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Abstract. Runtime Verification (RV) consists of analyzing execution traces us-
ing formal techniques, e.g., monitoring executions against Linear Temporal Logic
(LTL) properties. Propositional LTL is, however, limited in expressiveness, as
first shown by Wolper [32]. Several extensions to propositional LTL, which pro-
mote the expressive power to that of regular expressions, have therefore been pro-
posed; however, none of which was, by and large, adopted for RV. In addition, for
many practical cases, there is a need in RV to monitor properties that carry data.
This problem has been addressed by numerous authors, and in previous work we
addressed this by providing an algorithm that uses BDDs to represent relations
over data elements. We show expressiveness deficiencies of first-order LTL and
suggest an extension of (propositional as well as first-order) LTL with rules to
address these limitations. We describe how the DEJAVU tool is correspondingly
extended and provide some experimental results.

1 Introduction

Runtime verification (RV) [3, 20] refers to the use of rigorous (formal) techniques for
processing execution traces emitted by a system being observed. The purpose is typi-
cally to evaluate the behavior of the observed system. We focus here on specification-
based runtime verification, where an execution trace is checked against a property ex-
pressed in a formal logic, in our case variants of Linear Temporal Logic (LTL).

LTL is a common specification formalism for reactive and concurrent systems. It is
often used in model checking and runtime verification. Another formalism that is used
for the same purpose is finite automata, often over infinite words. This includes Büchi,
Rabin, Street, Muller and Parity automata [31], all having the same expressive power.
In fact, model checking of an LTL specification is usually performed by first translating
the specification into a Büchi automaton. The automata formalisms are more expressive
than LTL, with a classical example by Wolper [32], showing that it is not possible to
express in LTL that every even state in the sequence satisfies some proposition p. This
has motivated extending LTL in various ways to achieve the same expressive power as
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Büchi automata: Wolper’s ETL [32, 33] uses right-linear grammars, Sistla’s QLTL ex-
tends LTL with dynamic (i.e., state-dependent, second-order) quantification over propo-
sitions [30] and the PSL standard [23] extends LTL with regular expressions. However,
these and other extensions have not been extensively used for RV.

We therefore first present an alternative extension of propositional LTL with rules,
named RLTL. These rules define and use auxiliary propositions, not appearing in the
execution itself. These propositions obtain their values in a state as a function of the
prefix of the execution up to and including that state, expressed as a past time temporal
formula. This extension fits easily and naturally to existing RV algorithms that use
incremental summaries of prefixes, e.g., the classical algorithm [21] for past time LTL
(denoted here PLTL), maintaining also its linear time complexity (in the length of the
trace and the size of the formula). In fact, our extension of the logic is inspired by that
RV algorithm. The logic RLTL is shown to be equivalent to QLTL and its restriction to
past properties is equivalent to Büchi automata and regular expressions.

Another expressiveness dimension is runtime verification of events that carry data,
for which a first-order LTL supporting quantification over data is appropriate, here
referred to as FLTL. We demonstrate the weakness of FLTL in expressing Wolper’s ex-
ample, relativized to the first-order case, and in expressing the transitive closure of tem-
poral relations over events. We therefore introduce two alternative ways of extending
the expressive power of FLTL, corresponding, respectively, to the propositional logics
QLTL and RLTL. The first adds quantification over relations of data, obtaining a logic
referred to as QFLTL. The second extension adds rules for the first-order case, and is
referred to as RFLTL. Both of these extended logics can express the above examples.
We show that for the first-order case, in contrast to the propositional case, the extension
of the logic with quantification is more expressive than the extension with rules.

Runtime verification is commonly restricted to the past time versions of LTL, i.e., to
safety properties [1], where a violation can be detected and demonstrated after a finite
prefix of the execution. We refer to the logic PLTL for the propositional case and to
PFLTL for the first-order case; these logics also enjoy elegant RV algorithms, based on
the ability to compute summaries of the observed prefixes [21, 18], as opposed to future
temporal logics [25]. The RV algorithm, presented here for RPFLTL (the safety part
of RFLTL) naturally extends the RV algorithm for PFLTL in [18] in the same way that
the algorithm we present for RPLTL (the safety part of RLTL) extends the RV algorithm
in [21] for PLTL.

