
International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Concurrent Runtime Verification of Data Rich Events

Nastaran Shafiei · Klaus Havelund* · Peter Mehlitz

Received: date / Accepted: date

Abstract This paper presents the open source runtime

verification tool MESA (MEssage-based System Anal-

ysis), implemented in Scala, which supports concurrent

monitors using the Actor model. Furthermore, the tool

supports indexing (slicing) on the data values occur-

ring in data-carrying events, for each individual moni-

tor. The tool is generic in the sense that any monitoring

system can be used for creating monitors. In this paper,

we use the internal Scala DSL Daut for programming

such in data parameterized state machines and tempo-

ral logic. To illustrate MESA/Daut, we present a case

study that monitors flights from live U.S. airspace data

streams, verifying that they conform to planned routes.

With base in the case study, we then perform an exten-

sive empirical study of the potential benefits from moni-

toring slices of a single property in concurrently execut-
ing actors. Due to the overhead of scheduling “small”

actors (one for each slice or a small number of slices), it

is not obvious that concurrent execution of such is ben-

eficial. However, as a main result, we demonstrate that

concurrent monitoring of slices to handle data-carrying

events can provide considerable speed gains.

* The research performed by the second author was car-
ried out at Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

Nastaran Shafiei · Peter Mehlitz
NASA Ames Research Center/KBR Inc.
Moffett Field, CA 94035
E-mail: {nastaran.shafiei,peter.c.mehlitz}@nasa.gov

Klaus Havelund
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109
E-mail: klaus.havelund@jpl.nasa.gov

Keywords runtime verification · first-order temporal

properties · slicing · concurrency · actors · Scala

1 Introduction

Distributed computing is becoming increasingly impor-

tant as almost all modern systems in use are dis-

tributed. Distributed systems usually refer to systems

with components that are placed at different locations,

and that communicate via message passing. These sys-

tems are known to be very hard to reason about due

to certain characteristics, e.g. their concurrent nature,

non-determinism, and communication delays [37,24].

There has been a wide variety of work focusing on

verifying distributed systems, including dynamic ver-
ification techniques such as runtime verification [40,

20] which checks if a run of a System Under Obser-

vation (SUO) satisfies properties of interest. Properties

are typically captured as formal specifications expressed

in forms of linear temporal logic, finite state machines,

regular expressions, etc. Some of the proposed runtime

verification techniques related to distributed comput-

ing employ concurrent monitoring [10,27,8,13,25,16].

Using concurrency, one can benefit from parallel exe-

cution of the concurrent units, which can improve the

overall performance. One can exploit parallelism by us-

ing additional hardware resources for running monitors

to reduce their online overhead [13]. Using concurrent

monitors instead of one monolithic monitor, one can

achieve higher utilization of available cores [25].

In this paper, we propose a concurrent runtime ver-

ification approach for analyzing distributed systems.

Note that our runtime verification approach can itself

be distributed, however, the distributed setting is not

demonstrated in this paper. Our approach is not tied to

2 Author A et al.

a particular SUO, although it is motivated by a use case

which aims to analyze flight behaviors in the National

Airspace System (NAS). We pursue this use case as our

case study. NAS refers to the U.S. airspace and all of its

associated components including airports, airlines, air

navigation facilities, services, rules, regulations, proce-

dures, and workforce. NAS is a highly distributed and

large system with over 19,000 airports including public,

private, and military airports, and up to 5,000 flights

in the U.S. airspace at the peak traffic time. NAS ac-

tively evolves under the NextGen (Next Generation Air

Transportation System) project, led by the Federal Avi-

ation Administration (FAA), which aims to modernize

NAS by introducing new concepts, and technologies.

Considering the size and complexity of NAS, efficiency

is vital to our approach. Our ultimate goal is to gen-

erate a monitoring system that handles high volumes

of live data feeds and can be used as a ground control

station to analyze air traffic data in NAS.

Our approach is based on employing concurrent

monitors, and adopts the actor programming model for

building concurrent systems. The actor model was pro-

posed in 1973 as a way to deal with concurrency in

high performance systems [32]. Concurrent program-

ming with shared memory is notoriously difficult, cre-

ating problems such as synchronization and memory

protection. The actor programming model offers an al-

ternative that is supposed to eliminate such problems.

The primary building blocks in the actor programming

model are actors, which are concurrent objects that do

not share states and only communicate by means of

asynchronous messages that do not block the sender.

Actors are fully independent and autonomous and only

become runnable when they receive a message in their

buffer called the mailbox. The model also guarantees

that each runnable actor only executes in one thread at

a time, a property which allows for viewing an actor’s

code as a sequential program.

Our approach is implemented as the framework

MESA, which is an open source project [44]. MESA

uses the Akka toolkit [4,52], that provides an imple-

mentation of the actor model in Scala. The actor model

is adopted by numerous frameworks and libraries. How-

ever, what makes Akka special is how it provides sup-

port and additional tooling for building actor-based sys-

tems. MESA also leverages the Runtime for Airspace

Concept Evaluation (RACE) [42,41] framework, an-

other system built on top of Akka and extending it

with additional features. RACE is a framework to gen-

erate airspace simulations, and provides actors to im-

port, translate, filter, archive, replay, and visualize data

from NAS, that can be directly employed in MESA

when checking for properties in the NAS domain.

MESA supports specification of properties in data

parameterized temporal logic and state machines. The

support for formal specification is provided by inte-

grating the trace analysis tools TraceContract [9,31]

and Daut (Data automata) [29,30], implemented as

domain specific languages (DSLs) [5]. TraceContract,

which was also used for command sequence verification

in NASA’s LADEE (Lunar Atmosphere And Dust En-

vironment Explorer) mission [38], supports a notation

that combines data-parameterized state machines, re-

ferred to as data automata, with temporal logic. Daut is

a modification of TraceContract which, amongst other

things, allows for more efficient monitoring. In contrast

to general-purpose languages, external DSLs offer high

levels of abstractions but usually limited expressive-

ness. TraceContract and Daut are, in contrast, internal

DSLs since they are embedded in an existing language,

Scala, rather than providing their own syntax and run-

time support. Thus, their specification languages offer

all features of Scala which adds adaptability and rich-

ness.

As a basic optimization technique, MESA supports

indexing, a restricted form of slicing [43,49]. Indexing

slices the trace up into sub-traces according to selected

data in the trace, and feeds each resulting sub-trace

to its own sub-monitor. As an additional optimization

technique, MESA allows concurrency at three levels.

First, MESA runs in parallel with the monitored sys-

tem(s). Second, multiple properties are translated to

multiple concurrently running monitors, one for each

property. Third, and most importantly for this presen-

tation, each property is checked by multiple concurrent

monitors by slicing the trace up into sub-traces using

indexing, and feeding each sub-trace to its own concur-

rent sub-monitor.

MESA is highly configurable. One can configure

MESA by specifying how to check a property using con-

current monitors. By tuning relevant parameters in the

MESA configuration, and evaluating the performance,

one can find the optimal number of concurrent mon-

itors to improve the performance. As the main result

of the paper, we demonstrate that concurrent execu-

tion of slices (the third form of concurrency mentioned

above) is beneficial with respect to performance. This is

not an obvious result considering the cost of scheduling

threads for small tasks.

Note that this paper is an extended and revised

version of a preliminary conference paper which was

presented in RV 2020 [53]. The present paper elabo-

rates more on the implementation of the tool, and the

case study. It includes the description of the underly-

ing threading model and how it is set up in our ex-

Concurrent Runtime Verification of Data Rich Events 3

periments. Finally, it expands on related work, and the

results obtained from our experiments.

The rest of the paper is organized as follows. Section

2 outlines related work. Section 3 provides an overview

of the MESA architecture. Section 4 presents the case

study illustrating how MESA can be used to monitor

arrivals to US airports. Section 5 gives a brief intro-

duction to the Akka threading model in Scala, which

is useful for understanding the following experiment.

Section 6 presents an experiment rooted in the case

study, analyzing the combination of concurrency and

indexing, a main contribution of the paper. Section 7

discusses the overall approach and results. Finally, Sec-

tion 8 concludes the paper.

2 Related Work

Amongst the most relevant work is that of Hallé et al.

[27]. In this work, the authors use data parallelism to

scale first-order temporal logic monitoring by slicing the

trace into multiple sub-traces, and feeding these sub-

traces to different parallel executing monitors. The ap-

proach creates as many monitors as there are slices. The

individual monitors are considered black boxes, which

can host any monitoring system fitting the expected

monitor interface. The authors do not provide perfor-

mance results for specifically the combination of slicing

and concurrency. Their approach is implemented as an

extension of BeepBeep 3 [26] which allows certain types

of computations to be performed in parallel. However,

the parallelism in BeepBeep 3 is done manually which

requires much fine-tuning.

Another attempt in a similar direction is that of

Basin et al. [10] which also submits trace slices to par-

allel monitors, a development of the author’s previous

work on using MapReduce for the same problem [8].

The authors provide performance results for the use

of slicing together with concurrency, but do not com-

pare these with runs without concurrency. However,

their evaluation shows that their monitoring approach

scales to large logs. The logs analyzed contain billions

of events, supporting the observation that exactly this

use of concurrency is performance enhancing. The ap-

proach is proposed for offline verification where traces

are logged in a distributed file system.

Reger in his MSc dissertation [48] experimented

with creating parallel monitors to monitor subsets of

the state space for each submitted event. However,

in that early work the results were not promising as

using concurrency slowed down the monitoring pro-

cess, possibly due to the less mature state of support

for parallelism in Java and hardware at the time. As

Reger writes in [48] (page 81): “Monitoring the DaCapo

benchmarks gave barely any good results ... the concur-

rency offered by a multicore system was insignificant

and these approaches often made the benchmarks run

much slower than with just the base monitor”. Reger

also later in [50] (page 2) writes: “In previous work [48],

we attempted to parallelise the way that a RuleR mon-

itor handles events and found that the amount of work

required to evaluate a single event was generally not

large enough to benefit from parallelisation. For runtime

monitoring as usually envisaged, with simple events and

event processing, we believe this to be generally the case

when considering a single step of a monitor.”.

Berkovich et al. [13] also address the splitting of the

trace according to data into parallel executing moni-

tors. However, differently from the other approaches,

the monitors run on GPUs instead of on CPUs as the

system being monitored does. Their monitoring ap-

proach incurs minimal intrusion, as the execution of

monitoring tasks takes place in different computing

hardware than the execution of the SUO.

Francalanza and Seychell [25] explore structural

parallelism, where parallel monitors are spawned based

on the structure of the formula. E.g. a formula p ∧ q
will cause two parallel monitors, one for each conjunct,

co-operating to produce the combined result.

