all have
subtle flaws. We introduce a notion of compositional refinement that remedies
these flaws in both the specification and the verification of garbage collectors,
particularly those that require cooperation from mutators. The compositional
refinement technique is applicable in other contexts where component proper-
ties are established under an assumed environment and then composed to derive
system properties.

A specification constrains the observable behavior of a software component.
There are two purposes for software property specification. One is for compo-
sition, to ensure that components can be composed and that the specification
for the composition emerges from the combination of the component specifica-
tions. For example, the Hoare triple [21] {P}S{Q} constrains the behavior of
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component S so that when it is executed on a state satisfying P it either di-
verges or terminates in a state satisfying Q. The composition rule then allows
{P}S1;S2{Q} to be derived from {P1}S1{Q1} and {P2}S2{Q2} if P ⇒ P1,
Q1 ⇒ P2, and Q2 ⇒ Q. The other purpose is for refinement so that a com-
ponent can be realized by specifications that are closer to being implementable
in code. Thus, {P}S{Q} is refined by {P}S{Q} if both triples are valid and
P ⇒ P (precondition weakening) and Q ⇒ Q (postcondition strengthening).
This implies that the statement S can be replaced by S in the context of the
triple {P}S{Q}.3 The refinement approach to correct-by-construction program
derivation is developed in the refinement calculus [3,7,6,4,29,2,13].

With concurrent programs interacting through shared memory, the compo-
sition operator is S1∥S2. Owicki and Gries [32] presented a proof outline logic
for composing the proofs (annotated programs) for S1 and S2 such that each
atomic statement in S1 (under its precondition) preserves the assertions on
atomic statements used in the proof for S2, and vice-versa. Then, S1 and S2 are
non-interfering, and we can conclude {P1∧P2}S1∥S2{Q1∧Q2} from {P1}S1{Q1}
and {P2}S2{Q2}.

Jones [23] presented a rule for a language that has sequential and concurrent
composition that adds a reflexive Rely relation R and a reflexive guarantee
relation G such that the Jones quintuple [R]{P}S{Q}[G] captures the claim
that program S when started in an initial state satisfying P and interleaved
with environment transitions satisfying R, ensures post-condition Q and that
each S transition satisfies G. The concurrent composition S1∥S2 can then be
verified using the rule:

[R1 ∧R2]{P1 ∧ P2}S1∥S2{Q1 ∧Q2}[G1 ∨G2]

follows from

1. [R1]{P1}S1{Q1}[G1]
2. [R2]{P2}S2{Q2}[G2]
3. G1 ⇒ R2

4. G2 ⇒ R1

A different view of concurrent programs emerged in the form of transition sys-
tems with temporal specifications in the work of Pnueli [35], Lamport [26], Back
and Kurki-Suonio [5], and Chandy and Misra [11]. These approaches dispense
with precondition/postcondition specifications in favor of those that constrain
infinite traces of behavior. Temporal logic [35] extends propositional logic with
modal operators such as 2P (P is henceforth true), 3P (P is eventually true),

3 The partial correctness refinement ordering allows the concrete statement S to di-
verge where the abstract statement S converges. The total correctness variant would
require wp(S,Q) ⇒ wp(S,Q) so that S converges whenever S does. If there is a data
refinement step in deriving the concrete representation, then if f maps concrete states
to their abstract counterparts, the corresponding proof obligation can be stated as
wp(S,Q) ◦ f ⇒ wp(S,Q ◦ f).



P U Q (Q is eventually true, but P holds until then), P R Q (P becomes true
before Q becomes false, or P becoming true releases Q to no longer hold).

The UNITY framework [11] combines a guarded command language (with
fair execution of the commands) and a lightweight temporal logic with temporal
modalities such as stable p indicating that once p holds it continues to hold,
and p ; q indicating that whenever p holds, q eventually holds along any fair
execution. Refinement is performed by superposition, i.e., by defining a repre-
sentation invariant that defines the abstract variables in terms of the concrete
ones as a way of demonstrating any observable abstract behavior has a concrete
counterpart.

Lamport’s Temporal Logic of Actions (TLA) [26] uses state functions f and
two-state assertions (actions) A to define programs and properties. An action
predicate of the form [A]f , defined as A∨f = f ′ and ⟨A⟩f , defined as A∧f ′ ̸= f .
Programs are defined as temporal formulas of the form I ∧ 2[A]f ∧ F , where I
is the initial state predicate, [A]f is a two-state action predicate asserting that
in each step, either A holds or the state function f remains unchanged, and F
is a fairness condition. In TLA, existential quantification over state variables is
used for hiding internal state, and state mappings from the concrete state to the
abstract state serve as refinement maps.

As noted, the refinement approach can be used to derive concurrent pro-
grams from abstract transition system specifications. A transition system is a
triple ⟨Σ, I,N⟩ consisting of a state type Σ, an initialization predicate I, and a
transition relation N . Additionally, we allow an observation state function π that
maps Σ to an observable state type Σ̂. A behavior of the system is a sequence
σ of states in Σ such that I(σ0) holds and N(σi, σi+1) holds for all i ≥ 0. An
invariant P of a transition system is a predicate on Σ that holds of any σ that
appears in any behavior of the transition system, i.e., I ∧2[A]f ⇒ 2P .

Given two transition systems T1 of the form ⟨Σ1, Σ̂, I1, N1, π1⟩ and T2 of the

form ⟨Σ2, Σ̂, I2, N2, π2⟩, and invariants P1 of T1 and P2 of T2, a refinement map
ρ maps Σ2 to Σ1 such that

1. Observational identity: π(ρ(σ)) = π(σ) for σ ∈ Σ2, i.e., the observable state
in the concrete and abstract systems must be identical.