We further present a corresponding extension of the DEJAVU tool [18, 19, 17], that
realizes the extension of first-order past time LTL with rules (RPFLTL). The DEJAVU
tool allows runtime verification of past time first-order temporal logic over infinite do-
mains (e.g., the integers, strings, etc.). It achieves efficiency by using a unique BDD
representation of the data part; BDDs correspond to relations over a Boolean enumer-
ation of the input data (with a hash table representing the correspondence between the
data and the enumerations). This is a very different use of BDDs from the classical
model checking representation of sets of Boolean states3. A garbage collection algo-
rithm tailored for that representation also assists in obtaining efficiency.

3 E.g., in [6], BDDs are used to represent sets of program locations, and the data elements are
represented symbolically as a formula.
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Our main contribution is the LTL logics extended with rules (extensions prefixed
with ‘R’), and in particular the logic RPFLTL and its implementation. The structure of
the paper reflects our step-wise approach by first exploring the problem in the proposi-
tional case to form a basic understanding, and then by addressing the more interesting
first-order case.

Numerous monitoring related expressive logics and systems have been developed
over the past decades. In the database community, relations have been added to tem-
poral databases for aggregation [22], calculating functions (sums etc.). Aggregations
were also used in the runtime verification tool MONPOLY [4]. Numerous other systems
have been produced for monitoring execution traces with data against formal speci-
fications. These include e.g. MOP [27], QEA [29], and LARVA [12], which provide
automaton-based data parameterized logics; LOLA [2], which is based on stream pro-
cessing; BEEPBEEP [15] which is temporal logic-based; and the rule-based LOGFIRE
[16]. These systems address the expressiveness issues discussed in this paper in differ-
ent ways. Our approach differs from earlier such work by taking a starting point in LTL
and extending it with rules, implemented using BDDs.
Conventions. As already outlined above, we present several versions of LTL. We name
the different versions by prefixing LTL with the following letters. ‘P’ : restricted to
Past-time temporal operators; ‘F’ : allowing First-order (static) quantification over data
assigned to variables; ‘Q’ : adding second-order (dynamic) Quantification over propo-
sitions/predicates; and finally ‘R’ : adding Rules, our main contribution.

2 Propositional LTL

The classical definition of linear temporal logic [26] has the following syntax:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ | ©ϕ |(ϕ U ϕ) | 	ϕ|(ϕ S ψ)

where p is a proposition from a finite set of propositions P, and©, U, 	, S stand for
next-time, until, previous-time and since, respectively. The models for LTL formulas
are infinite sequence of states, of the form σ = s1 s2 s3 . . ., where si ⊆ P for each i ≥ 1.
These are the propositions that hold in that state. LTL’s semantics is defined as follows:

– (σ, i) |= true.
– (σ, i) |= p if p ∈ si.
– (σ, i) |= ¬ϕ if (σ, i) 6|= ϕ.
– (σ, i) |= (ϕ∧ψ) if (σ, i) |= ϕ and (σ, i) |= ψ.
– (σ, i) |=©ϕ if (σ, i+1) |= ϕ.
– (σ, i) |=(ϕU ψ) if for some j, j≥ i, (σ, j) |=ψ, and for each k, i≤ k < j, (σ,k) |=ϕ.
– (σ, i) |=	ϕ if i > 1 and (σ, i−1) |= ϕ.
– (σ, i) |= (ϕS ψ) if there exists j, 1 ≤ j ≤ i, such that (σ, j) |= ψ and for each k,

j < k ≤ i, (σ,k) |= ϕ.

Then σ |= ϕ when (σ,1) |= ϕ. We can use the following abbreviations: false = ¬true,
(ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ→ ψ) = (¬ϕ∨ψ), 3ϕ = (true U ϕ), 2ϕ = ¬3¬ϕ, P ϕ =
(true S ϕ) (P stands for Previously) and H ϕ = ¬P ¬ϕ (H stands for History).
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The expressive power of different versions of propositional LTL is often compared
to regular expressions over the alphabet Σ = 2P and to monadic first and second-
order logic. Accordingly, we have the following characterizations: LTL is equivalent
to monadic first-order logic, star-free regular expressions4 and counter-free Büchi au-
tomata. For an overview of logic and automata see [31]. Restricting the temporal op-
erators to the future operators U and © (and the ones derived from them 2 and 3)
maintains the same expressive power. An important subset of LTL, called here PLTL,
allows only past temporal operators: S , 	 and the operators derived from them, H and
P. The past time logic is sometimes interpreted over finite sequences, where σ |= ϕ