El-Hokayem and Falcone [18] review different ap-

proaches to monitoring multithreaded Java programs,

which differs in perspective from the monitoring sys-

tem itself to be parallel. Francalanza et al. [24] survey

runtime verification research on how to monitor sys-

tems with distributed characteristics, solutions that use

a distributed platform for performing the monitoring

task, and foundations for decomposing monitors and

expressing specifications amenable for distributed sys-

tems.

In [11], Basin et al. present an approach to scaling

monitoring of distributed systems. Their approach as-

sumes that the monitoring system receives more than

one input stream, and that events can arrive out of or-

der. Note that in the here presented work we also target

monitoring of distributed systems, however, in our case

the monitoring system is dealing with only a single in-

put stream.

The work by Burlò et al. [14] targets open dis-

tributed systems and relies on session types for spec-

ification of communication protocols. It applies a hy-

brid verification technique where the components avail-

able pre-deployments are checked statically, and the

ones that become available at runtime are verified dy-

namically. Their approach is based on describing com-

munication protocols via session types with assertions,

from the lchannels Scala library, which are used to

synthesize monitors automatically. They develop a for-

4 Author A et al.

mal model of processes monitored using session types,

and prove the correctness of their approach in terms

of soundness and completeness. Moreover, they show

the feasibility of their approach through a set of bench-

marks.

The work by Neykova and Yoshida [46] applies run-

time verification to ensure a sound recovery of dis-

tributed Erlang processes after a failure occurs. Their

approach is also based on session types to enforce pro-

tocol conformance.

The work by Attard and Francalanza [6] targets

asynchronous distributed systems. Their approach al-

lows for generating partitioned traces at the instru-

mentation level where each partitioned trace provides

a localized view for a subset of the SUO. The work

focuses on global properties that can be cleanly decom-

posed into a set of local properties which can be verified

against local components. It is suggested that one could

use the partitioned traces to infer alternative merged

execution traces of the system. The implementation of

the approach targets actor-based Erlang systems, and

includes concurrent localized monitors captured by Er-

lang actors.

The work by El-Hokayem and Falcone [19] targets

decentralized systems that consist of multiple compo-

nents without a central observation point. They present

a general algorithm to monitor decentralized specifica-

tions which are composed of a set of automata captured

by monitors attached to components. They also elab-

orate on two properties of decentralized specifications,

monitorability and compatibility. The former ensures

that the monitors are able to reach a verdict for all

possible traces, and the later ensures that a specifica-

tion can be deployed on a given architecture.

In [39] Lavery et al. present an actor-based monitor-

ing framework in Scala, that, similar to our approach,

is built using the Akka toolkit. The monitoring system

does not, in contrast to our approach, provide a tempo-

ral logic API for specifying properties, which is argued

to be an advantage. Note, that Daut as well as Trace-

Contract, in addition to such a temporal logic API,

allow defining monitors using any Scala code as well.

A monitor master actor can submit monitoring tasks

to worker actors in an automated round-robin fashion.

This, however, requires that the worker monitors do not

rely on an internal state representing a summary of past

events.

The work by Aceto et al. [2] presents a synthetic

benchmarking framework for evaluating runtime verifi-

cation tools that can target concurrent message-based

systems. The benchmarks are synthesised as Erlang

actor-based systems. The work performs an empirical

study, which reports on overhead from synthesised mon-

itors that are inlined into the system.

Monitoring of hyperproperties [3,22] is a more re-

cent research topic, where a property is a set of sets of

traces (instead of a set of traces). In a hyperproperty

temporal logic, a formula can relate multiple executions

of a, not necessarily distributed, system to each other.

The concept of hyperproperties was initially suggested

in [15] as a means to express security policies that can-

not be expressed as traditional single-trace properties.

A yet unexplored question is whether MESA can be

used for monitoring hyperproperties.

Two high performance systems in particular paved

the way wrt. slicing, first MOP [43] and later MarQ

[49]. Our approach to slicing can be compared to those

efforts by focusing on the expressiveness of the slicing

along two dimensions, which we shall call dispersed slic-

ing and partial slicing. Both MOP and MarQ support

dispersed slicing by allowing event parameters used for

indexing to arrive in different events. In contrast, in our

approach such event parameters have to all arrive in the

same event. The classic example is the unsafe map iter-

ator property [43], which states that iteration over the

keys (domain) of a map in Java is safe. Specifically, if

an observed event reports that the keys of a map m

are extracted as a collection c, and a next event reports

that an iterator i is extracted from the collection c, and

a third event reports that the map m is updated, then

after that it is unsafe to continue iterating over the it-

erator i. In this case the keys m and c are introduced in

the first event and i is introduced in the second event.

Note, that even though we do not support dispersed in-

dexing, properties like this can be expressed, although

with less efficient execution.

Both MarQ and our approach support partial slicing

by allowing a strict subset of the parameters to an event

to be used for indexing. In contrast, MOP requires all

event parameters to be used for indexing. This limits

the expressiveness of MOP. Say for example that we

monitor acquisitions and releases of locks l by threads

t in a concurrent system via events of the form acq(t, l)

and rel(t, l). A property that cannot be expressed in

MOP is that if a lock l has been acquired by a thread

t, indicated by the event acq(t, l), then another thread

t′ cannot acquire the lock until t has released it. The

reason is that acq(t, l) and acq(t′, l) will be sent to two

different slices.

3 An Overview of MESA

Our approach implemented in MESA allows for con-

current monitoring of formal properties. As shown in

Concurrent Runtime Verification of Data Rich Events 5

…

Data acquisition

…
…

Data processing ReportMonitoringSUO

Fig. 1: Overview of a MESA actor-based monitoring system.

this section, MESA is designed in a way to ensure con-

currency at three different levels. It can run in paral-

lel with the SUO. Moreover, multiple properties can

be captured by multiple concurrent monitors. Finally,

one property can be translated into multiple concur-

rent monitors. Furthermore, MESA is designed to pro-

vide flexibility in terms of the system used for property

specification. We elaborate on this by explaining how

the Daut system is integrated into MESA.

MESA is a framework for building actor-based mon-

itoring systems. An overview of a system that can be

built using MESA is shown in Figure 1. A MESA sys-

tem is solely composed of actors that implement a

pipeline of four processing steps. The vertical lines be-

tween actors represent publish-subscribe communica-

tion channels, resembling pipelines where outputs from

one step are used as inputs for the following step. The

first step is data acquisition which extracts data from

the SUO. The second step is data processing which

parses raw data extracted by the previous step and gen-

erates a trace composed of events that are relevant to

the properties of interest. Next step is monitoring which

checks the trace obtained from the previous step against

the given properties. Finally, the last step is reporting

which presents the verification results. What MESA of-

fers are the building blocks to create actors for each

step of the runtime verification. Often one needs to cre-

ate application specific actors to extend MESA towards

a particular domain. Besides the NAS domain, MESA

is extended towards the UxAS project which is devel-

oped at Air Force Research Laboratory and provides

autonomous capabilities for unmanned systems [47].

Akka actors can use a point-to-point or publish-

subscribe model to communicate with one another. In

point-to-point messaging, the sender sends a message

directly to the receiver, whereas, in publish-subscribe

messaging, the receivers subscribe to a channel, and

messages published on that channel are forwarded to

them by the channel. Messages sent to each actor

are placed on its mailbox. Only actors with a non-

empty mailbox become runnable. Actors extend the

Actor base trait and implement a method receiveLive

of type PartialFunction[Any,Unit] which captures

their core behavior. It includes a list of case state-

ments, that by applying Scala pattern matching over

parameterized events, determine the messages that can

be handled by the actor and the way they are processed.

To create a MESA monitoring system (Figure 1) one

needs to specify the actors and the way they are con-

nected with communication channels in a HOCON [33]

configuration file used as an input to MESA.

conectivity
RACE

Akka Daut/TraceContract

JVM/Scala & Java libs

MESA

actor model specification

platform

 runtime verification

Fig. 2: The MESA framework infrastructure.

Figure 2 shows the MESA framework infrastruc-

ture and the existing systems incorporated into MESA.

These systems are all open source Scala projects. MESA

is also written in Scala, and it is open source, available

at [44]. Akka provides the actor model implementation.

RACE, built on top of Akka, is used for connectivity to

external systems. MESA employs a non-intrusive ap-

proach since for safety-critical systems such as NAS,

sources are either not available or are not allowed to

be modified for security and reliability reasons. Even

when the source is available, any potential malfunc-

tion that may be introduced by instrumentation cannot

be tolerated. RACE provides dedicated actors, referred

to as importers, that can subscribe to commonly-used

messaging system constructs, such as JMS server and

Kafka. Using an importer actor from RACE in the data

acquisition step, we extract data from the SUO, in a

nonintrusive manner. Moreover, RACE extends Akka

6 Author A et al.

with features that our framework relies on, such as

synchronizing the execution of actor lifetime phases in-

cluding instantiation, initialization, start, and termina-

tion. RACE also provides a mechanism to let remote

actors communicate with local actors seamlessly using

the same API. By incorporating remote actors, one can

create a distributed monitoring system using MESA,

where actors are placed on different machines.

MESA incorporates the tools TraceContract [9,31]

and Daut [29,30] for property specification. TraceCon-

tract and Daut are both internal (embedded) trace

analysis DSLs (Scala libraries), where given a pro-

gram trace and a formalized property, they determine

whether the property holds for the trace. Since they

are internal DSLs, they allow for the use of full Scala

for writing monitors, in addition to, and in combina-

tion with, using the DSLs. This allows for very ex-

pressive monitors, which can not only perform arbi-

trary data computations, but also give rich verdicts

beyond the Boolean domain, such as results of such

computations. Monitor is the main class in these DSLs

(tracecontract.Monitor and daut.Monitor), which

encapsulates property specification capabilities. It im-

plements the method verify, that for each incoming

event updates the state of the monitor accordingly.

Properties are defined as subclasses of class

Monitor, and instances of such are referred to as mon-

itors from here on. Similar to the actor receiveLive

method, a user-defined subclass of the class Monitor

includes a series of case statements that determine the

events that can be handled by the monitor and the

behavior triggered for each event. The properties de-

scribed in this paper are specified using Daut since it

also provides an indexing capability within monitors to

improve their performance. It allows for defining a func-

tion from events to keys, where keys are used as entries

in a hash map to obtain those states which are relevant

to an event. Using indexing, a Daut monitor, when re-

ceiving an event, only iterates over an indexed subset

of states relevant for the event instead of the entire set,

yielding a performance improvement.

The actors in the monitoring step (Figure 1), re-

ferred to as monitor actors, hold instances of the

Monitor classes and feed them with incoming event

messages. MESA provides components referred to as

dispatchers which are configurable and can be used in

the monitoring step to determine how the check for a

property is distributed among different monitor actors.

Dispatchers, implemented as actors, can generate mon-

itor actors on-the-fly and distribute the incoming trace

between the monitor actors, relying on identifiers ex-

tracted from data parametrized events. Dispatchers are

key to our experiments.