2. Initiality: I2(σ) ⇒ I1(ρ(σ)) for σ ∈ Σ2, i.e., The concrete initial states must
be a subset of the abstract ones under the refinement map.

3. Simulation: P1(ρ(σ)) ∧ P2(σ) ∧ P2(σ
′) ∧ N2(σ, σ

′) ⇒ N1(ρ(σ), ρ(σ
′)), for

σ, σ′ ∈ Σ2, i.e., the abstract transition under the refinement map must be
able to simulate a concrete transition where the concrete invariant P2 and
abstract invariant P1 (under ρ) hold on the prestate σ, and P2 holds of the
post-state σ′.

These conditions ensure that any valid observable behavior of T2 is also a valid
observable behavior of T1. It might be necessary to augment T2 with history and
prophesy variables in order to construct a refinement map. Transition system
specifications can also include fairness constraints F . For our purpose, we will
assume that each fairness constraint F must hold infinitely often in any fair



behavior. The refinement proof must demonstrate a well-founded ordering on
the non-F1 abstract states given the invariants and fairness constraints on the
concrete transition system T2.

A concurrent garbage collector poses an interesting challenge for both for-
malization and verification. A garbage collector is a program that operates in
conjunction with a client program, a mutator. The mutator can access certain
nodes on the heap, namely those reachable from the roots (the program vari-
ables) by dereferencing pointers, it can allocate nodes from the free list, and
its actions can make some of these reachable nodes unreachable (garbage). The
collector collects garbage heap nodes into the free list. There is a long history
of progress and setbacks in formal treatments of garbage collection. Since proofs
of algorithms like garbage collectors can be quite hard, it helps if one is proving
the right theorem.

Garbage collection was first introduced by McCarthy with Lisp [28]. Most
early garbage collectors were nonconcurrent, i.e., executed atomically when the
free list was empty or nearly empty. We focus here on concurrent garbage collec-
tors where the collector and mutator operate concurrently. The mutator allocates
from the free list and creates garbage in the form of unreachable nodes through
mutation steps that redirect pointer edges. The collector moves these unreach-
able nodes into the free list to make them reachable. Informally, the correctness
criterion for such concurrent garbage collector is that all unreachable nodes are
eventually made reachable through the free list without affecting the shape of
reachable nodes that are not in the free list.

Dijkstra, Lamport, Martin, Scholten, and Steffens [14] (henceforth abbrevi-
ated as DLMSS) gave the first formal treatment of a concurrent garbage collector.
Gries [18] gave an invariance proof using the Owicki–Gries method [32]. The lat-
ter proof has been mechanized by Nieto and Esparza [30] in Isabelle/HOL [31].
Ben-Ari [8] simplified the DLMSS algorithm but got the informal proof slightly
wrong. van de Snepscheut [38] gave a more formal treatment of Ben-Ari’s al-
gorithm, corrected some errors, but overlooked others. Chandy and Misra [11]
refined a mutator into a mutator/propagator/marker combination using super-
position and a version of Ben-Ari’s algorithm. Russinoff [36] used an embedding
of Manna and Pnueli’s temporal logic [27] in Nqthm [9] to verify Ben-Ari’s al-
gorithm. We argue that none of these formalizations, including our own prior
rendition, satisfactorily specifies a garbage collector. Jones and Yatapanage [25]
investigate the use of Rely/Guarantee refinement for the Ben-Ari algorithm with
a pre/post-condition form of refinement which is different from the compositional
refinement relation we define below since it does not treat the mutator as part
of the environment.

In earlier work [20], we had presented a PVS verification of the Ben-Ari al-
gorithm [8] through the use of the refinement mapping technique of Abadi and
Lamport [1]. Prior to that we performed a verification of the algorithm without
refinement in PVS, and also applied model checking using the Murphi model
checker [19]. In this prior work [20], the specification and implementations are
presented as transition systems with a state space, an initialization predicate



and a transition relation over the state space. Each transition system has an
observation function that extracts the observable state space so that we can
characterize the observable behavior of the transition system by a trace of the
observable behavior of the system where the initialization holds of the initial
state and the transition relation holds of each pair of adjacent states. A refine-
ment map between a concrete and abstract transition system maps the concrete
states to the abstract states while preserving the observable behavior to show
that a concrete initial state can be viewed as an abstract initial state, and given
a concrete invariant, the concrete transitions can be simulated by abstract tran-
sitions under the refinement map. The concrete invariant plays a key role in
enabling the refinement proofs for the garbage collector.

The refinement proof for the Ben-Ari algorithm is carried out in stages. The
specification is given as the composition of an abstract mutator and collector,
where the mutator redirects an arbitrary node to an accessible (reachable) node,
and the collector appends an arbitrary inaccessible node to the free list. The
first refinement marks arbitrary nodes and when the accessible nodes have been
colored black, the algorithm appends the white nodes to the free list. The second
refinement of the collector picks two arbitrary nodes with black-white edges and
blackens the target the edge. When there are no more black-white edges, the
collector starts appending white nodes into the free list. The third refinement
brings the algorithm closer to the Ben-Ari version of the algorithm by scanning
memory for black nodes and marking their children nodes, and counting the
number of black nodes to establish the absence of a black-white edge before
beginning the append phase.

Our prior work had two drawbacks. One, the form of refinement was not
compositional. The mutator could be refined to not generate any garbage, and
the refinement argument would still go through. Two, the refinement there only
covered safety, and could not be used to demonstrate that an unreachable node
is eventually added to the free list.

