
AI Assisted Programming
(AISoLA 2024 Track Introduction)

Wolfgang Ahrendt1, Bernhard K. Aichernig2, and Klaus Havelund3⋆

1 Chalmers University of Technology, SE
ahrendt@chalmers.se

2 Institute of Software Technology, Graz University of Technology, Austria
aichernig@ist.tugraz.at

3 NASA Jet Propulsion Laboratory, California Inst. of Technology, USA
klaus.havelund@jpl.nasa.gov

Abstract. This is an introduction to the track ‘AI Assisted Program-
ming’ (AIAP), organized at the second instance of the AISoLA confer-
ence during the period October 30 - November 3, 2024. AISoLA as a
whole aims to study opportunities and risks of late advances of AI. The
motivation behind the AIAP track in particular, which also takes place
the second time, is the emerging use of large language models for the
construction and analysis of software artifacts. An overview of the track
presentations is provided.

1 Introduction

Neural program synthesis, using Large Language Models (LLMs) which are
trained on open source code, have quickly become a popular addition to the
software developer’s toolbox. Services like, for instance, OpenAI’s ChatGPT [8],
Google’s Bard [7], and GitHub’s Copilot [6] can generate code in many different
programming languages from natural language requirements. This opens up for
fascinating new perspectives, such as increased productivity and accessibility of
programming also for non-experts. However, neural systems do not come with
guarantees of producing correct, safe, or secure code. They produce the most
probable output, based on the training data, and there are countless examples
of coherent but erroneous results. Even alert users fall victim to automation bias:
the well studied tendency of humans to be over-reliant on computer generated
suggestions. The area of software development is no exception to this automation
bias.

The track AI Assisted Programming at AISoLA 2024 is the second of its
kind, after the first instance in 2023 [1]. It is devoted to discussions and ex-
change of ideas on questions like: What are the capabilities of this technology
when it comes to software development? What are the limitations? What are the
⋆ The research performed by this author was carried out at Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



2 Wolfgang Ahrendt, Bernhard K. Aichernig, and Klaus Havelund

challenges and research areas that need to be addressed? How can we facilitate
the rising power of code co-piloting while achieving a high level of correctness,
safety, and security? What does the future look like? How should these develop-
ments impact future approaches and technologies in software development and
quality assurance? What is the role of models, tests, specification, verification,
and documentation in conjunction with code co-piloting? Can quality assurance
methods and technologies themselves profit from the new power of LLMs?

2 Contributions

The above questions are taken up by the participants of the track in eleven talks.
Four talks [4,3,5,2] are associated with regular papers. The remaining seven talks
do not have associated papers in the proceedings. Presenters have been offered
to publish regular papers in subsequent post-conference proceedings.

2.1 Talks with Papers in the Proceedings

Gerhard Stenzel, Kyrill Schmid, Michael Kölle, Philipp Altmann, Marian Lingsch-
Rosenfeld, Maximilian Zorn, Tim Bücher, Thomas Gabor, Martin Wirsing, and
Lenz Belzner (SEGym: Optimizing Large Language Model Assisted Software En-
gineering Agents with Reinforcement Learning [4]) propose a new approach for
software development agents based on LLMs. They model software development
agents over LLMs as partially observable Markov decision processes to enable
data-driven optimization. This is in contrast to the currently dominating ap-
proach for LLM based software development agents, which is largely heuristic.
The work simplifies the setup of optimization experiments for software develop-
ment agents, making it more accessible for researchers engaging in this field.

Minal Suresh Patil, Gustav Ung, and Mattias Nyberg (Towards Specification-
Driven LLM-Based Generation of Embedded Automotive Software [3]) present an
approach for generating C-code from specifications written in the specification
language ACSL. The approach uses LLMs to generate code candidates from
ACSL, and employs the Frama-C tool for verifying the correctness of the gener-
ated code. The feedback from potentially failed proof attempts is then used to
fine-tune the prompt for a new LLM query. This loop can be iterated until the
code meets the specification. The paper also reports on industrial case studies
from the heavy vehicle manufacturer Scania, where a one-iteration instance of
the approach is applied to generate code of critical embedded software units.

Amer Tahat, David Hardin, Adam Petz, and Perry Alexander (Proof Re-
pair Utilizing Large Language Models: A Case Study on the Copland Remote
Attestation Proofbase [5]) introduce the CoqDog Copilot, which leverages the
neurosymbolic interplay between generative AI and the Coq theorem prover to
form a “generate-and-test” loop for proving Coq lemmas provided as prompts.
The proofs are generated incrementally based on failure information and human
hints until valid proofs are achieved. The authors also define metrics for mea-
suring proof repair progress, and an evaluation system for quality assessment.