The UML diagram in Figure 3 illustrates how Daut

is integrated into MESA. The integration of Trace-

Contract is performed in a similar manner. The inte-

gration ensures that code is not tied to any specific

trace analysis DSL to provide extensibility when em-

ploying new DSLs. To integrate a trace analysis DSL,

MESA includes a class that extends the key class in

DSL that provides property specification capabilities

(e.g. daut.Monitor in Daut). The class used to inte-

grate the DSL also implements a trait which is called

MesaMonitor and used as a Scala mixin1.

To integrate Daut, MESA implements the class

DautMonitor which extends daut.Monitor and imple-

ments MesaMonitor. The MesaMonitor mixin is used to

establish a common interface throughout the code to re-

fer to all monitor objects. It defines the verifyEvent

method which is implemented by subtypes and checks

the incoming events against the specified properties

by delegating the verification to the DSL code (e.g.

daut.Monitor.verify(event:Event) for a Daut mon-

itor). Monitor actors in the monitoring phase extend

the class MonitorActor. This class has a field of type

MesaMonitor which is set to a monitor object during

the actor initialization. The concrete type for the mon-

itor object is specified in the monitor actor’s configu-

ration. For each incoming event placed in the monitor

actor mailbox, the monitor actor invokes the method

verifyEvent on its underlying monitor object to ver-

ify the event against the properties implemented by the

monitor.

4 Monitoring Live Flights in the U.S. Airspace

This section presents the case study where MESA is

applied to check a property known as RNAV STAR

adherence, referred to as PRSA in this paper. RNAV

(Area Navigation) [56] is a navigation system that al-

lows the aircraft to move on any desired flight route,

provided as a sequence of waypoints, without relying

on ground-based navigation aids. The RNAV system is

based on instrument flight rules [57] which are a set of

regulations under which the aircraft is navigated only

by reference to the instruments in the aircraft cockpit

rather than using visual references. RNAV systems con-

tinuously determine the position of the aircraft and by

providing deviation from the desired route, they aid the

pilot to navigate the aircraft.

A STAR is a standard arrival procedure designed by

the FAA to transition flights from the en-route phase to

1 “Mixing in” traits (mixins) is a way of allowing for a
class (or trait) to extend multiple traits. These are included,
rather than inherited from, avoiding the problems of multiple
inheritance.

Concurrent Runtime Verification of Data Rich Events 7

daut

verifyEvent(event: Any) : Unit

<< trait >>
MesaMonitor

verifyEvent(event: Any) : Unit
DautMonitor

verify(event: Event) : Unit
…

Monitor

Property Property UserDefinedDautMonitor

handleMessage(): Receive
monitor: MesaMonitor

MonitorActor<< trait >>
MesaActor

Fig. 3: Integration of the Daut DSL into the MESA framework.

the approach phase where descent starts. Every STAR

specifies a set of flight routes (See Figure 4) where each

route is specified by a sequence of waypoints, accompa-

nied by vertical and speed profiles specifying altitude

and airspeed restrictions. A waypoint is a geograph-

ical position with latitude and longitude coordinates.

A STAR is a form of communication between the flight

crew and air traffic controllers. When the air traffic con-

troller gives a clearance to the pilot to take a certain

STAR route, they communicate the route, altitude, and

airspeed. A STAR route, assigned to a flight, is encoded

in the flight plan presented to the pilot as a sequence

of waypoints. Certain STARs, that can be only used

by aircraft equipped with RNAV navigation systems,

are referred to as RNAV STARs. One of the ongoing

focus points of the FAA is to increase the utilization

of RNAV-based procedures, which reduce the commu-

nication overhead with ground. Figure 4 demonstrates

a RNAV STAR procedure, called BDEGA3, which is

designed for the SFO airport. There are a total of 10

RNAV STAR procedures assigned to the SFO airport.

From 2009 to 2016, as part of the NextGen project,

264 more RNAV STAR procedures were implemented

on an expedited timeline [56] which led to safety con-

cerns raised by airlines and air traffic controllers includ-

ing numerous unintentional pilot deviations [17,34]. A

possible risk associated with deviating from a procedure

is a loss of separation, which can result in a midair col-

lision. The work presented in [55] studies RNAV STAR

adherence trends based on a data mining methodology,

and shows deviation patterns at major airports [7].

The case study applies runtime verification to check

if flights are compliant with the designated RNAV

STAR routes in real-time. A navigation specification

for flights assigned to a RNAV STAR requires a lateral

navigation accuracy of 1 NM2 for at least 95% of the

flight time [35]. Our approach focuses on lateral adher-

ence, where incorporating a check for vertical and speed

2 NM, nautical mile is a unit of measurement equal to 1,852
meters.

profiles becomes trivial. We informally define the RNAV

STAR lateral adherence property as follows, adopted by

others [55].

PRSA : a flight shall cross inside a 1.0 NM radius

around each waypoint in the assigned RNAV STAR

route, in order.

4.1 Formalizing Property PRSA

For the sake of brevity, we say that a flight visits a way-

point if the flight crosses inside a 1.0 NM radius around

the waypoint. We say that an event occurs when the

aircraft under scrutiny visits a waypoint that belongs

to its designated RNAV STAR route. For example, in

Figure 5, where circles represent 1.0 NM radius around

the waypoints, the sequence of events for this aircraft

is MLBEC MLBEC JONNE.

We define a state machine capturing Property

PRSA. Let L be a set including the labels of all way-
points in the RNAV STAR route. Let first and last

be predicates on L that denote the initial and final

waypoints, respectively. Let next be a partial function,

L ↪→ L, where given a non-final waypoint in L it re-

turns the subsequent waypoint in the route. For ex-

ample, next(MLBEC) returns JONNE (Figure 5). The

finite state machine for Property PRSA is the tuple

(Q,Σ, q0, F, δ) where

– Q = L ∪ {init, err, drop}
– Σ = {et | t ∈ L ∪ {FC, SC}}
– q0 = init

– F = {err, drop} ∪ {q ∈ L | last(q)}
– δ : Q×Σ → Q

Q is the set of all states, and init is the initial state.

Σ is the set of all possible events. The event et where

t ∈ L indicates that the aircraft visits the waypoint t.

The event eFC indicates that the flight is completed,

and eSC indicates that the flight is assigned to a new

STAR route. Note that FC stands for flight completed

8 Author A et al.

(LOZIT.BDEGA3)

(LOZIT.BDEGA3)

SAN FRANCISCO, CALIFORNIA

(SFO)SAN FRANCISCO INTL

SAN FRANCISCO, CALIFORNIA

(SFO)SAN FRANCISCO INTL
(RNAV)

(RNAV)

PEENO TRANSITION (PEENO.BDEGA3)

MRRLO TRANSITION (MRRLO.BDEGA3)

MLBEC TRANSITION (MLBEC.BDEGA3)

LEGGS TRANSITION (LEGGS.BDEGA3)

AMAKR TRANSITION (AMAKR.BDEGA3)

ARRIVAL ROUTE DESCRIPTION

BRIXX

BDEGA

13000

CORKK

11000 250K

LOZIT

16000 280K

CBRNA

AMAKR

LEGGS

MRRLO

FL290

MSCAT

FL280

FL240

280K

PYLLE

FL280
FL240

280K

JONNE

280KFL280

FL240

NOTE: Chart not to scale.course.

Expect RADAR vectors to final approach

on track 126° to BRIXX, then on track 140°.

cross CORKK at 11000 and at 250K, then

at or below 13000, then on track 126° to

From LOZIT on track 126° to cross BDEGA

BGGLO

FL230

FL190

280K

FL290

PEENO

QUINN

FL280

FL240

280K

DEEAN

FL280

FL240

280K

FL290

MLBEC

NOTE: DME/DME/IRU or GPS required.

NOTE: RNAV 1.

NOTE: RADAR required.

18256

10 NM

10 NM

10 NM

13SEP18

10 NM

121.8

GND CON

120.5 269.1

SAN FRANCISCO TOWER

113.7 115.8 118.85

D-ATIS

133.95 317.6

NORCAL APP CON

125.85 323.0

OAKLAND CENTER

AL-375 (FAA)

BDEGA THREE ARRIVAL

BDEGA THREE ARRIVAL

11000

126°

1
4
0
°

126°

126°

121°
1
5
3
°

1
7
9
°

1
7
8
°

121°

301°

1
5
3
°3

3
3
°

3
3
3
°

1
5
3
°

118°

3
3
3
°

1
5
3
°

121°

118°

11000
4300

(6)

*

11000
3100

(7)

*

11000
3600

(9)

*

130004600
(44)

*

(22)

4400

11000
*

1
1
0
0
0

4
3
0
0

(2
0
)

*

2
1
6
°

2
1
6
°

*
1
1
0
0
0

5
6
0
0

(8
2
)

(2
1
)

5
0
0
0

1
1
0
0
0

*
1
1
0
0
0

5
7
0
0

(2
0
)

*
(2

0
)

3
8
0
0

1
1
0
0
0

*

1
1
0
0
0

6
6
0
0

(2
0
)

*
(2

1
)

4
5
0
0

1
1
0
0
0

*

110004000

(40)

*

11000 2000

(20)

*

S
W

-2, 11 O
C

T 2018 to 08 N
O

V
 2018 S

W
-2

,
11

 O
C

T
20

18
 t

o
 0

8
N

O
V

 2
01

8

Fig. 4: BDEGA3 RNAV STAR procedure designed for SFO.

Concurrent Runtime Verification of Data Rich Events 9

MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

(1) (2) (3) (4)

Fig. 5: The sequence of events for the aircraft is MLBEC MLBEC JONNE.

and SC stands for STAR changed. F is the set of final

states where last represents the set of accept states in-

dicating that the flight adhered to the assigned RNAV

STAR route. The state err represents an error state in-

dicating the violation of the property. The state drop

represents a state at which the verification is dismissed

due to assignment of a new STAR route. The transition

function δ is defined as below.

δ(q, et) =

t if (q = init & first(t))

or (q ∈ {x ∈ L | ¬last(x)} &

t ∈ {q, next(q)})
err if (q = init & t 6= SC & ¬first(t))

or (q ∈ {x ∈ L | ¬last(x)} &

t /∈ {q, next(q), SC})
drop if (q 6= err & t = SC)

At init, if the flight visits the first waypoint of the

assigned route, the state machine advances to the state

representing the first waypoint. Alternatively, if at way-

point q, the flight can only visit q or the next waypoint

in the route, next(q). Otherwise, if at init, and it visits

any waypoint other than the first waypoint of the route,

the state machine advances to err. Likewise, if the flight

visits any waypoint not on the route, the state advances

to err. Finally, at any state other than err, if the flight

gets assigned to a new route (t = SC), the state ma-

chine advances to drop.