In the present work, we build on the lazy compositional verification ap-
proach [37] to define a notion of compositional refinement for the verification
of the garbage collector where the mutator specification is viewed as a Rely con-
dition for the collector, and the refinement is expected to preserve all possible
actions of the abstract mutator. We present a layered compositional refinement
of both the DLMSS and Ben-Ari algorithms. The key difference is that we show
that the mutator steps are unconstrained by the refinement so that we do have
a bisimulation relation on the mutator transitions. We also touch on the preser-
vation of liveness properties in the refinement. Section 2 defines an abstract
garbage collector that serves as the top-level specification. Section 3 describes
the DLMSS algorithm together with an operational correctness proof followed
by a layered compositional refinement. Section 4 offers a similar but abbrevi-
ated treatment of the Ben-Ari algorithm followed by concluding observations in
Section 5.

An open transition system T has the form ⟨Σ, Σ̂, I,N, L, π⟩ with state Σ,

observable state Σ̂, initialization predicate I, system transition relation N , en-



vironment (Rely) transition relation L, and observation function π mapping Σ

to Σ̂. The behavior σ of the system is one where I(σ0) holds (i.e., I holds of the
initial state σ0, and for each pair of adjacent states σi, σi+1 in the behavior σ,
N(σi, σi+1)∨L(σi, σi+1) holds. Given an abstract transition system T1 with in-
variant P1 and a concrete transition system T2 with invariant P2, the refinement
map ρ mapping Σ2 and Σ2 must now satisfy the five conditions4

1. Observational identity: π(ρ(σ)) = π(σ) for σ ∈ Σ2.
2. Initiality: I2(σ) ⇒ I1(ρ(σ)) for σ ∈ Σ2.
3. System Simulation: P1(ρ(σ))∧P2(σ)∧P2(σ

′)∧N2(σ, σ
′) ⇒ N1(ρ(σ), ρ(σ

′)),
for σ, σ′ ∈ Σ2.

4. Environment Upward Simulation: P1(ρ(σ)) ∧ P2(σ) ∧ P2(σ
′) ∧ L2(σ, σ

′) ⇒
L1(ρ(σ), ρ(σ

′)), for σ, σ′ ∈ Σ2.
5. Environment Downward Simulation: P2(σ)∧P1(ρ(σ))∧P1(σ̂

′)∧L1(ρ(σ), σ̂
′) ⇒

∃σ′ · σ̂′ = ρ(σ′) ∧ L2(σ, σ
′) for σ ∈ Σ2 and σ̂′ ∈ Σ1.

This ensures that T2 can work in composition with any environment that satisfies
the Rely condition L. In the case of the garbage collector, the Rely condition is
the specification of the mutator.

2 Garbage Collection, Abstractly

As a program is executing, it allocates memory nodes to build data structures
and redirects pointers from one memory node to another. In this process, some
of the allocated memory nodes can become unreachable so that there is no
dereferencing path from the program variables to these nodes. A garbage col-
lector collects such unreachable memory nodes and appends them to the free
list so that the program (mutator) can reallocate and reuse these previously
unreachable nodes. Garbage collection is a popular target for formal model-
ing and verification. Informal proofs of concurrent garbage collection have been
given by Chandy and Misra [11] and by Pavlovic, Pepper, and Smith [34]. Some
mechanically verified proofs include a TLA proof [17] of a concurrent garbage
collector [15], a safety/liveness proof [22] using an embedding of temporal logic
in PVS of the DLMSS algorithm, a formalization [10] of our earlier refinement
argument in both B and Coq for the purpose of comparing the two formal sys-
tems, and an Isabelle/HOL invariance proof [16] of a tricolor algorithm for the
x86-TSO memory model in a multi-mutator setting.

Abstractly, memory M consists of nodes V and directed edges E from nodes
to nodes. We restrict ourselves, without loss of generality, to a scenario where
nodes only have left edges or right edges, so that E = EL ∪ ER, where EL

(respectively, ER) contains the left (respectively, right) edges. An edge from

source node n to target node n′ is represented as n
λ→ n′, where the label λ is

either left or right . For each node n, there is at most one outgoing left edge or

4 There are fairness conditions associated with the transitions systems and their re-
finement, that we omit here.



M̂U repeat E : = E − {a λ→ b} ∪ {a λ→ c} until false for a, c ∈ R.

Ĉ repeat (F,G) := F ∪ {a}, G− {a} until false, for a ∈ G

Fig. 1. Abstract Mutator and Collector

right edge. For n ∈ V , let E[n] be the set of successor nodes of n, i.e., those nodes

n′ such that the edge n
λ→ n′ ∈ E. For X ⊆ V , let E[X] be

⋃
x∈X E[x]. There is

a fixed set of root nodes A. Reachable nodes R are those that have a path from
a root, namely the nodes in E∗[A]. The free list FREE is itself such a root node.

Each mutator action can redirect an edge a
λ→ b from any node to a reachable

node (E′ = E−{a λ→ b}∪{a λ→ c} for c ∈ R). In this process, nodes such as bmay
become unreachable. Thus, the nodes V can be partitioned into the reachable
nodes R, which can itself be partitioned into the free nodes F = E[FREE] and
the non-free nodes H = R − F , and the garbage nodes G = V − R. The point
of the collector Ĉ is to ensure that nodes in G are moved to F . The collector
operates concurrently with the mutator M̂U which might move nodes from R to
G. Since the mutator is the program of interest, the collector must do its work
without modifying any edges in H.