when (σ, |σ|) |= ϕ. It is also a common practice to use a PLTL formula, prefixed with
a single 2 (always) operator; in this case, each of the prefixes has to satisfy ϕ. This
later form expresses safety LTL properties [1]. When PLTL is interpreted over finite
sequences, its expressive power is the same as star-free regular expressions, first-order
monadic logic over finite sequences and counting-free automata. Wolper [32] demon-
strated that the expressive power of LTL is lacking using the property that all the states
with even5 indexes in a sequence satisfy some proposition p.

Extending LTL with dynamic quantification. Adding quantification over proposi-
tions, suggested by Sistla in [30], allows writing a formula of the form ∃∃qϕ, where ∃∃q
represents existential quantification over a proposition q that can appear in ϕ. To de-
fine the semantics, let X ⊆ P and denote σ|X = s1 \X s2 \X . . .. (Note that σ|X denotes
projecting out the propositions in X .) The semantics is defined as follows:

– (σ, i) |= ∃∃qϕ if there exists σ′ such that σ′|{q} = σ and (σ′, i) |= ϕ.

Universal quantification is also allowed, where ∀∀qϕ = ¬∃∃q¬ϕ. This kind of quantifi-
cation is considered to be dynamic, since the quantified propositions can have differ-
ent truth values depending on the states. It is also called second-order quantification,
since the quantification establishes the set of states in which a proposition has the value
true. Extending LTL with such quantification, the logic QLTL has the same expressive
power as regular expressions, full Büchi automata, or monadic second-order logic with
unary predicates over the naturals (see again [31]). In fact, it is sufficient to restrict
the quantification to existential quantifiers that prefix the formula to obtain the full ex-
pressiveness of QLTL [31]. Restricting QLTL to the past modalities, one obtains the
logic QPLTL. QPLTL has the same expressive power as regular expressions and finite
automata. Wolper’s property can be rewritten in QPLTL as:

∃∃qH((q↔	¬q)∧ (q→ p)) (1)

Since 	ϕ is interpreted as false in the first state of any sequence, regardless of ϕ, then
q is false in the first state. Then q alternates between even and odd states.

Extending LTL with rules. We introduce another extension of LTL, which we call
RLTL. As will be showed later, this extension is very natural for runtime verification.

4 Regular expressions without the star operator (or ω).
5 This is different than stating that p alternates between true and false on consecutive states.
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We partition the propositions P into auxiliary propositions A = {a1, . . . ,an} and basic
propositions B. An RLTL property η has the following form:

ψ where a j := ϕ j : j ∈ {1, . . . ,n} (2)

where each a j is a distinct auxiliary proposition from A, ψ is an LTL property and each
ϕi is a PLTL property where propositions from A can only occur within the scope of a
	 operator. We refer to ψ as the statement of η and to a j := ϕ j as a rule (in text, rules
will be separated by commas). The semantics can be defined as follows.

σ |= η if there exists σ′, where σ′|A = σ s.t. σ′ |= (ψ∧2
∧

1≤ j≤n(a j↔ ϕ j))

RLTL extends the set of propositions with new propositions, whose values at a state
are functions of (i.e., uniquely defined by) the prefix of the model up to that state. This
differs from the use of auxiliary propositions in QLTL, where the values assigned to
the auxiliary propositions do not have to extend the states of the model in a unique way
throughout the interpretation of the property over a model. The constraint that auxiliary
propositions appearing in the formulas ϕi must occur within the scope of a 	 operator
is required to prevent conflicting rules, as in a1 := ¬a2 and a2 := a1. Wolper’s example
can be written in RLTL as follows:

2(q→ p)whereq :=	¬q (3)

where A = {q} and B = {p}. The auxiliary proposition q is used to augment the input
sequence such that each odd state will satisfy ¬q and each even state will satisfy q.