4.2 PRSA Monitor Implementation

Event types are implemented as Scala case classes due

to their concise syntax and built-in pattern match-

ing support, that facilitates convenient programming of

transitions between states. There are three such event

types.

case class Visit (info : Info , wp: Waypoint)
case class Completed(track: Track)
case class StarChanged(track: Track)

The class Visit represents an event indicating that

a flight visits a given waypoint wp of type Waypoint.

The info argument of type Info carries information

about the flight, including its state and its track. The

state captures position, heading, speed, etc, and the

track captures the assigned STAR route. Each flight

is uniquely identified by a so-called call sign (cs), of

type String, which is part of the state as well as of

the track. The class Completed represents an event in-

dicating that a flight is completed. Finally, the class

StarChanged represents an event indicating that a

flight is assigned a new STAR route.

We implement the property PRSA as the Daut mon-

itor in Figure 6. A Daut monitor is defined as a class,

in this case P_RSA, which, directly or indirectly, extends

the class Monitor defined in the Daut library. In this

case the class P_RSA extends the class DautMonitor,

which itself extends class Monitor. Class Monitor de-

fines, amongst other things, the type state, the state

producing functions always and watch, and finally

error and ok, which represent end states with the ob-

vious meanings.

A Daut monitor maintains a set of current states,

each of type state. Each state is associated with

a transition function of type: PartialFunction[E,

Set[state]], where E is the type of events submitted

to the monitor. A partial function can in Scala be de-

fined as a block of case-statements, defining the exact

domain for which it is defined. A transition function

returns a set of new states when applied to an event

for which it is defined3. Different kinds of states are

supported, such as always-states which are always ac-

tive, and watch-states, which are active until an event

matches a transition, at which point they are removed.

The functions always and watch produce such states

when applied to partial functions representing the tran-

sitions.

The monitor should be read as follows. Lines 2-6

3 Given a partial function f in Scala, the expression
f.isDefined(e) is true iff. the function f is defined for the
value e, in our case whether event e matches one of the case-
statements. This is used by the monitor to determine whether
a state is enabled to process an event.

10 Author A et al.

1 class P RSA(config: Config) extends DautMonitor(config) {
2 always {
3 case e@Visit(Info (, track) , wp) if isNewFlight(e) ⇒
4 if (isInitialWaypoint (track , wp)) nextState(wp, track . cs) else error ()
5 case e@Completed() if isNewFlight(e) ⇒ error ()
6 }
7
8 def nextState(wp: Waypoint, cs: String) : state = {
9 val next = star .next(wp)

10 watch {
11 case Visit (Info (State(`cs`, , ,) ,),`wp`) ⇒ nextState(wp, cs)
12 case Visit (Info (State(`cs`, , ,) ,),`next`) ⇒
13 if (next == last) ok else nextState(next, cs)
14 case Visit (Info (State(`cs`, , ,) ,) ,) ,) ⇒ error ()
15 case Completed(Track(`cs`, ,)) ⇒ error ()
16 case StarChanged(Track(`cs`, ,)) ⇒ dropMonitor(cs)
17 }
18 }
19 }

Fig. 6: Implementation of Property PRSA in Daut.

define the initial state, always observing Visit and

Completed events. The partial function in lines 3-5 de-

fines the transitions in this always-state. The first case

matches a Visit event e4, with an Info argument con-

taining a track, and a waypoint wp, and where the con-

dition isNewFlight(e) is true, meaning that the event

represents a new flight (new call sign) not already mon-

itored. In this case, if the waypoint is the first we enter,

a new state is entered returned by a call of the func-

tion nextState, now monitoring the flight in this initial

waypoint. Otherwise (if a not yet monitored flight starts

in a waypoint different from the first) an error state

is entered. If it is a Completed event for a new flight,

indicating that the flight is completed without visiting
any waypoints, an error state is entered.

Note that although nextState, lines 8-18, is a nor-

mal Scala function, introducing this function gives the

resemblance of a state machine with two kinds of states,

the initial always-state, and the state(s) represented by

this function. In Section 6 we shall see an example of a

property with “unnamed” states, resembling how tem-

poral logic does not refer to named states.

The function nextState returns a new state mon-

itoring a specific flight with a specific call signal cs

and at a certain current waypoint wp. First, in line 9,

we compute the next waypoint, next, reachable from

the current waypoint wp, used to monitor whether that

next waypoint is entered. The subsequent call of the

watch function, lines 10-17, returns a state monitoring

the transitions provided to the call as the partial func-

tion in lines 11-16. If a Visit event is observed, line 11,

4 The pattern e@ pattern behaves as pattern, but in addition
gives the name e to the value matching the pattern.

with a call sign matching the call sign provided as pa-

rameter (grave accent quotes around a variable means

the value of that variable has to be matched) and with

a waypoint matching the current, then we just continue

in the current state. If on the other hand, lines 12-13, it

is a Visit event where the waypoint matches the next

way point, then if it is the last we terminate monitoring

in the ok state, and if not then we continue monitoring

in the next waypoint. If it is a Visit event and none

of these cases match, line 14, we end up in the error

state. If a Completed event is observed, line 15, with-

out having reached the end state via a Visit event first

(line 13), an error state is entered. Finally, line 16, if

the route is changed for that flight, the flight is dropped
as being monitored, and we enter the ok state.

4.3 A MESA Monitoring System for PRSA

Figure 7 illustrates the MESA monitoring system used

to verify Property PRSA. The data acquisition step

extracts the data relevant to the property which in-

cludes flight information, position, navigation specifi-

cation, flight plan, etc. To get this data, we connect

to an FAA system, SWIM (System Wide Information

Management) [28]. SWIM implements a set of infor-

mation technology principles in NAS which consoli-

dates data from many sources, e.g. flight data, weather

data, surveillance data, airport operational status. Its

purpose is to provide relevant NAS data, in standard

XML formats, to its authorized users such as airlines,

and airports. SWIM has a service-oriented architecture

which adopts the Java Message Service (JMS) inter-

face [51] as a messaging API to deliver data to JMS

Concurrent Runtime Verification of Data Rich Events 11

clients subscribed to its bus. We use the RACE actor

SFDPS-importer which is a JMS client configured to

obtain en-route real-time fight data from a SWIM ser-

vice, SFDPS (SWIM Flight Data Publication Service)

[21]. SFDPS-importer publishes the data to the channel

sfdps.

The data processing step parses the SFDPS data

obtained from the previous stage by subscribing to the

channel sfdps, and generates a trace which is composed

of event objects, relevant to the property. This is done

via a pipeline of actors that parse the SFDPS messages

in XML (SFDPS-2-track and SFDPS-2-state), filter

irrelevant data (filter), and finally generate Visit,

Completed, and StarChanged events, which are known

to the monitor P_RSA (event-gen) and published to the

channel trace.

The monitoring step includes monitor actors that

encapsulate an instance of the monitor P_RSA (Figure

6). They subscribe to the channel trace, and feed their

underlying P_RSA object with incoming events. Each

monitor actor in Figure 7 is associated to a RNAV

STAR procedure at SFO which checks for the flights

assigned to that RNAV STAR, and published the ver-

ification result on the channel result. Using the dis-

patcher feature of MESA, one can distribute the moni-

toring differently, for example using one monitor actor

per flight. Finally, the last step displays the results. The

actor display simply prints data published on result

on the console. We also use a RACE actor, ww-viewer,

that uses NASA WorldWind system [45] to provide in-

teractive geospatial visualization of flight trajectories.

Using the MESA system shown in Figure 7, we

discovered violations of PRSA. Figure 8 includes snap-

shots from our visualization illustrating two cases where

PRSA was violated. In both cases, the flights are as-

signed to a route in the BDEGA3 procedure. As shown

in Figure 8, the flight United 1738 missed the waypoint

LOZIT, and the flight Jazz Air 743 missed the initial

waypoint BGGLO.

5 Akka Threading Model

Since a main focus of this work is evaluating the impact

of concurrent monitors, it is essential to understand the

Akka threading model. This section explains the under-

lying threading model in Akka to show how actors in

Akka are scheduled. Scheduling actors in Akka is per-

formed by low level components built into the Akka

toolkit, which are referred to as dispatchers. Note that

these dispatchers are completely different from the dis-

patcher components implemented in MESA. To avoid

confusion, in some contexts, we refer to the ones imple-

mented by Akka as Akka dispatchers. Akka dispatchers

are responsible for management of actor mailboxes and

the threading strategy. They push messages into actors

mailboxes, and associate threads from the thread pools

to actors to process messages in their mailboxes. Akka

provides a fixed number of dispatchers to choose from.

The user can also assign a certain Akka dispatcher to a

group of actors. The built-in dispatcher types in Akka

are as follows.

– Dispatcher is the default Akka dispatcher which

associates all the assigned actors to one thread pool.

– PinnedDispatcher provides an actor with exclusive

access to a single thread.

– BalancingDispatcher redistributes messages from

busy actors to the ones with empty mailboxes.

– CallingThreadDispatcher is only used for testing,

and uses the current thread to execute any actor.

Akka provides configuration parameters to tune dis-

patchers to specific needs. The parameter throughput

represents the maximum number of messages processed

by the actor before the assigned thread is returned to

the pool. The parameter throughput-deadline-time

represents the deadline for the actor to process mes-

sages each time it executes. One can also specify

the underlying thread pool implementation used in

the Akka dispatcher by setting its executor compo-

nent using the parameter executor. By default, Akka

uses fork-join-executor which relies on the work-

stealing pattern where threads always try to find tasks

from the submitted tasks to the pool and the ones

created by other running tasks. Akka also includes

thread-pool-executor which offers a dynamic thread

pool that can decrease or increase in size depending on

how busy or idle the threads are. Akka also allows users
to implement their own customized executor.

The number of threads in the pool is another mea-

sure that can be tuned. With too few threads which

may cause low CPU utilization, the actors are not

able to keep up with the arrival of messages. With too

many threads, the context switch time between threads

increases which leaves less time for processing the

threads. The Akka dispatcher configuration provides

three parameters to specify the thread pool size. The

parameters parallelism-min and parallelism-max

represent the minimum and maximum number of

threads, respectively, and parallelism-factor is a

factor to calculate the number of threads based on

available processors. The size of the thread pool is

parallelism-factor multiplied by the number of

available processors. The number of available pro-

cessors is the value returned by the method java.

lang.Runtime.availableProcessors() which gives

the maximum number of logical cores available to

the virtual machine. If the calculated thread pool

12 Author A et al.

Data acquisition Data processing Monitoring Report

SWIM
SFDPS

SFDPS-2-state

SFDPS-2-track

filter event-gen

BDEGA3

DYAMD4

SERFR3

SFPDS-importer display

ww-viewer

sfdps info filtered events result

Fig. 7: A MESA instance for verifying Property PRSA for RNAV STARs at SFO.

Fig. 8: Flight deviation from the assigned RNAV

STARs detected at SFO.

size is smaller than parallelism-min or larger than

parallelism-max then the thread pool size becomes

parallelism-min or parallelism-max, respectively.