The abstract system AGC can be in an arbitrary initial state. We can then
enumerate the atomic actions of AGC as shown in Figure 1. The transition
system is an interleaving of the abstraction mutator action M̂U and the abstract
collector action Ĉ:

1. The assignment step M̂U is performed as a single atomic action, and this
can affect the sets F , H, and G.

2. The simultaneous assignment Ĉ implicitly leaves the set H unchanged. Since
F and G are derived features of the state, the abstract collector defines the
set of transitions that can modify the memory, i.e., redirect edges, from
M = (V,E) to M ′ = (V,E′) so that F ′ = E′[FREE] = F ∪ {a} and G′ =
V − E′[A] = G− {a}.

The collector action must be fair, i.e., no node is in G indefinitely.
A concrete garbage collector C must refine this abstract collector Ĉ in the

context of its environment M̂U . Since the refinement can create a concrete rep-
resentation of memory with suitable data structures to assist with garbage col-
lection, the abstract mutator M̂U is also refined by a concrete mutator MU .
Since we want the collector to work with any mutator, the refinement must not
constrain the possible mutator actions when going from the abstract to concrete.

3 A Cooperative Garbage Collector

We present the cooperative garbage collector defined by Dijkstra, Lamport, Mar-
tin, Scholten, and Steffens [14] (DLMSS). We first present the assumptions and
correctness claims for the algorithm and then describe the algorithm followed by



an informal operational correctness argument and a more rigorous refinement
proof.

3.1 Assumptions and Correctness Claims

There are some simplifications in the DLMSS formulation of the problem that
we also adopt:

1. Each node n has exactly two successor nodes n.left and n.right .

2. Memory is scannable so that it is possible to iterate over all of the memory
nodes. A simple way to formalize such a memory M is an array with indices
i ranging from 0 to |M | − 1, where M [i].left and M [i].right are the indices
of the two successors.

3. NIL is a special unmodifiable, self-pointing root node (E(NIL) = {NIL}).
We assume that the memory is abstractly scannable instead of explicitly
modeling it as an array.

4. Deletion of an edge is just redirection to NIL.

5. Allocation of a node from the free list is also achieved by redirection. Thus,
allocation is seen as a mutator step, but there is a sleight of hand in this
simplification. One desirable correctness criterion for the collector is that the
shape of the memory reachable from non-FREE roots can be changed only by
mutator actions. This means that the operation of appending a node to the
free list should not add or delete any edges that are reachable from non-FREE
roots.

6. Free list FREE is a root node so that all nodes on the free list are in fact
reachable.

The correctness criterion as stated informally in the paper is:

1. CC1: Every garbage node is eventually appended to the free list. More pre-
cisely, every garbage node present at the beginning of an appending phase
will have been appended by the end of the next appending phase.

2. CC2: Appending a garbage node to the free list is the collector’s only mod-
ification of (the shape of) the data structure.

The correctness criterion does not explicitly assert that only garbage (un-
reachable nodes) are appended to the free list. This follows from CC2 since
if reachable nodes were appended to the free list, the collector would be tam-
pering with reachable edges. Since CC1 and CC2 are stated for the combined
mutator/collector systems, there could be trivial ways of satisfying this by, for
example, constructing a mutator that never creates inaccessible nodes or that
does its own garbage collection. While one could argue that such an implemen-
tation is acceptable, this mitigates against the idea that the mutator component
should not be constrained by the implementation of the collector.



Mutator pick a, b ∈ R · ⟨a.left : = b; shade(b)⟩
[] ⟨a.right : = b; shade(b)⟩

Collector repeat unmark ;mark ; appendToFree until false

unmark scan n ∈ V · n.color : = white

mark markroots; repeat scanm until ¬grayfound
AppendToFree scan n ∈ V · if n.color = white then append(freelist, n)

markroots scan n ∈ A · shade(n)

scanm

grayfound : = false;
scan n ∈ V · if gray(n)

then shade(n.left);
shade(n.right);
n.color : = black ;
grayfound : = true

Fig. 2. Concrete DLMSS Garbage Collector

3.2 The DLMSS Algorithm

We describe the steps in (a minor variant) of the DLMSS algorithm and a sim-
plified (compared to the original) version of the proof, and then show that it can
be derived as a refinement of the abstract collector together with the mutator
specification. An extra color field of scalar type {white, black , gray} is added to
each node so that n.color is either white, black, or gray . A node is said to be
marked if its color is black or gray, and unmarked if it is white. A node is shaded
if a white node is marked as gray, and is left unchanged, otherwise:

shade(n)
△
= if n.color = white then n.color : = gray .

The concrete DLMSS algorithm is shown in Figure 2. The collector cycles
through three phases: unmarking, marking, appending . In each phase, collector
scans the memory to perform a sequence of atomic actions. The scan can be im-
plemented in a number of ways. The simplest is by viewing memory as arranged
in an array of |V | nodes from 0 to |V | − 1. The other is by allowing the collector
some local memory to maintain a set representation of the nodes visited and
those that remain to be visited. We treat the scan as a primitive construct of
the form scan n ∈ V · actions(n) to indicate that the nodes n ∈ V are processed
one at a time in some nondeterministic order. The mutator can set either the left
or right neighbor of a reachable node a to point to another reachable node b as
shown in Figure 2 so that the shading is performed atomically with the redirec-
tion. Here pick b ∈ R · actions(b) represents nondeterministic (demonic) choice
of b, N1 [] N2 represents a nondeterministic (demonic) choice between action N1

and action N2, and ⟨N1, . . . , N2⟩ represents the atomic execution of a sequence
of actions N1, . . . , N2. The three phases of the collector can be described as

1. Unmarking: Scan memory to unmark marked nodes as shown in Figure 2.
Note that at the end of the unmarking phases, the unreachable nodes are
stably (i.e., even with mutator interference) white, and it is stably the case



that there are no black-white (BW ) edges both at the end of the unmarking
phase and the beginning of the marking phase. This is because the mutator
can only shade reachable nodes and cannot create BW edges.