Lemma 1 (Well foundedness of auxiliary propositions). The values of the auxiliary
propositions of an RLTL formula η are uniquely defined in a state of an execution by
the prefix of the execution up to and including that state.

Proof. Let η be a formula over auxiliary propositions A and basic propositions B, with
rules a j := ϕ j : j ∈ {1, . . . ,n}. Let σ be a model with states over B. Then there is a
unique model σ′ such that σ′|A = σ and σ′ |= 2

∧
1≤ j≤n(a j ↔ ϕ j): inductively, the

value of each auxiliary proposition a j at the ith state of σ′ is defined, via a rule a j := ϕ j,
where ϕ j is a PLTL formula; hence it depends on the values of the propositions B in the
ith state of σ, and on the values of A∪B in the previous states of σ′. ut

Theorem 1. The expressive power of RLTL is the same as QLTL.

Sketch of proof. Each RLTL formula η, as defined in (2), is expressible using the
following equivalent QLTL formula:

∃∃a1 . . .∃∃an(ψ∧2
∧

1≤ j≤n

(a j↔ ϕ j))

For the other direction, one can first translate the QLTL property into a second-order
monadic logic formula, then to a deterministic Muller automata and then construct an
RLTL formula that holds for the accepting executions of this automaton. The rules of
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this formula encode the automata states, and the statement describes the acceptance
condition of the Muller automaton. ut

We define RPLTL by disallowing the future time temporal operators in RLTL. Every
top level formula is interpreted as implicitly being prefixed with a 2 operator, hence is
checked in every state. This results in a formalism that is equivalent to a Büchi automata,
where all the states except one are accepting and where the non-accepting state is a sink.
We can use a related, but simpler construction than in Theorem 1 to prove the following:

Lemma 2. The expressive power of RPLTL is the same as QPLTL.

Lemma 3. RPLTL can, with no loss of expressive power, be restricted to the form:

2p where a j = ϕ j : j ∈ {1, . . . ,n}

with p being one of the auxiliary propositions a j and ϕ j contains only a single occur-
rence of the 	 temporal operator (and the Boolean operators).

In this form, the value of the Boolean variables a j encodes the states of an automaton,
and the rules encode the transitions.

3 RV for Propositional Past Time LTL and its Extension

Runtime verification of temporal specifications often concentrates on the past portion of
the logic. Past time specifications have the important property that one can distinguish
when they are violated after observing a finite prefix of an execution. For an extended
discussion of this issue of monitorability, see e.g., [5, 13]. The RV algorithm for PLTL,
presented in [21], is based on the observation that the semantics of the past time for-
mulas 	ϕ and (ϕS ψ) in the current state i is defined in terms of the semantics of its
subformula(s) in the previous state i−1. To demonstrate this, we rewrite the semantic
definition of the S operator to a form that is more applicable for runtime verification.

– (σ, i) |= (ϕS ψ) if (σ, i) |= ψ or: i > 1 and (σ, i) |= ϕ and (σ, i−1) |= (ϕS ψ).

The semantic definition is recursive in both the length of the prefix and the structure of
the property. Thus, subformulas are evaluated based on smaller subformulas, and the
evaluation of subformulas in the previous state. The algorithm shown below uses two
vectors of values indexed by subformulas: pre, which summarizes the truth values of
the subformulas for the execution prefix that ends just before the current state, and now,
for the execution prefix that ends with the current state. The order of calculating now
for subformulas is bottom up, according to the syntax tree.

1. Initially, for each subformula ϕ of η, now(ϕ) := false.
2. Observe a new event (as a set of propositions) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := true.
– now(ϕ∧ψ) := now(ϕ) and now(ψ).
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– now(¬ϕ) := not now(ϕ).
– now(ϕSψ) := now(ψ) or (now(ϕ) and pre((ϕSψ))).
– now(	 ϕ) := pre(ϕ).