Moreover, to set the thread pool size to a spe-

cific value, one could set both parallelism-min and

parallelism-max to that value.

To find the right configuration, one needs to bench-

mark with different dispatcher parameters presented in

this section. Section 6.2, which presents the setup for

our experiments, includes the values used for the Akka

dispatcher parameters in our experiments. We use the

same configuration for all the experiments.

6 Experiments

This section presents our experiments evaluating the

impact of using concurrent monitors and indexing.

More details on the experiments can be found in [54].

The experiments use a property which checks if the se-

quence of SFDPS messages with the same call sign re-

ceived from SWIM is ordered by the time tag attached

to the messages. This property is motivated by obser-

vations where the SFDPS messages did not send in the

right order by SWIM. The reason for considering this

property for our experiments, instead of PRSA (Sec-

tion 4), is that unlike PRSA, this property applies to

all flights which provides us with a larger data set. It

should also be noted that our analysis in Section 4 is

based on the assumption that messages are always re-

ceived in the correct order. We use the state of flights

as events captured by State instances, and specify the

property, named P , in Daut as follows, where t1 and t2

represent the event time.

class P(config : Config) extends DautMonitor(config){
always {
case State(cs , , , t1) ⇒ watch {
case State(`cs`, , , t2) ⇒ t2. isAfter (t1)}

}
}

The monitor reads as follows: it always holds that if

a State event is observed for a flight with call sign

cs at a time t1, then the next observed State event

after that, with the same call sign cs, must have a time

stamp t2 which is after t1, determined by the boolean

expression t2.isAfter(t1). A boolean expression in

Daut, occurring at a position where a result state is

expected, is interpreted as ok if true and as error() if

false. Note that in contrast to the monitor in Figure 6

the watch function is applied immediately after the first

=> arrow, without defining a new function containing

this call (similar to giving a name to the result state). It

corresponds to simply inlining the body of the function

one could have otherwise written. This is an example

Concurrent Runtime Verification of Data Rich Events 13

of how one can write monitors with a temporal logic

flavor in contrast to a state machine flavor as in Figure

6.

The property P is simple, and it leads to a small ser-

vice time, the time used to process the message within

the monitor object. To mitigate issues associated with

microbenchmarking, we use a feature of Daut that al-

lows for defining sub-monitors within a monitor ob-

ject. We implement a Daut monitor P_SEQ as follows,

which maintains a list of sub-monitors, all monitoring

the same property P .

class P SEQ(config: Config) extends DautMonitor(config){
val size = config. getInt (”sub−monitor−count”) − 1
val m = for(i ← 0 to size) yield new P(config)
monitor(m: ∗)
}

The variable size is assigned to the desired number of

sub-monitors, denoted by the key sub-monitor-count

in the configuration map, which is set by the user. Next,

m is assigned a list of size monitor instances, each

monitoring property P , using a for-expression (Scala’s

version of a list comprehension). Finally the function

monitor is applied to this list (the _* is needed to turn

the list m into a variable length argument list5). The

monitor function adds each of its argument monitors

as a sub-monitor.

We evaluate the impact of concurrency in the con-

text of indexing. Indexing is an optimization technique

that can be applied both at the monitor level or the dis-

patcher level, and serves to reduce the number of states

searched when a new event is submitted. Indexing at

the monitor level is supported by Daut. We activate

this feature by overriding the indexing function keyOf

in the Daut monitor. This function, when applied to an

event, returns a key to index on, in this case the call

sign (flight identifier) for each event.

override protected def keyOf(event: Any) = {
e match {
case State(cs , , ,) ⇒ Some(cs)
}
}

The Daut monitor will subsequently internally orga-

nize the states in a hash map, mapping each key to the

states relevant for events with that key. Given an ob-

served event, the monitor obtains the key of the event

by applying keyOf, and looks up the states mapped to

by that key, which are then applied to the event, instead

of iterating over all the current states.

At the dispatcher level, indexing is applied by keep-

ing the monitor instances or references to monitor ac-

5 A variable length argument list refers to a list of argu-
ments of arbitrary length, all of the same type.

tors in a hash map, using the call signs carried by events

as entries to the hash map.

6.1 Monitoring Systems

The experiments use four different MESA systems,

which are illustrated in Figure 9 (the last option rep-

resents two different monitoring systems, as explained

below). Each system monitors exactly one property. It

can be seen that all the systems have the same data

acquisition and data processing phases, and they are

only different in their monitoring phase. They use the

instant-reply actor to acquire the input data, and

the event-gen actor to process the data and create the

trace for the monitors. The instant-reply actor ac-

cesses an archive containing recorded SFDPS data mes-

sages in the XML format, and as it reads the messages,

it publishes them to the sfdps channel instantly. The

event-gen actor obtains the XML messages by sub-

scribing to the channel sfdps, generates a trace com-

posed of State objects from the SFDPS data, and pub-

lishes the State objects to the channel events accessed

in the monitoring step.

Let n be the total number of different call signs in

the input sequence. The outermost white boxes repre-

sent actors, and gray boxes represent monitor instances

held by the actor. Let M refer to P_SEQ monitor instances

with no indexing capability, and MI refer to P_SEQ in-

stances with indexing. The white box inside each mon-

itor instance includes call signs monitored by this in-

stance. Next, we explain the monitoring step for the

monitoring systems.

– monitor-indexing - the monitoring step includes

one actor with a single MI monitor which checks

for all the events in the input sequence published to

events. The monitoring step of this configuration is

equivalent to directly using the Daut tool to process

the trace sequentially, with indexing occurring in

Daut.

– dispatcher-indexing - the monitoring step in-

cludes a dispatcher actor which creates monitor in-

stances of type M, and feeds them with incoming

events. The dispatcher actor generates one moni-

tor instance per call sign, and applies indexing by

storing the monitor instances in a hash map. The

dispatcher obtains event objects from the channel

events, and starting with an empty hash map, for

each new call sign, it adds a new monitor instance

to the hash map. For an event object with the call

sign csi, the dispatcher invokes the verify method

of the monitor instance Mi.

14 Author A et al.

instant-replay event-gen
monitor actor

sfdps events

MI cs1…csn

(a) monitor-indexing

instant-replay event-gen
dispatcher actor

sfdps events

M1 cs1 … Mn csn

(b) dispatcher-indexing

monitor-actor-1

……instant-replay event-gen

sfdps events MI1

monitor-actor-k

cs1…csi

MIk csj…csn

dispatcher actor

(c) concurrent

Fig. 9: Actor-based monitoring systems used in the experiment

– concurrent - the trace analysis is performed con-

currently by employing multiple monitor actors,

generated on-the-fly. This demonstrates how a sin-

gle property is checked by multiple concurrent mon-

itors. One can configure the dispatcher to set a

limit on the number of monitor actors. If no limit

is set, one monitor actor is generated for each call

sign and the indexing within the monitor is de-

activated. This monitoring system is referred to

as unbounded-concurrent. By setting a limit, one

monitor actor could be assigned to more than one

call sign. Such monitoring system is referred to as

bounded-concurrent. Indexing is also applied at

the dispatcher level, using a hash map that stores

monitor actor references with call signs as entries

to the map. For each event object, the dispatcher

forwards the event object to the associated moni-

tor actor via point-to-point communication. Then

the monitor actor invokes the verify method on its

underlying monitor instance.

The main features of the monitoring systems are

summarized in Table 10. The rows represent the mon-

itoring systems. The first and second columns show if

indexing is applied at the monitor level and the dis-

patcher level, respectively. The third column shows if

the monitoring system includes concurrent monitor ac-

tors. The monitoring systems dispatcher-indexing

and monitor-indexing are similar except for their in-
dexing mechanisms. In both systems, the monitoring

phase includes only one actor that performs the moni-

toring task sequentially.

6.2 System Setup

All experiments are performed on an Ubuntu

18.04.3 LTS machine, 31.1 GB of RAM, using a

Intel®Xeon®W-2155 CPU (10 cores with hyperthread-

ing, 3.30GHz base frequency). We use an input trace,

T, including 200,000 messages obtained from an archive

of recorded SFDPS data in all experiments. T includes

data from 3215 different flights, that is, n in Figure 9

is 3215. The number of sub-monitors in P_SEQ is set to

2000. The Java heap size is set to 12 GB. We also use

the default Akka dispatcher setting in the experiment,

which is as follows. All actors use the Dispatcher im-

plementation with the default value 5 for throughput,

0 for throughput-deadline-time which indicates no

Concurrent Runtime Verification of Data Rich Events 15

monitor indx dispatcher indx concurrency

monitor-indexing X × ×
dispatcher-indexing × X ×
unbounded-concurrent × X X
bounded-concurrent X X X

Fig. 10: The main features of the monitoring systems presented in Figure 9.

time limit, and fork-join-executor for the executor.

Moreover, parallelism-min and parallelism-max

are set to 8 and 64, and parallelism-factor is

set to 3 which leads to the thread pool of size 30

(parallelism-factor × number of cores) in the ma-

chine with 10 cores. It should be noted that chang-

ing the configuration can impact the results. One can

benchmark to find the right configuration for each set-

ting. However, since our evaluation involves systems

with different numbers of concurrent components, to

simplify, we use one configuration for all the experi-

ments.

6.3 Evaluation

Since garbage collection in the Java Virtual Machine

(JVM) is beyond our control, each experiment needs

to be repeated several times. Using a bash script, each

MESA monitoring system is run 10 consecutive times

on the trace T, and the average of the runs is used for

evaluation. Figure 11 compares the run times for the

monitoring systems presented in Figure 9. The legend

unbcon stands for unbounded-concurrent, and the leg-

end bcon stands for bounded-concurrent followed by

the number of monitor actors. Considering the 3215 dif-
ferent call signs in T, monitor-indexing includes one

monitor actor including one monitor object that tracks

all 3215 flights. The dispatcher-indexing system cre-

ates one actor with a hash map of size 3215 storing the

monitor objects where each object monitors events from

one flight. The unbounded-concurrent monitoring sys-

tem creates 3215 monitor actors where each actor mon-

itors events from one flight. The bounded-concurrent

system creates 250 monitor actors where each actor

monitors events from 12 or 13 flights.

The results show that the systems with con-

current monitors perform considerably better than

the systems with a single monitor actor. The

system monitor-indexing performs worse than

dispatcher-indexing. The difference amounts to

a larger indexing overhead in monitor-indexing.

Since the number of sub-monitors captured by MI

is 2000, indexing at the monitor level is repeated

2000 times per incoming event. This leads to a

higher overhead comparing to indexing at the dis-

patcher level in dispatcher-indexing which is only

performed once. The CPU utilization profiles for

the system are obtained by the VisualVM profiler,

which represent the percentage of total computing

resources in use during the run (Figure 12). The

CPU utilization for monitor-indexing is mostly un-

der 30% and for dispatcher-indexing is mostly be-

tween 40% and 50%. For unbounded-concurrent and

bounded-concurrent, the CPU utilization is mostly

above 90% which shows the impact of using concur-

rent monitor actors. The VisualVM heap data profiles

reveal that all the system exhibit a similar heap usage,

which mostly remains under 10G.