2. Marking: First, the roots are shaded. The algorithm then repeatedly scans
the memory to mark all reachable nodes.5 During the scan, whenever a gray
node n is encountered, the child nodes n.left and n.right that are white are
colored gray, and the node n itself is colored black. The marking scan opera-
tion scanm is defined in Figure 2. The Marking phase is terminated when no
gray nodes are encountered, i.e., when a scan terminates with ¬grayfound .
Note that we stably approach the termination of the phase since either
grayfound is false or the number of white nodes decreases, or the number of
white nodes is unchanged but the number of gray nodes decreases. We show
below that at the termination of the marking phase, all reachable nodes are
stably black, and all nodes in U are stably unmarked.

3. Appending: Scans the marked memory to append all unmarked nodes to the
free list.

To summarize, in the DMLSS algorithm, the collector is implemented as
follows. Nodes are either unmarked (white), partially marked (gray), or marked
(black). A node is shaded when it is colored gray if it was originally white, and left
unchanged, otherwise. The collector first unmarks all the nodes. It then marks
all the root nodes gray, including NIL. Having marked the roots, the collector
continues the marking phase by shading all the target nodes b of any gray node

a such that a
λ→ b ∈ E, and then coloring a black. When the collector’s marking

scan does not add any new gray edges, the collector collects all white nodes
into the free list, and then unmarks all black nodes by coloring them white. The
mutator cooperates by shading the node c gray as part of the same atomic action

whenever it redirects an edge a
λ→ b to an edge a

λ→ c.

3.3 An Operational Proof of DMLSS

We first present a somewhat operational correctness argument before recasting
it as a refinement argument. The proof establishes the invariant that there are
no black-white edges during the marking phase of the collector. The collector
does not introduce any such black-white edges since it only colors a node black
when all its children have been shaded. The mutator also does not introduce any
black-white edges since it atomically shades the target node of any redirected
edge.6 The key observation is that if the collector does not encounter any gray
nodes during a marking scan, then there must have been no gray nodes at the

5 The DLMSS algorithm restarts the scan each time a gray node is blackened whereas
we complete the scan but do not exit the marking phase until there is a scan where
no gray nodes have been encountered.

6 The DLMSS article [14] discusses the challenge of splitting the mutator redirection
operation into separate atomic steps for shading the target node of the redirection
and another for the redirection. The proof of the invariant that there are no black-
white edges would fail since there is no way to ensure that the target node of a



beginning of the scan, since the collector is the only process that can modify
the color of a gray node during a scan, and hence such a node would not be
missed by the scan. In other words, any gray nodes at the beginning of the
marking scan would be encountered by the collector since the mutator can only
color white nodes gray. If there are no gray nodes at the beginning of the scan,
then we have a situation where every black node has successor nodes that are
shaded, and hence black. Since, at the end of the marking phases, the set of black
nodes contain the roots and is closed under successor, they contain the set of
reachable nodes. Hence, at the end of the marking phase, any white node must
be unreachable, and this property continues to hold during the append phase
until the next unmarking phase.

The main invariant is that there are no black-white (BW) edges during the
marking phase. We already saw above that a node is only marked black by the
collector when all of its children are shaded even with interference from the
mutator. The mutator does not create any black nodes. This invariant ensures
the properties CC1 and CC2:

1. All white nodes are unreachable when the collector can no longer find a
gray node, as already shown above. Thus the append phase attaches only
unreachable nodes to the free list.

2. All unreachable nodes are collected within a round consisting of an unmark-
ing, marking, and appending phase. Let U be the set of nodes that are
unreachable at the beginning of an unmarking phase, then U is closed under
the parent relation since it would otherwise be reachable. The nodes in U are
colored white in the subsequent unmarking phase of the collector, and they
continue to remain white and unreachable through the next marking phase.
This is because, the mutator can only redirect to and mark reachable nodes,
and the collector can only mark a node whose parent is marked. Thus all the
nodes in U are white and unreachable at the end of the marking phase and
hence collected, and none of the edges between nodes in H are redirected by
the collector.

3.4 A Compositional Refinement Proof

To recast the above reasoning as a refinement argument, we have to identify
the observable and local variables of each component and define a refinement

redirection might be whitened (during the append phase) while the source node is
waiting to be blackened. The algorithm also fails, not just the proof: if the mutator
shades a node b before redirecting a to b, then collector can complete its marking
phase, and then whiten b in the append phase. The mutator can then complete the
redirection in the middle of the next marking phase when a happens to be marked
black, and b has not yet been shaded. The mutator then deletes all the other edges
to b before the collector gets a chance to mark b so that b remains white at the end
of the marking phase. In order for the proof above to work, the condition that every
black node must have shaded successors must hold prior to each marking scan. The
authors introduce a refinement where the mutator when it redirects a from b′ to b
first shades b′ and then redirects a to b, but this algorithm is not of interest here.



map that is used to discharge the refinement proof obligations. The only abstract
variable is the memory M consisting of nodes V and maps left and right defining
the edge set E. The concrete memory is also visible and adds a map color from
V to {black, white, gray}. The hidden local variables are the program counter
variables used for tracking the phases and the scans, and the auxiliary variable
V that is needed for the fairness proof obligation. The first refinement DR1 uses
the same concrete mutator, i.e., one that atomically shades the target of the
redirection, but implements the three phases of the collector as below:

Unmark1 U : = G;
repeat pick n ∈ V · n.color : = white until ∀m ∈ U · white(m).