AI Assisted Programming 3

The authors provide an evaluation of CoqDog Copilot’s performance in proof
generation across multiple samples from the Copland Coq proofbase, a domain-
specific language for developing attestation protocols, which consists of a total
of 21,000 lines of Coq code. The approach is robust in the sense that Coq can
formally verify the output from the LLM.

Itay Cohen and Doron Peled (LLM-based Scheme for Synthesis of Formal
Verification Algorithms [2]) present an approach to LLM code generation by first
providing an underlying programming pattern as a prompt, followed by prompts
requesting the generation of programs for specific problems that can be solved
using this pattern. The pattern in this case is dynamic programming, which
involves an algorithm where components are structured within a graph, with
each component possessing values that impact and are affected by neighboring
components. The LLM is subsequently requested to generate code for both model
checking and runtime verification algorithms that utilize the common underlying
dynamic programming scheme. The approach is compared with an approach
where the dynamic programming pattern is not initially provided, which does
not perform as well.

2.2 Talks without Papers in the Proceedings

Moez Ben Hajhmida and Edward A. Lee (Context Engineering for AI-Assisted
Programming for Domain-Specific Languages) report on experiments with using
LLMs to write Lingua Franca (LF) programs. LF is a polyglot coordination lan-
guage, where the logic of concurrent components is written in C, C++, Python,
Rust, or TypeScript, and the architecture and communication between compo-
nents is specified using the domain-specific syntax of LF. The authors observe
that this situation is challenging for the LLMs because context data, such as
user documentation and programming examples, mix the LF syntax with the
programming languages. The problem addressed is that LLMs have mostly been
trained on only traditional programming languages, and less so on emerging
languages and domain-specific languages such as LF.

George Granberry, Wolfgang Ahrendt, and Moa Johansson (Specify What?
Enhancing Neural Specification Synthesis by Symbolic Methods) study the im-
pact of symbolic analysis results on LLM generation of specifications from code.
As a base line, the LLM is prompted with C code and asked to generate ACSL
specifications. In two alternative setups, the results of two different symbolic
analyses are added to the prompts. In the first, the Frama-C tool Pathcrawler
is used to generate input-output pairs. In the second, the Frama-C tool EVA
performs value analysis for avoidance of run-time errors. In both cases, the re-
spective output is added to the LLM prompt. The results show that adding
symbolic analysis results to the prompts reduces the quantity of specification
annotations, while the quality of the annotations is increased, in the sense that
the generated specifications become more abstract, intentional, and focused. By
applying the same techniques to buggy mutants of the code examples, the re-
ported experiments also show that the LLM generates specifications which reflect
the intended behaviour better than the actual (buggy) behaviour of the code.



4 Wolfgang Ahrendt, Bernhard K. Aichernig, and Klaus Havelund

Daniel Busch, Maximilian Schlüter, and Bernhard Steffen (Automation vs
Autonomy) observe that LLMs demonstrate a potential for automation but ask
the question whether LLMs or future AI systems can achieve true autonomy.
The authors point out that answering this question requires a clear distinction
between automation and autonomy. True autonomy requires that improvement
is achieved by the AI system itself, without external assistance. Alan Turing
proposed the Turing Test to distinguish machines from humans through con-
versation. The authors propose a new class of tests to establish the boundary
between automation and autonomy through formal methods-based behavioral
analysis, and an AI-Workbench, based on process algebra, abstract interpreta-
tion, and automata learning, to study AI systems and their capability to achieve
autonomy.

Tom van Dijk and Vadim Zaytsev (Generative Artificial Intelligence Tools in
Project-Based Learning) report on a pilot study on using Generative Artificial
Intelligence (GAI) to complete a large programming assignment in an introduc-
tory Java course. Students were divided into four groups: a control group, a
group allowed to use Github Copilot, a group allowed to use ChatGPT, and a
group allowed to use both tools. The participants maintained a reflective journal,
the results were assessed using the official assessment rubric of the course and
the projects were discussed in focus group meetings. The goal of the study was
to understand the extent to which students can rely on GAI tools to complete
their assignment, to investigate the impact on student understanding of funda-
mental programming concepts, and to explore the implications of integrating AI
assisted coding tools in the learning process.