Figure 11 shows that limiting the concurrent moni-

tors to 250 results in a better performance than using

one monitor actor per flight in unbounded-concurrent.

To evaluate how the number of monitor actors impact

the performance, bounded-concurrent is run with dif-

ferent numbers of monitor actors, 125, 250, 500, 1000,

2000, and 3215. We increase the number of monitor ac-

tors up to 3215 since this is the number of total flights in

the trace T. The results are compared in Table 13. The

system performs best with 250 monitor actors, and from

there as the number of monitor actors increases, the run

time increases. Increasing the number of monitor actors

decreases the load on each monitor actor, however, it

increases the overhead from their scheduling and main-

tenance. Note that the optimal number of monitor ac-

tors depends on the application and the value of input

parameters. Tweaking inputs parameters could lead to

a different optimal number of monitor actors. Our re-

sults also show that depending on the number of flights

tracked by each monitor actor, Daut indexing can lead

to overhead. E.g. it leads to 11% overhead (compared to

not using Daut indexing) when using 3215 monitor ac-

tors (since indexing is performed, but it is not needed).

On the other hand, Daut indexing leads to performance

improvement by 45% (compared to not using Daut in-

dexing) when using 125 monitor actors (since indexing

is beneficial in this case).

6.4 Actor Parameter Evaluation

To investigate the underlying factors behind runtime re-

sults further, we also evaluate performance parameters

16 Author A et al.

0

100

200

300

400

500

600

0 50000 100000 150000 200000
Number of Processed Messsages

Ti
m

e
(s

)

monitor-indexing dispatcher-indexing concurrent bcon.250m unbcon

Fig. 11: Comparing the run times of different MESA actor systems.

(a) monitor-indexing (b) bounded-concurrent(250 monitors)

Fig. 12: The CPU utilization profiles obtained by VisualVM.

#monitors 125m 250m 500m 1000m 2000m 3215m

time (s) 169 161 167 169 183 208

Fig. 13: Comparing the run times of different MESA actor systems.

for individual dispatcher and monitor actors. The per-

formance parameters that we consider include the aver-

age service time, the average wait time for messages in

the actor’s mailbox, and the average size of the actor’s

mailbox queue obtained after a message is enqueued.

Note that this does not exactly reflect the average size

of the mailbox since it does not take into account the

mailbox changes in between enqueues where mailbox

queue can stay empty for a while.

Figure 14 illustrates the relevant points at which we

record data to measure the actors performance metrics.

The method recieveLive, which processes the incom-

ing message, captures the default actor behavior. The

interesting points for measuring these parameters are

when a message is enqueued into and dequeued from the

mailbox, and when the actor starts processing and fin-

ishes processing a message. We provide mechanisms for

actors to wrap the relevant data into container objects,

which are defined as case classes, and publish them to a

channel accessed by an actor, stat-collector, which

collects this information and reports when the system

terminates.

Concurrent Runtime Verification of Data Rich Events 17

actor

process
msg

Timeline

service timewait time

enqueue
msg

dequeue
msg

process
msg

processing
completed

msg msg
mailbox receiveLive

Fig. 14: The timeline for a message sent to the actor [52]

To measure service time, the default actor behavior,

recieveLive, is replaced by an implementation that for

each message, invokes recieveLive, records the time

before and after the recieveLive invocation, and pub-

lishes a data container with the recorded times to the

channel accessed by the stat-collector actor. The

approach that we used to collect mailbox data is sim-

ilar to the one proposed in Chapter 16 of [52] which

discusses how one can customize and configure Akka

to improve the overall performance. To obtain informa-

tion from actor mailboxes, we implement a new mail-

box type, called StatsMailboxType, that extends the

default Akka mailbox implementation with a mecha-

nism that records the message entry time to and the

exit time from the mailbox, and the size of the mail-

box queue after a message is enqueued, and publishes

a data container with the recorded data to the channel

accessed by the stat-collector actor.

Any MESA actor can be configured to use these fea-

tures, referred to as ASF, which stands for Actor Statis-

tics Features. A MESA actor has the boolean property

stats.service which is false by default. To activate

the feature that collects the service time, one needs to

set stats.service to true in the actor configuration.

To activate the feature that collects mailbox data, the

new mailbox type is specified by adding the following

lines in the configuration file.

stats−collector−mailbox {
mailbox−type =

”gov.nasa.mesa.reporting. stats .StatsMailboxType”
}

The experiments presented in this section also use

the setup outlined in Section 6.2. The table in Fig-

ure 15 presents the run time overhead from activat-

ing ASF. It can be seen that the ASF overheads

for monitor-indexing and dispatcher-indexing are

about 20% and 11%. For systems with concurrent mon-

itor actors, this overhead ranges between 20% to 28%

and, overall, increases as the number of monitor actors

increases.

Figure 16 compares the performance parameters

for individual actors for the monitor-indexing and

dispatcher-indexing systems. Figure 16a and 16b

show that the monitor actor in monitor-indexing

has a longer service time, and a longer wait time

in the mailbox comparing to the dispatcher in

dispatcher-indexing. Moreover, Figure 16c shows

more messages accumulate in the monitor actor mail-

box in the monitor-indexing system comparing to

the dispatcher mailbox in the dispatcher-indexing

system. These observations are aligned with the fact

that indexing in monitor-indexing introduces a higher

overhead since for each incoming event, it is performed

once per sub-monitor, that is 2000 times in this ex-

ample, whereas indexing at the dispatcher level in

dispatcher-indexing is only performed once per in-

coming event.

Figure 17 compares the dispatcher actors perfor-

mance metrics for bounded-concurrent with different

numbers of monitor actors. It can be seen from Fig-

ure 17a that the average service time increases as the

number of actors increases. This is aligned with the

fact that using more monitor actors increases the load

of the dispatcher actor since it needs to generate more

monitor actors. To mitigate this effect, one could intro-

duce multiple dispatchers which is not evaluated in our

study. Moreover, Figure 17b shows that starting from

the system with 500 monitors, the average message wait

time in the queue increases as the number of actors in-

creases. In general, with a constant thread pool size,

increasing the number of actors in the system can in-

crease the wait for actors to get scheduled, leading to

longer wait for messages in mailboxes. Figure 17c shows

that the average mailbox size at the enqueue time for

18 Author A et al.

system monitor-indexing dispatcher-indexing 125m 250m 500m 1000m 2000m 3215m

overhead 20% 11% 20% 22% 21% 27% 29% 28%

Fig. 15: Overhead from activating the ASF features.

the dispatcher actors in all cases only varies in a very

small range.

Figure 18 compares the monitor actors performance

metrics for bounded-concurrent with different num-

bers of monitor actors. It can be seen from Figure 18a

that starting from the system with 250 monitor actors,

the average service time for monitor actors increases

as the number of monitor actors increases. Decreas-

ing the number of monitor actors increases the load on

individual actors since each monitor actor deals with

higher number of flights. On the other hand, applying

indexing within the monitor actors helps with improv-

ing their performance, however for monitors that track

small number of flights, indexing can lead to overhead

leading to longer service times. Figure 18b shows that in

the case of monitor actors, the mailbox wait is longer

with smaller number of actors, unlike the dispatchers

(Figure 17b). This is due to higher arrival rate of mes-

sages in these systems since each monitor actor is as-

signed to higher number of flights. It can be also seen

from Figure 18c that the average mailbox size at the

enqueue time for monitor actors in all the systems is

almost 1. That is, on average, every time a new mes-

sage is placed in the monitor actor mailbox, there are

no other messages in the queue in all cases. Note that,

as mentioned before, this measure does not reflect the

arrival rate of messages since it does not take into ac-

count the periods where the mailboxes are empty.

7 Discussion

MESA is designed as a generic tool for monitoring event

streams using actors and indexing (slicing). It is generic

by not providing a monitoring DSL itself, but allowing

any such as a plugin. In this work we have used Daut for

our experiments. The tool is applicable for concurrent,

indexed monitoring, and can be used as such or it can

be used for experiments with concurrent monitoring, as

presented in this paper.

We have specifically shown the positive impact of

using concurrent monitors combined with indexing for

runtime verification. The main question is: is there an

advantage in using concurrency in monitoring differ-

ent slices for a single property. The problem is partic-

ularly relevant for monitoring of first-order temporal

properties, which require fast lookup of relevant parts

of a monitor for each data-carrying event. The answer

to this question was not obvious up front. In particu-

lar one study [48] had not been able to clearly show

an advantage. The concern was that it would just be

too fine-grained an application of concurrency, which

would have no advantage due to overhead from thread

scheduling.

The positive observation, however, is that it is bene-

ficial to split monitoring of a single property into multi-

ple actors, each processing a subset of the indexes (call

signs in this experiment), and within each of these ac-

tors again index (on the call signs) a second time. How-

ever, we showed that it was inefficient to create an actor

for each call sign. Rather, it was found optimal to group

the call signs, and create a smaller number of actors, in

this case 250 (compared to 3215, the total number of

call signs), each processing a subset of the flights (12-13

in our case), also referred to as bounded-concurrent

in Figure 9. This shall be compared to the sequential

approach to indexing (monitor-indexing in Figure 9),

corresponding to using a single actor (no concurrency

effectively).

As observed, to maximize the performance, one

needs to limit the number of concurrent monitor ac-

tors. Due to a variety of overhead sources, the optimal

number of actors is application specific and is challeng-

ing to determine a priori. The following factors need to

be taken into consideration when configuring values of

the related parameters. Limiting the number of mon-

itor actors on a multicore machine can lead to a low

CPU utilization. One can elevate the CPU utilization

by increasing concurrency. However, there is overhead

associated with actors. Assigning actors to threads from

the thread pool and context switching between them

impose overhead. The combination of such competing

factors can make one setting perform better than oth-

ers.

MESA is a highly configurable platform, and it pro-

vides mechanisms for evaluating performance parame-

ters for individual dispatcher and monitor actors. Those

can facilitate finding the optimal number of monitor ac-

tors to maximize the performance. One can easily tune

relevant parameters in the configuration file to evaluate

the monitoring systems. While the framework provides

features for observing performance, parameter tuning,

however, is performed manually. Future work can in-

clude automated tuning, either prior to monitoring ac-

tual data in the field, or dynamically during monitoring

in the field, adjusting to the current situation.

Concurrent Runtime Verification of Data Rich Events 19

0

1

2

3

monitor-indexing dispatcher-indexing

T
im

e
(m

s)

(a) Service time.

0e+00

1e+05

2e+05

3e+05

monitor-indexing dispatcher-indexing

T
im

e
(m

s)

(b) Wait time in the mailbox.