5. If now(η) = false then report a violation, otherwise goto step 2.

Runtime verification for RPLTL. For RPLTL, we need to add to the above algorithm
calculations of now(a j) and now(ϕ j) for each rule of the form a j := ϕ j (the correspond-
ing pre entries will be updated as in line 3 in the above algorithm). Because the auxiliary
propositions can appear recursively in RPLTL rules, the order of calculation is subtle.
To see this, consider, for example, Formula (3). It contains the definition q :=	¬q. We
cannot calculate this bottom up, as we did for PLTL, since now(q) is not computed yet,
and we need to calculate now(	¬q) in order to compute now(q). However, notice that
the calculation is not dependent on the value of q to calculate 	¬q; in Step 4 above, we
have that now(	 ϕ) := pre(ϕ) so now(	¬q) := pre(¬q).

Mixed evaluation order. Under mixed evaluation order, one calculates now as part
of Step 4 of the above algorithm in the following order.

a. Calculate now(δ) for each subformula δ that appears in ϕ j of a rule a j := ϕ j, but
not within the scope of a 	 operator (observe that now(	γ) is set to pre(γ)).

b. Set now(a j) to now(ϕ j) for each j.
c. Calculate now(δ) for each subformula δ that appears in ϕ j of a rule a j := ϕ j within

the scope of a 	 operator.
d. Calculate now(δ) for each subformula δ that appears in the statement ψ, using the

calculated now(a j).

4 First-Order LTL

Assume a finite set of infinite domains6 D1,D2, . . ., e.g., integers or strings. Let V be
a finite set of variables, with typical instances x, y, z. An assignment over a set of
variables V maps each variable x ∈V to a value from its associated domain domain(x),
where multiple variables (or all of them) can be related to the same domain. For example
[x→ 5,y→ “abc”] assigns the values 5 to x and the value “abc” to y.

We define models for FLTL based on temporal relations [9], that is, relations with
last parameter that is a natural number, representing a time instance in the execution.
So a tuple of a relation R can be (“a”,5,“cbb”,3), where 3 is the value of the time pa-
rameter. The last parameter i represents a discrete progress of time rather than modeling
physical real time. It is used to allow the relations to have different tuples in different
instances of i, corresponding to states in the propositional temporal logics.

For a relation R, R[i] is the relation obtained from R by restricting it to the value i
in the last parameter, and removing that last i from the tuples. For simplicity, we will
describe henceforth the logic with relations R that have exactly two parameters, the
second of which is the time instance. Hence R[i] is a relation with just one parameter
over a domain that will be denoted as dom(R). The definition of the logic that allows
relations with more parameters is quite straightforward. Our implementation, and the
examples described later, fully support relations with zero or more parameters.

6 Finite domains are handled with some minor changes, see [18].
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Syntax. The formulas of the core FLTL logic are defined by the following grammar,
where p denotes a relation, a denotes a constant and x denotes a variable.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) | ¬ϕ | ©ϕ | (ϕ U ϕ) | 	 ϕ | (ϕ S ϕ) | ∃x ϕ

Additional operators are defined as in the propositional logic. We define ∀x ϕ=¬∃x¬ϕ.
Restricting the modal operators to the past operators (S , 	 and the ones derived from
them) forms the logic PFLTL.
Semantics. A model is a set of temporal relations R = {R1 . . . ,Rm}. Since the stan-
dard definition of temporal logic is over a sequence (“the execution”), let R [i] =
{R1[i] . . . ,Rm[i]}. R [i] represents a state. A model R can thus be seen as a sequence
of states R [1]R [2] . . .. Let m be a bijection from relation names (syntax) to the relations
R (semantics).

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. We
denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ. Let ε be the empty assignment (with no variables). In any of the follow-
ing cases, (γ,R , i) |= ϕ is defined where γ is an assignment over free(ϕ), and i≥ 1.

– (ε,R , i) |= true.
– (ε,R , i) |= p(a) if m(p)(a, i), where a denotes a constant from dom(m(p)).
– ([x 7→ a],R , i) |= p(x) if m(p)(a, i), where domain(x) = dom(m(p)).
– (γ,R , i) |= (ϕ∧ψ) if (γ|free(ϕ),R , i) |= ϕ and (γ|free(ψ),R , i) |= ψ.
– (γ,R , i) |= ¬ϕ if not (γ,R , i) |= ϕ.
– (γ,R , i) |=©ϕ if (γ,R , i+1) |= ϕ.
– (γ,R , i) |= (ϕ U ψ) if for some j, j ≥ i, (γ|free(ψ),R , j) |= ψ and for each k, i ≤

k < j, (γ|free(ϕ),R ,k) |= ϕ.
– (γ,R , i) |=	ϕ if i > 1 and (γ,R , i−1) |= ϕ.
– (γ,R , i) |= (ϕ S ψ) if for some j, 1 ≤ j ≤ i, (γ|free(ψ),R , j) |= ψ and for each k,

j < k ≤ i, (γ|free(ϕ),R ,k) |= ϕ.
– (γ,R , i) |= ∃x ϕ if there exists a ∈ domain(x) such that7 (γ [x 7→ a],σ, i) |= ϕ.