Mark1 repeat pick n ∈ V − U · n.color : = black until ∀m ∈ R · black(m)

Fig. 3. First refinement in DLMSS

1. Unmarking: As shown in Figure 3, this phase is defined to record the un-
reachable nodes in U and then whiten all the nodes until at least those nodes
in U have been whitened. This ensures that the unreachable nodes in U are
unmarked at the end of the phase. Since the mutator cannot modify the
marking of nodes in U , this phase does terminate with the stable assertion
that the nodes in U are unmarked.

2. Marking: The definition in Figure 3 simply blackens arbitrary nodes while
avoiding those in U until all reachable nodes have been blackened. This too
stably terminates since the number of black nodes increases.

3. Appending: This is also unchanged from the concrete algorithm. Since the
appending actions are the only collector actions that are visible, the refine-
ment argument must demonstrate that each appended node is unreachable.

The refinement map between DR1 and AGC (Figure 1) must be defined to
satisfy the following proof obligations:

1. Each DR1 collector step is either a silent abstract step or is simulated by
an abstract collector (Ĉ) step.

2. The fairness condition on the abstract collector step is met in DR1 so that
any unreachable node is eventually appended to the free list.

3. Each DR1 mutator step is either a silent abstract step or is simulated by an
abstract mutator (M̂U) step.

4. Any abstract mutator step can be simulated by the concrete DR1 mutator.

The observable concrete memory drops the color field and control states in
DR1 , and is thus identical to the abstract memory so that the definitions of the
sets R, F , G, andH are also preserved from abstract to concrete. The obligations
are easily discharged.

1. Obligation 1 can be discharged by observing that the set of unappended
white nodes is unreachable before and during the append phase of the col-
lector, and hence each concrete append step can be simulated by an abstract



append step. The other steps of the collector are simulated by stuttering
steps of the abstract collector.

2. For Obligation 2, we have used an auxiliary variable U to record the set G
at the start of the unmarking phase. It can then be discharged by showing
that
(a) The nodes in U are all unreachable and white at the end of the subse-

quent unmarking phase.
(b) The nodes in U will remain unreachable and white through the marking

phase since U is left untouched during the marking.
(c) Since the nodes in U are white at the end of the marking phase, they are

moved to the freelist during the append phase. Thus, any unreachable
node is appended to the freelist through at most one complete round of
the collector.

3. Obligation 3 can be discharged by showing that the DR1 mutator action of
setting the left or right field of a reachable node to a reachable node, ignoring
the shading of the target, is identical to an abstract mutator action. This is
the only concrete mutator step so no stuttering steps are needed.

4. Obligation 4 is shown by observing that any redirection operation can be
simulated by the DR1 mutator since the corresponding DR1 mutator action
is always enabled. The only difference is that the DR1 mutator shades the
target node as part of the atomic mutation action.7

The next stage of the refinement from DR1 to DR2 elaborates the marking
phase. We first define the operation blacken(n) and as below

blacken(n)
△
=

if n.left .color = gray ∧ n.right .color = gray
then n.color : = black .

With this operation, we can define the marking phase as below.

repeat pick n ∈ V − U · blacken(n) [] shade(n) until ∀m ∈ R · black(m).

The refinement map is the identity function on both variables M and U , and
the refinement in DR2 mainly affects Obligation 2. It is easy to see that the
shade steps are silent whereas the blacken steps are directly simulated by the
corresponding marking steps in DR1 . The DR2 refinement easily yields the
invariant that there are no BW edges since we only blacken a node when its
children are all stably gray. Recall that such invariants can be employed in the
refinement proof obligations.

A further refinement can be done to shade only those nodes that are children
of gray nodes, to yield DR3 . We introduce the shadechild operation below to

7 It is possible that a further refinement of the mutator might involve computation
steps other than redirection. These would become stuttering steps at the abstract
level, so that the reverse simulation relation would require showing that sequence of
concrete steps is always enabled and eventually terminate. Similarly, a refinement
of the allocation steps might restrict the nondeterminism of the mutator since the
target of the allocation step will be determined by the allocator.



replace the shade operation:

shadechild(m,n)
△
=

shade(n), if gray(m) ∧ n = m.left
[] shade(n), if gray(m) ∧ n = m.right

The DR3 marking phase is now defined as

scanmdr3
△
=

pick n ∈ V − U · blacken(n)
[] pick m,n ∈ V − U · shadechild(m,n)

markdr3
△
= markroots; repeat scanmdr3 until ∀m ∈ V · ¬gray(m).

The refinement from DR2 to DR3 follows from the invariant in DR3 ensuring
the absence of BW edges.

The refinement from DR3 to the fully concrete DLMSS algorithm now be-
comes easy. The mutator is unchanged as is the appending phase. It is easy to
see that the steps in the concrete unmarking scan easily refine those in the un-
marking phase of the DR1, and hence DR3 . Specifically, the transition from the
unmarking to marking phases is captured by the stable condition that all the
nodes in U are unmarked.