0

20000

40000

60000

80000

monitor-indexing dispatcher-indexingM
ai

lb
ox

 Q
ue

ue
 S

iz
e

(#
 o

f
m

sg
s)

(c) Size of the mailbox queue.

Fig. 16: Comparing the actors performance metrics for the monitor-indexing and dispatcher-indexing systems.

0.00

0.01

0.02

0.03

0.04

125m 250m 500m 1000m 2000m 3215m

T
im

e
(m

s)

(a) Service time in the dispatcher.

0

10000

20000

30000

40000

50000

125m 250m 500m 1000m 2000m 3215m

T
im

e
(m

s)

(b) Wait time in the dispatcher mailbox.

0

10000

20000

30000

125m 250m 500m 1000m 2000m 3215mM
ai

lb
ox

 Q
ue

ue
 S

iz
e

(#
 o

f
m

sg
s)

(c) Size of the dispatcher mailbox queue.

Fig. 17: Comparing the dispatcher actors performance metrics for the bounded-concurrent systems.

20 Author A et al.

0

5

10

15

20

25

125m 250m 500m 1000m 2000m 3215m

T
im

e
(m

s)

(a) Service time in the monitor actor.

0

1

2

3

125m 250m 500m 1000m 2000m 3215m

T
im

e
(m

s)

(b) Wait time in the monitor actor mailbox.

0.00

0.25

0.50

0.75

1.00

125m 250m 500m 1000m 2000m 3215mM
ai

lb
ox

 Q
ue

ue
 S

iz
e

(#
 o

f
m

sg
s)

(c) Size of the monitor mailbox queue.

Fig. 18: Comparing the monitor actors performance metrics for the bounded-concurrent systems.

As shown in Figure 2, our framework runs on top of

the Java Virtual Machine (JVM) and relies on the Akka

framework. There are mechanisms, such as garbage col-

lection at the JVM level and actor scheduling at the

Akka level, that cannot be controlled from a MESA

system. Therefore, MESA is not suitable for verifying

hard real-time systems where there are time constraints

on the system response. One of the challenges that we

faced in this work is micro-benchmarking on the JVM,

which is a well-known problem. Certain characteristics

of the JVM such as code optimization can impact accu-

racy of the results, specially when it comes to smaller

time measures such as service time and wait time for

messages in the actor mailboxes. However, there are

tools such as JMH that provide accurate benchmark-

ing [36].

An important issue concerns correctness of the ap-

proach. There are two aspects of this issue, namely the

correctness of an individual monitor, and the correct-

ness of the approach to concurrency. Wrt. correctness of

a monitor, it is common (in contrast to our approach) to

automatically synthesize a such from a specification in

an external DSL. In this case, the verification problem

becomes that of ensuring that the synthesized monitor

correctly implements the specification. This problem

can be approached top down, synthesizing a correct-

by-construction monitor, see e.g [1,14], or bottom up,

proving a synthesized monitor correct wrt. the specifi-

cation, see e.g. [12,23]. However, in our case, there is

no specification in an external DSL from which a moni-

tor is synthesized. The monitor is programmed directly

in the Daut library, an internal DSL, developed specifi-

cally for writing monitors. This library hopefully makes

writing such monitors as easy as would an external DSL

offering the same features. The correctness problem in
this case consists of proving that the library correctly

implements the intended behavior of the internal DSL.

Such an effort remains as future work. Finally, valida-

tion consists of ensuring that the monitor meets the

intention of the user. It is our view that it is fairly easy

to convince oneself that the monitor in Figure 6 and the

monitors used for the experiment in Section 6 express

the desired properties. However, validation will always

be an important task. Daut offers debugging features,

allowing printing of internal monitor actions and states,

which can help in validating a monitor.

Wrt. to correctness of the concurrency approach,

first note that the approach is thread safe in the sense

that different actors do not interact in any way beyond

all writing to standard output, which does not influence

the correctness (although output from different actors

may be merged). Second, one can easily convince oneself

that all events with the same call sign always end up in

the same actor, and that within each actor events with

Concurrent Runtime Verification of Data Rich Events 21

the same call sign are indexed to the same slice (bucket

in the hash map used for indexing). This is due to the

fact that distribution on actors and indexing within ac-

tors is based on the same key, namely the call sign. This

ensures that the properties being checked are correct in

the presence of concurrency.

Note, however, that slicing does put a restriction

on what properties can be monitored. Since the trace is

sliced into subtraces, each of which may be submitted to

its own actor, one cannot express properties that relate

different slices. An example of a property that cannot

be stated in e.g. this particular case study is that the

route taken by an airplane depends on the routes taken

by other airplanes. In MESA, the slicing strategy is

manually defined, and attention must be paid to the

property being verified to ensure a sound approach.

Even though the focus of the case study has been air

traffic routes, and use of a specific monitor, we believe

that the main result, that it is beneficial to monitor

slices of a single property in multiple actors, transfers

to the general problem of monitoring events that carry

data. It is of course hard to generalize such a result

conclusively, but the result is convincing enough that it

may trigger other studies for other cases. E.g. one case

to explore, and which we have not covered, is that of

monitoring many different properties, each associated

with a dispatch actor (see Figure 9), under which mul-

tiple sub-actors handle the different slices of a single

property.

8 Conclusion

We have presented MESA, a runtime verification frame-

work for indexed concurrent monitoring with actors.

MESA can be instantiated with different monitoring

logics. In this paper we specified properties in the Daut

monitoring logic (library) supporting a mix of data-

parameterized state machines and a form of temporal

logic. We illustrated MESA by presenting a case study,

which obtains live air traffic data feeds and verifies that

flights adhere to assigned arrival routes. We then per-

formed an empirical study to evaluate different combi-

nations of concurrency and indexing applied at different

levels. We observe, as the main result, that there are

clear benefits to monitor a single property with multi-

ple concurrent actors processing different slices of the

input trace. This is not an obvious result since there is

a cost to scheduling of small tasks.

Future work includes confirming the result on other

examples. Furthermore, it might be worth experiment-

ing with dynamic automated optimization of parame-

ters that determine how many actors to create for a sin-

gle property. Finally, experiments need to be done for

the case where multiple different properties are moni-

tored, each evaluated with indexing.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir,
A., Lehtinen, K.: An operational guide to monitorabil-
ity with applications to regular properties. Software
and Systems Modeling 20(2), 335–361 (2021). 10.1007/

s10270-020-00860-z
2. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir”,

A.: On Benchmarking for Concurrent Runtime Verifica-
tion. In: E. Guerra, M. Stoelinga (eds.) Fundamental
Approaches to Software Engineering, pp. 3–23. Springer
International Publishing (2021). https://doi.org/10.

1007/978-3-030-71500-7_1
3. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-

safety hyperproperties in HyperLTL. In: 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), pp.
239–252 (2016). 10.1109/CSF.2016.24

4. Akka (2020). URL http://doc.akka.io/docs/akka/

current/scala.html
5. Artho, C., Havelund, K., Kumar, R., Yamagata, Y.:

Domain-Specific Languages with Scala. In: M. Butler,
S. Conchon, F. Zäıdi (eds.) Formal Methods and Software
Engineering, Lecture Notes in Computer Science, vol.
9407, pp. 1–16. Springer International Publishing (2015).
https://doi.org/10.1007/978-3-319-25423-4_1

6. Attard, D.P., Francalanza, A.: Trace Partitioning and
Local Monitoring for Asynchronous Components. In:
A. Cimatti, M. Sirjani (eds.) International Confer-
ence on Software Engineering and Formal Methods,
Lecture Notes in Computer Science, vol. 10469, pp.
219–235. Springer (2017). https://doi.org/10.1007/

978-3-319-66197-1_14
7. Avrekh, I., Matthews, B.L., Stewart, M.: RNAV Adher-

ence Data Integration System Using Aviation and En-
vironmental Sources. Tech. rep., NASA Ames Research
Center (2018)

8. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A.,
Hallé, S.: MapReduce for parallel trace validation of LTL
properties. In: S. Qadeer, S. Tasiran (eds.) Interna-
tional Conference on Runtime Verification, Lecture Notes
in Computer Science, vol. 7687, pp. 184–198. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013). https:

//doi.org/10.1007/978-3-642-35632-2_20
9. Barringer, H., Havelund, K.: TraceContract: A Scala DSL

for trace analysis. In: M. Butler, W. Schulte (eds.) Inter-
national Symposium on Formal Methods, Lecture Notes
in Computer Science, vol. 6664, pp. 57–72. Springer,
Berlin, Heidelberg (2011). https://doi.org/10.1007/

978-3-642-21437-0_7
10. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke,

F., Mantel, H.: Scalable offline monitoring of tem-
poral specification. Formal Methods in System De-
sign 49, 75–108 (2016). https://doi.org/10.1007/

s10703-016-0242-y
11. Basin, D., Gras, M., Krstić, S., Schneider, J.: Scalable on-

line monitoring of distributed systems. In: J. Deshmukh,
D. Nickovic (eds.) Runtime Verification - 20th Interna-
tional Conference, RV 2020, Los Angeles, CA, USA, Oc-
tober 6-9, 2020, Proceedings, Lecture Notes in Computer
Science, vol. 12399, pp. 197–220. Springer (2020). DOI
10.1007/978-3-030-60508-7\ 11. URL https://doi.org/

10.1007/978-3-030-60508-7_11

10.1007/s10270-020-00860-z
10.1007/s10270-020-00860-z
https://doi.org/10.1007/978-3-030-71500-7_1
https://doi.org/10.1007/978-3-030-71500-7_1
10.1109/CSF.2016.24
http://doc.akka.io/docs/akka/current/scala.html
http://doc.akka.io/docs/akka/current/scala.html
https://doi.org/10.1007/978-3-319-25423-4_1
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-642-35632-2_20
https://doi.org/10.1007/978-3-642-35632-2_20
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/978-3-030-60508-7_11

22 Author A et al.

12. Basin, D.A., Dardinier, T., Heimes, L., Krstic, S., Raszyk,
M., Schneider, J., Traytel, D.: A formally verified, opti-
mized monitor for metric first-order dynamic logic. In:
N. Peltier, V. Sofronie-Stokkermans (eds.) Automated
Reasoning, Lecture Notes in Computer Science, vol.
12166, pp. 432–453. Springer (2020). 10.1007/978-3-030-
51074-9 25

13. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Run-
time verification with minimal intrusion through paral-
lelism. Formal Methods in System Design 46, 317–348
(2015). https://doi.org/10.1007/s10703-015-0226-3

14. Burlò, C.B., Francalanza, A., Scalas, A.: On the mon-
itorability of session types, in theory and practice (ex-
tended version). CoRR abs/2105.06291 (2021). https:
//doi.org/10.4230/LIPIcs.ECOOP.2021.20

15. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J.
Comput. Secur. 18(6), 1157–1210 (2010). URL
https://doi.org/10.3233/JCS-2009-0393. 10.3233/