For an FLTL (PFLTL) formula with no free variables, denote R |= ϕ when
(ε,R ,1) |= ϕ. We will henceforce, less formally, use the same symbols both for the
relations (semantics) and their representation in the logic (syntax). Note that the letters
p,q,r, which were used for representing propositions in the propositional versions of
the logic in previous sections, will represent relations in the first-order versions. The
quantification over values of variables, denoted with ∃ and ∀, here is static in the sense
that they are independent of the state in the execution. We demonstrate that the lack of
expressiveness carries over from LTL (PLTL) to FLTL (PFLTL).

Example 1. Let p and q be temporal relations. The specification that we want to mon-
itor is that for each value a, p(a) appears in all the states where q(a) has appeared an
even number of times so far (for the odd occurrences, p(a) can also appear, but does
not have to appear). To show that this is not expressible in FLTL (and PFLTL), consider
models (executions) where only one data element a appears. Assume for the contra-
diction that there is an FLTL formula ψ that expresses this property. We recursively

7 γ [x 7→ a] is the overriding of γ with the binding [x 7→ a].
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replace in ψ, each subformula of the form ∃ϕ by a disjunction over copies of ϕ, in
which the quantified occurrences of p(x) and q(x) are replaced by pa and qa, respec-
tively or to false; the false represents the Boolean value of p(x) and q(x) for any x 6= a,
since only p(a) and q(a) may appear in the input. For example, ∃x(q(x)S p(x)) becomes
(qa S pa)∨ (falseS false) (which can be simplified to (qa S pa)). Similarly, subformulas
of the form ∀ϕ are replaced by conjunctions. This results in an LTL formula that holds
in a model, where each p(a) is replaced by pa and each q(a) is replaced by qa, iff ψ

holds for the original model. But Wolper’s example [32] contradicts the assumption
that such a formula exists. Using parametric automata as a specification formalism, as
in [14, 20, 27, 29], can express this property, where for each value a there is a separate
automaton that counts the number of times that q(a) has occurred.

Example 2. Consider the property that asserts that when report(y,x,d) appears in a
state, denoting that process y sends some data d to a process x, there was a chain of pro-
cess spawns: spawn(x,x1), spawn(x1,x2) . . . spawn(xl ,y). i.,e., y is a descendent process
of x. The required property involves the transitive closure of the relation spawn. FLTL
can be translated (in a way similar to the standard translation of LT L into monadic
first-order logic formula [31]) to a first-order formula, with explicit occurrences of time
variables over the naturals and the linear order relation < (or ≤) between them. For ex-
ample, 2∀x(p(x)→3q(x)) will be translated into ∀x∀t (p(x, t)→ ∃t ′ (t ≤ t ′∧q(x, t ′))).
However, the transitive closure of spawn cannot be expressed in first-order setting. This
can be shown based on the compactness theory of first-order logic [11].

Extending FLTL with dynamic quantification. Relations play in FLTL a similar role
to propositions in LTL. Hence, in correspondence with the relation between LTL and
QLTL, we extend FLTL (PFLTL) with dynamic quantification over relations, obtaining
QFLTL (and the past-restricted version QPFLTL). The syntax includes ∃∃pϕ, where p
denotes a relation. We also allow ∀∀p ϕ = ¬∃∃p¬ϕ. The semantics is as follows.

– (γ,R , i) |= ∃∃qϕ if there exists R ′ such that R ′ \{q}= R and (γ,R ′, i) |= ϕ.

Consequently, quantification over relations effectively extends the model R into a
model R ′ within the scope of the quantifier. Note that quantification here is dynamic
(as in QLTL and QPLTL) since the relations are temporal and can have different sets of
tuples in different states.