Johan Martinson, Yannic Noller, and Thorsten Berger (On Using Large Lan-
guage Models to ‘Featurize’ Software) present some experiments with software
featurization, which involves identifying and documenting distinctive character-
istics of a software system, in order to facilitate transformation of the software to
make it more customizable and adaptable to different situations. The study ex-
plores AI assisted programming for this purpose, evaluating LLMs like LLAMA
and CodeBERT. Through experiments, this research aims to enhance developer
productivity by automating parts of the featurization process. The study focuses
on refactoring code to make features variable and involves literature reviews and
industry interviews to determine essential criteria for successful featurization.

Bernhard Aichernig and Klaus Havelund (Correct-ish by Design: From Up-
front Verification to Continuous Monitoring of LLM Code) argue that as de-
velopers increasingly rely on Large Language Models (LLMs) to generate code,
the pace of software development is accelerating beyond the capabilities of tra-
ditional design-time verification and testing methods. The authors predict a
paradigm shift towards continuous monitoring to complement and eventually
supersede upfront verification. By embracing a “correct-ish by design” philoso-
phy, they acknowledge the inevitability of imperfections in LLM-generated code.
They advocate for an adaptive approach where real-time monitoring and feed-
back mechanisms are employed to detect, diagnose, and rectify issues as they



AI Assisted Programming 5

emerge in the field. The authors experiment with the integration of automated
monitoring and testing tools.

Ezio Bartocci (AI-Assisted Requirements Specification) presents an overview
of his and his co-workers’ approaches to addressing the complexity of translat-
ing requirements from different formats, including natural language descriptions,
timing diagrams and raw data, into formal specification languages such as tem-
poral logics, timing diagrams, and state machines. He argues that AI assisted
techniques have the potential to bridge the gap between requirements represen-
tations preferred by different stakeholders and their precise definition offered by
formal methods. This is essential as the definition of requirements is a crucial
task along all the lifecycle of cyber-physical engineering from their model-based
design, simulation and testing, to their deployment and runtime monitoring.

3 Conclusion

The presentations in this track cover the use of LLMs in the context of all
phases of software development, including requirements, designs, coding, test-
ing and verification. This includes their use in combination with specification
languages and domain-specific languages. It is explored how LLMs can be used
to support verification methods, and in the other direction it is explored how
verification methods can support the use and evaluation of LLMs. This covers
an already interesting spectrum of AI assisted programming at this very early
stage of LLMs. We hope that this track, with its talks, discussions, and papers,
contributes to a future of AI assisted programming which exploits the strengths
of arising AI technologies while mitigating the corresponding risks. We are con-
vinced that many communities within computing have a lot to contribute to such
a development, and look forward to future initiatives and contributions towards
this aim.

References

1. W. Ahrendt and K. Havelund. AI assisted programming. In B. Steffen, editor,
Bridging the Gap Between AI and Reality, volume 14380 of LNCS, pages 351–354.
Springer International Publishing, 2024.

2. I. Cohen and D. Peled. LLM-based scheme for synthesis of formal verification
algorithms. In Proc. of AISoLA 2024 - Bridging the Gap Between AI and Reality.
Track: AI Assisted Programming, LNCS. Springer International Publishing, 2024.
[in this volume].

3. M. S. Patil, G. Ung, and M. Nyberg. Towards specification-driven LLM-based
generation of embedded automotive software. In Proc. of AISoLA 2024 - Bridging
the Gap Between AI and Reality. Track: AI Assisted Programming, LNCS. Springer
International Publishing, 2024. [in this volume].

4. G. Stenzel, K. Schmid, M. Kölle, P. Altmann, M. Lingsch-Rosenfeld, M. Zorn,
T. Bücher, T. Gabor, M. Wirsing, and L. Belzner. SEGym: Optimizing large
language model assisted software engineering agents with reinforcement learning.
In Proc. of AISoLA 2024 - Bridging the Gap Between AI and Reality. Track: AI



6 Wolfgang Ahrendt, Bernhard K. Aichernig, and Klaus Havelund

Assisted Programming, LNCS. Springer International Publishing, 2024. [in this vol-
ume].

5. A. Tahat, D. Hardin, A. Petz, and P. Alexander. Proof repair utilizing large lan-
guage models: A case study on the Copland remote attestation proofbase. In Proc.
of AISoLA 2024 - Bridging the Gap Between AI and Reality. Track: AI Assisted
Programming, LNCS. Springer International Publishing, 2024. [in this volume].

6. Web GitHub. Copilot. https://copilot.github.com, 2024. Accessed: July 28, 2024.
7. Web Google. Bard. https://bard.google.com, 2024. Accessed: July 28, 2024.
8. Web OpenAI. ChatGPT. https://chat.openai.com, 2024. Accessed: July 28, 2024.

https://copilot.github.com
https://bard.google.com
https://chat.openai.com

	AI Assisted Programming