JCS-2009-0393
16. Colombo, C., Francalanza, A., Mizzi, R., Pace,

G.J.: polyLarva: Runtime verification with configurable
resource-aware monitoring boundaries. In: G. Elefther-
akis, M. Hinchey, M. Holcombe (eds.) Software Engineer-
ing and Formal Methods, Lecture Notes in Computer Sci-
ence, vol. 7504, pp. 218–232. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7_
15

17. Department of Transportation, Federal Aviation Admin-
istration: Implementation of Descend Via into Boston
Terminal area from Boston ARTCC (2015)

18. El-Hokayem, A., Falcone, Y.: Can we monitor all multi-
threaded programs? In: C. Colombo, M. Leucker (eds.)
International Conference on Runtime Verification, Lec-
ture Notes in Computer Science, vol. 11237, pp. 64–
89. Springer, Cham (2018). https://doi.org/10.1007/

978-3-030-03769-7_6
19. El-Hokayem, A., Falcone, Y.: On the monitoring of de-

centralized specifications: Semantics, properties, analysis,
and simulation. ACM ACM Transactions on Software
Engineering and Methodology 29(1), 1:1–1:57 (2020).
https://doi.org/10.1145/3355181

20. Falcone, Y., Havelund, K., Reger, G.: A tutorial on
runtime verification. In: M. Broy, D. Peled, G. Kalus
(eds.) Engineering Dependable Software Systems, NATO
Science for Peace and Security Series - D: Informa-
tion and Communication Security, vol. 34, pp. 141–
175. IOS Press (2013). https://doi.org/10.3233/

978-1-61499-207-3-141
21. SWIM Flight Data Publication Service (2020). URL

https://www.faa.gov/air_traffic/technology/swim/

sfdps/
22. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Mon-

itoring hyperproperties. Formal Methods Syst. Des.
54(3), 336–363 (2019). URL https://doi.org/10.1007/

s10703-019-00334-z. 10.1007/s10703-019-00334-z
23. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.:

Verified Rust monitors for Lola specifications. CoRR
abs/2012.08961 (2020). 10.1007/978-3-030-60508-7_
24

24. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime Ver-
ification for Decentralised and Distributed Systems, pp.
176–210. Springer International Publishing, cham (2018).
https://doi.org/10.1007/978-3-319-75632-5_6

25. Francalanza, A., Seychell, A.: Synthesising correct con-
current runtime monitors. Formal Methods in System
Design 46(3), 226–261 (2015). https://doi.org/10.

1007/s10703-014-0217-9

26. Hallé, S., Khoury, R.: Event stream processing with Beep-
Beep 3. In: G. Reger, K. Havelund (eds.) An Inter-
national Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Ver-
ification Tools, September 15, 2017, Seattle, WA, USA,
Kalpa Publications in Computing, vol. 3, pp. 81–88.
EasyChair (2017). https://doi.org/10.29007/4cth

27. Hallé, S., Khoury, R., Gaboury, R.: Event stream pro-
cessing with multiple threads. In: S. Lahiri, G. Reger
(eds.) International Conference on Runtime Verification,
Lecture Notes in Computer Science, vol. 10548, pp. 359–
369. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67531-2_22

28. Harris Corporation: FAA Telecommunications Infras-
tructure NEMS User Guide (2013)

29. Havelund, K.: Data automata in Scala. In: Symposium on
Theoretical Aspects of Software Engineering Conference,
pp. 1–9. Changsha, China (2014). https://doi.org/10.

1109/TASE.2014.37

30. Havelund, K.: Daut (2022). URL https://github.com/

havelund/daut

31. Havelund, K.: TraceContract (2022). URL https://

github.com/havelund/tracecontract

32. Hewitt, C., Bishop, P., Steiger, R.: A universal modular
ACTOR formalism for artificial intelligence. In: Proceed-
ings of the 3rd International Joint Conference on Artifi-
cial Intelligence, pp. 235–245. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1973)

33. HOCON - Human Optimized Config Object Nota-
tion (2020). URL https://github.com/typesafehub/

config/blob/master/HOCON.md

34. International Air Line Pilots Associations: FAA Suspends
OPD Arrivals for Atlanta International Airport (2016)

35. International Civil Aviation Organization (ICAO):
Performance-based Navigation (PBN) Manual, 3 edn.
(2008)

36. JMH - Java Microbenchmark Harness (2020). URL
https://openjdk.java.net/projects/code-tools/jmh/

37. Joyce, J., Lomow, G., Slind, K., Unger, B.: Monitor-
ing distributed systems. ACM Transactions on Com-
puter Systems 5(2), 121–150 (1987). https://doi.org/

10.1145/13677.22723

38. Kurklu, E., Havelund, K.: A flight rule checker for the
LADEE Lunar spacecraft. In: V.K.I. Pun, V. Stolz,
A. Simao (eds.) Theoretical Aspects of Computing – IC-
TAC 2020, pp. 3–20. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-64276-1_
1

39. Lavery, P., Watanabe, T.: An actor-based runtime mon-
itoring system for web and desktop applications. In:
T. Hochin, H. Hirata, H. Nomiya (eds.) International
Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing,
pp. 385–390. IEEE Computer Society (2017). https:

//doi.org/10.1109/SNPD.2017.8022750

40. Leucker, M., Schallhart, C.: A brief account of runtime
verification. The Journal of Logic and Algebraic Pro-
gramming 78(5), 293–303 (2009). https://doi.org/10.

1016/j.jlap.2008.08.004

41. Mehlitz, P.: RACE (2022). URL http://nasarace.

github.io/race/

42. Mehlitz, P., Shafiei, N., Tkachuk, O., Davies, M.: RACE:
building airspace simulations faster and better with ac-
tors. In: Digital Avionics Systems Conference (DASC),
pp. 1–9 (2016). https://doi.org/10.1109/DASC.2016.

7777991

https://doi.org/10.1007/s10703-015-0226-3
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.3233/JCS-2009-0393
10.3233/JCS-2009-0393
10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-642-33826-7_15
https://doi.org/10.1007/978-3-642-33826-7_15
https://doi.org/10.1007/978-3-030-03769-7_6
https://doi.org/10.1007/978-3-030-03769-7_6
https://doi.org/10.1145/3355181
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://www.faa.gov/air_traffic/technology/swim/sfdps/
https://www.faa.gov/air_traffic/technology/swim/sfdps/
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
10.1007/s10703-019-00334-z
10.1007/978-3-030-60508-7_24
10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.29007/4cth
https://doi.org/10.1007/978-3-319-67531-2_22
https://doi.org/10.1007/978-3-319-67531-2_22
https://doi.org/10.1109/TASE.2014.37
https://doi.org/10.1109/TASE.2014.37
https://github.com/havelund/daut
https://github.com/havelund/daut
https://github.com/havelund/tracecontract
https://github.com/havelund/tracecontract
https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1145/13677.22723
https://doi.org/10.1145/13677.22723
https://doi.org/10.1007/978-3-030-64276-1_1
https://doi.org/10.1007/978-3-030-64276-1_1
https://doi.org/10.1109/SNPD.2017.8022750
https://doi.org/10.1109/SNPD.2017.8022750
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
http://nasarace.github.io/race/
http://nasarace.github.io/race/
https://doi.org/10.1109/DASC.2016.7777991
https://doi.org/10.1109/DASC.2016.7777991

Concurrent Runtime Verification of Data Rich Events 23

43. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.:
An overview of the MOP runtime verification framework.
International Journal on Software Tools for Technology
Transfer 14(3), 249–289 (2012). https://doi.org/10.

1007/s10009-011-0198-6

44. MESA - MEssage-based System Analysis (2022). URL
https://github.com/NASA-SW-VnV/mesa

45. NASA WorldWind (2022). URL https://worldwind.

arc.nasa.gov/

46. Neykova, R., Yoshida, N.: Let it recover: multiparty
protocol-induced recovery. In: P. Wu, S. Hack (eds.)
International Conference on Compiler Construction,
pp. 98–108. ACM (2017). https://doi.org/10.1145/

3033019.3033031

47. Rasmussen, S., Kingston, D., Humphrey, L.: A brief
introduction to unmanned systems autonomy services
(UxAS). 2018 International Conference on Unmanned
Aircraft Systems (ICUAS) pp. 257–268 (2018). https:

//doi.org/10.1109/ICUAS.2018.8453287

48. Reger, G.: Rule-Based Runtime Verification in a Mul-
ticore System Setting. Master’s thesis, University of
Manchester (2010)

49. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: Monitor-
ing at runtime with QEA. In: C. Baier, C. Tinelli (eds.)
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes
in Computer Science, vol. 9035, pp. 596–610. Springer,
Berlin, Heidelberg (2015). https://doi.org/10.1007/

978-3-662-46681-0_55

50. Reger, G., a nd Howard Barringer, D.R.: MAIL - An
Interaction Layer For Exploring The Use Of Multicore in
Runtime Monitoring (unpublished). Unpublished

51. Richards, M., Monson-Haefel, R., Chappell, D.A.: Java
Message Service, 2nd edn. O’Reilly Media, Inc. (2009)

52. Roestenburg, R., Bakker, R., Williams, R.: Akka in Ac-
tion, 1st edn. Manning Publications Co., Greenwich, CT,
USA (2015)

53. Shafiei, N., Havelund, K., Mehlitz, P.: Actor-based
runtime verification with MESA. In: J. Deshmukh,
D. Ničković (eds.) Runtime Verification, pp. 221–240.
Springer International Publishing, Cham (2020). https:

//doi.org/10.1007/978-3-030-60508-7_12

54. Shafiei, N., Havelund, K., Mehlitz, P.: Empirical Study
of Actor-based Runtime Verification. Tech. rep., NASA
Ames Research Center (2020)

55. Stewart, M., Matthews, B.: Objective assessment method
for RNAV STAR adherence. In: DASC: Digital Avionics
Systems Conference (2017). https://doi.org/10.1109/

DASC.2017.8102034

56. U.S. Department of Transportation. Federal Aviation
Administration: Performance Based Navigation PBN
NAS Navigation Strategy (2016)

57. U.S. Department of Transportation. Federal Aviation
Administration: Instrument Procedures Handbook (IPH)
(2017)

https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://github.com/NASA-SW-VnV/mesa
https://worldwind.arc.nasa.gov/
https://worldwind.arc.nasa.gov/
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.1109/ICUAS.2018.8453287
https://doi.org/10.1109/ICUAS.2018.8453287
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-030-60508-7_12
https://doi.org/10.1007/978-3-030-60508-7_12
https://doi.org/10.1109/DASC.2017.8102034
https://doi.org/10.1109/DASC.2017.8102034

	Introduction
	Related Work
	An Overview of MESA
	Monitoring Live Flights in the U.S. Airspace
	Akka Threading Model
	Experiments
	Discussion
	Conclusion