The steps in the marking phase of DLMSS can be simulated by DR3 , in-
cluding those in markroots, since we can ensure that when the concrete collector
has shaded all the children of a shaded node, then this condition is stable in the
marking phase and hence the step of blackening the gray node does simulate the
corresponding step in DR3. Finally, the exit condition from the marking phase
¬grayfound can be shown to be equivalent to the check that the reachable nodes
have been blackened since we have the invariant that there are no BW edges.

The upshot is that the full specification of the garbage collector is subtle
and challenging. The two conditions CC1 and CC2 appear to capture the total
correctness, but they ignore the important constraint that the refinement of the
mutator/collector combination should not restrict the actions of the mutator.
This kind of mixed simulation argument can also be repeated on the mutator side
treating the collector as an environment. Any refinement of the mutator that is
compatible with the cooperative mutator used for this refinement argument will
preserve the correctness properties. For example, we have not given a concrete
implementation of the free list, and assumed that it has some graph structure
(e.g., a list or a tree) that can be used for appending the collected nodes and for
allocating nodes for the mutator. The other interesting challenge is in staging the
refinement steps so that the invariants needed for demonstrating the refinement
relations are simple to establish at the right level of refinement. The abstract
mutator can be seen as a Rely condition on the environment of the collector with
the proviso that any refinement of the environment must admit any abstract
environment move to be simulated in the concrete.



mutatorb pick a, b ∈ R · a.left : = b; shade(b)
[] a.right : = b; shade(b)

markroots scan n ∈ A · shade(n)

scanmb
scan n ∈ V · if black(n)

then shade(n.left);
shade(n.right

countb BC1 := |B|;BC : = 0; scan n ∈ V · if black(n) then BC : = BC + 1

markb markroots;
BC : = 0;
repeat OBC : = BC

BWC : = |BW |
BC0 : = |B|
scanmb
countb

until BC = OBC

Fig. 4. Concrete Ben-Ari Garbage Collector

4 The Ben-Ari Algorithm

Ben-Ari [8] modified the tricolor DLMSS algorithm to dispense with gray nodes.
In this version, the mutator just marks the target node of a redirection black,
and the collector marks any node that is the successor of a black node. In Ben-
Ari’s variant BA, it is okay for the mutator to decompose the redirect-and-mark
step into an atomic redirect step followed by an atomic mark step since we no
longer need the invariant ruling out black-white edges. During its marking scan,
the collector marks the successors for black nodes. Before each scan, the collector
counts the number of black nodes. If this number has increased since the previous
count, the scan is repeated.8

The concrete Ben-Ari garbage collector is defined in Figure 4. The mutator
mutatorb now has the atomicity removed, and unlike the DLMSS case, here
shading always marks the node black. The unmarking and appending phases are
identical to those of DLMSS. The main difference in the marking phase markb
is that the marking scan alternates with a counting scan in order to determine
if the marking has stabilized. As before, the marking phase starts by shading
the roots. The marking scan following the shading of the roots is performed
by scanmb. The counting scan is performed by countb which records the initial
cardinality of the black nodes in the specification-only variable BC1 and tallies
the black nodes in variable BC . Let BW represent the set of black-white edges.
The entire marking phase markb is defined in Figure 4. It repeatedly performs
a scanmb followed by a countb operation until it sees that the current count
of black nodes matches that from the prior round. The specification variables

8 Counting the black nodes is a somewhat crude way to detect termination, but at-
tempts to optimize the termination check are unlikely to work given the atomicity
assumptions. Proof attempts of such optimizations along the slines shown here are
helpful in revealing the cause of failure.



BWC and BC0 record the cardinalities of the the black-white edge set BW and
the black nodes, respectively, at the beginning of each round.

4.1 Operational Proof of the Ben-Ari Garbage Collector

Though we lose the invariant on the absence of black-white edges, we can still
ensure that when the number of black nodes is unchanged following a scan, then
all the white nodes are unreachable. If there are no BW edges, the set of black
nodes contains the roots and is closed under successor, and therefore contains
the reachable nodes. Thus, if there is a white reachable node, then there must
be a BW edge.

The reasoning behind the algorithm is somewhat subtle since we have weak-
ened the atomicity of the mutator action. As before, we present the operational
argument before the refinement one. With each scanning step in the marking
phase of the collector, either the target of a BW edge has been blackened and
the count of black nodes has increased, or the sources of any remaining BW edges
have not yet been scanned. With the redirection step of the mutator where node
a redirects from b to c, if the target node c is already black, then the count
of black nodes remains the same, and we either still have a BW edge with an
unscanned source, or a was the source of the only BW edge in which case there
are no other remaining BW edges. If the target node c is white, then if it is the
target of the chosen BW edge, then clearly the source of this edge (which might
be a) has not yet been scanned. If it is not the target of the chosen BW edge,
then this edge continues to have an unscanned source. The other mutator action
of marking c either increases the count of black nodes or continues to leave a
BW edge with an unscanned source.

The result BC returned by the counting scan is a bounded from below by the
cardinality BC1 of the set of black nodes prior to the scan, and from above by the
current cardinality |B|. If this count is unchanged from the previous count, i.e.,
OBC = BC , then we can conclude that the cardinality of black nodes remains
unchanged during the marking scan. This is because BC0 is a lower bound on
the count of black nodes before the marking scan, which itself is bounded from
below by OBC , and BC1 is an upper bound on the count of black nodes after the
marking scan. We know that OBC ≤ BC0 ≤ BC1 ≤ BC , hence BC0 = BC1 .
However, BC0 + BWC ≤ BC1 , and hence there are no BW edges at the start
of the scan. Thus, if the count of black nodes at the end of a scan remains
unchanged from the prior count, then there are no reachable white nodes.9 As
with the DLMSS proof, CC1 and CC2 follow since all the white nodes at the
end of the marking phase are unreachable, and all the unreachable nodes at the

9 Russinoff notes that the corresponding argument by Ben-Ari is flawed. It defines a
BW edge as one from an accessible (i.e., reachable) black node to a white node. If
there are three nodes a, b, and c with a pointing to b and b pointing to c, where a
and b are blackened, a redirection from ab to ac makes b inaccessible. The fix, given
by Russinoff and used here, is to weaken the definition of BW so that the source
node need not be accessible.



beginning of a collector round are unmarked during the unmarking phase and
remain unmarked at the end of the marking phase.

4.2 Compositional Refinement of Ben-Ari Garbage Collector

We now present the compositional refinement steps. The key property of the
marking phase can be baked into the refinement as was done in the DLMSS
case. The refinement BR1 is essentially the same as DR1 . The observable and
local variables are the same and the refinement map again just drops the color
field. The mutator action is as shown above, and the appending and unmarking
phases are the same as in DR1 . As in DR1 , the marking phase can be simply
captured as:

markbr1
△
=

repeat pick n ∈ V − U · n.color : = black
until ∀m ∈ R · black(m)

.

With this, we know that the marking phase terminates in a stable state
where the white nodes are unreachable, and contain the nodes in U . In the next
refinement BR2, the body of the scan can also be refined to only mark roots or
targets of BW edges. This yields

markroot(n)
△
= n.color : = black , if n ∈ A

markBWtarget(n)
△
=

pick m ∈ V · shade(n), if black(m) ∧ n = m.left
[] pick m ∈ V · shade(n), if black(m) ∧ n = m.right

In BR2 , the termination condition ∀m ∈ R · black(m) can be replaced by the
predicate ∀e ∈ E · e ̸∈ BW , asserting that e is not a BW edge. The marking
phase markbr2 can then be defined as

markbr2
△
=

repeat pick n ∈ V · markroot(n) [] markBWtarget(n)
until ∀e ∈ E · e ̸∈ BW

.

Note that the range of the scan can be relaxed from V −U to V since it can
be shown that nodes in U will remain unmarked. The final step to the concrete
implementation then consists of replacing the termination check in BR2 with
the counting scan. As a step toward the refinement stage BR3 , we can define an
abstract count countbr as

countbr
△
= BC1 = |B|;pick (k | BC1 ≤ k ≤ |B|) · BC : = k.

The marking phase of BR3 can then be defined as

scanmbr3
△
= scan n ∈ V · markBWtarget(n)

markbr3
△
= markroots;BC : = 0;

repeat OBC : = BC;
BC0 : = |B|;
scanmbr3 ;
countbr

until BC = OBC



The reasoning behind the refinement between BR2 and BR3 is identical to the
one in the basic correctness argument above. The marking of the roots with
markroots can be simulated by markroot steps in markbr2 and the steps in
scanmbr3 can be simulated by the markBWtarget steps. The final refinement
from BR3 only needs to show that and countb can be simulated by countbr , and
the termination check ∀e ∈ E · e ̸∈ BW is equivalent to the check BC = OBC .

One interesting difference between DLMSS and BA is the non-atomic se-
quencing of redirection and coloring. The reason this works here is that the
difference between two successive counts is an upper bound on the cardinality
of the set of BW edges at the start of the marking phase.

The liveness argument remains largely unchanged from that of DLMSS. A
node that is unreachable at the start of an unmarking phase is collected in the
following append phase.

5 Conclusions

The main point of the paper is that getting the specification and proof methodol-
ogy right is an important part of verification. Prior proofs of the garbage collector
rely too heavily on operational reasoning so that the claims for correctness only
make sense in light of the program itself. For example, we need to examine the
program to see that garbage nodes are made accessible through the free list only
within the code for the appending phase. With refinement, this is ensured by
the proof.

To answer the question in the title of our paper, a garbage collector is a
compositional refinement of the abstract garbage collector AGC . Refinement
is the right approach to proving the correctness of garbage collectors so that
the concrete mutator/collector combination can be shown to implement the ab-
stract garbage collector (AGC ) specification. We have contrasted the original
operational arguments with the refinement-based approach in order to highlight
the elegance of the latter. We have presented an approach to compositional
refinement where the actions of the mutator must not be constrained by the
refinement. We plan to update our prior PVS formalization of the refinement ar-
gument for the Ben-Ari algorithm to use the compositional refinement approach
for proving both the safety and the liveness of the garbage collector.

We are both deeply grateful to Cliff for his intellectual leadership and his
personal friendship and mentoring. It has been a joy and a blessing to have had
the opportunity to interact with him over the decades. So many of the ideas that
we routinely use in our work: rely/guarantee reasoning, two-state postconditions,
datatype invariants, proof obligations, and retrieve functions, among many oth-
ers, trace their roots back to Cliff’s deep and highly original contributions to our
field. VDM [24] (in its different variants) has been tremendously influential as
a specification language within the formal methods community and in industry.
VDM is one of the key influences for the PVS specification language [33]. Inter-
estingly, modern programming languages increasingly resemble the executable
subset of VDM. VDM supports stepwise refinement of an abstract specification



to an implementation, including data refinement (data reification) and opera-
tion refinement (operation decomposition). The fundamental data refinement
proof obligation involves defining a so-called retrieve function from the concrete
data type to the abstract data type, and then showing that concrete operations
operate on the concrete data type in a manner compatible with the abstract
operations on the abstract data type mapped to by the retrieve function.
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