Extending FLTL with rules. We now extend FLTL into RFLTL in a way that is mo-
tivated by the propositional extension from LTL (PLTL) to RLTL (RPLTL). We allow
the following formula:

ψ where r j(x j) := ϕ j(x j) : j ∈ {1, . . . ,n} such that, (4)

1. ψ, the statement, is an FLTL formula with no free variables,
2. ϕ j are PFLTL formulas with a single8 free variable x j,
3. r j is an auxiliary temporal relation with two parameters: the first parameter is of

the same type as x j and the second one is, as usual, a natural number that is omitted

8 Again, the definition can be extended to any number of parameters.
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in the temporal formulas. An auxiliary relation r j can appear within ψ. They can
also appear in ϕk of a rule rk := ϕk, but only within the scope of a previous-time
operator 	.

We define the semantics for the RFLTL (RPFLTL) specification (4) by using the fol-
lowing equivalent QFLTL (QPFLTL, respectively) formula9:

∃∃r1 . . . ∃∃rn (ψ∧2
∧

j∈{1,...,n}
(r j(x j)↔ ϕi(x j)) (5)

The logic RPFLTL is obtained by restricting the temporal modalities of RFLTL to
the past ones: S and 	, and those derived from them.

Lemma 4 (Well foundedness of auxiliary relations). The auxiliary temporal rela-
tions of an RFLTL formula at state i are uniquely defined by the prefix of the execution
up to and including that state.

Proof. By a simple induction, similar to Lemma 1. ut
The following formula expresses the property described in Example 1, which was

shown to be not expressible using FLTL.

2∀x(r(x)→ p(x)) where r(x) = (q(x)↔	¬r(x)) (6)

The property that corresponds to Example 2 appears as the property spawning in Figure
1 in the implementation section 6.

Theorem 2. The expressive power of RPFLTL is strictly weaker than that of QPFLTL.

Sketch of Proof. The proof of this theorem includes encoding of a property that ob-
serves sets of data elements, where elements a, appears separately, i.e., one per state,
as v(a), in between states where r appears. The domain of data elements is unbounded.
The set of a-values observed in between two consecutive r’s is called a data set. The
property asserts that there are no two consecutive data sets that are equivalent. This
property can be expressed in QPFLTL.

We use a combinatorial argument to show by contradiction that one cannot express
this property using any RPFLTL formula ϕ. The reason is that every prefix of a model
for an RPFLTL property is extended uniquely with auxiliary relations, according to
Lemma 4. Each prefix can be summarized by a finite number of relations: the ones
in the model, the auxiliary relations and the assignments satisfying the subformulas.
The size of each such relation is bounded by O(mN) where m is the number of values
appearing in the prefix, and N is the number of parameters of the relations. However,
the number of different data sets over m values is 2m. This means that with large enough
number of different values, each RPFLTL formula ϕ over the models of this property
can have two prefixes with the same summary, where one of them has a data set that the
other one does not. The semantics of RPFLTL implies that extending two prefixes with

9 Formal semantics can also be given by constructing a set of temporal relations extended with
the auxiliary ones inductively over growing prefixes.
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the same summary in the same way would have the same truth value. Consequently,
we can extend the two prefixes where some data set appears in one of them but not in
the other into a complete model, and ϕ will not be able to distinguish between these
models. ut

From Theorem 2 and Equation (5) we immediately obtain:

Corollary 1. Restricting the quantification of QPFLTL to existential quantification,
strictly weakens its expressive power10.

5 RV for Past Time First-Order LTL and its Extension

Runtime verification of FLTL is performed on an input that consists of events in the
form of tuples of relations. (A typical use of runtime verification restricts the events
for each state to a single event.) In our notation, the input consists of a sequence
R [1]R [2] . . ., which we earlier identified with states, where each R [i] consists of the
relations in R with the last parameter is restricted to i. The RV algorithm will make use
of sets of assignments over a set of variables, satisfying a subformula at some state (and
stored in pre and now), also represented as relations (instead of propositions, as used
for LTL in Section 3).

Set Semantics. The RV algorithm for (R)PLTL, presented in Section 3 calculates
now(ϕ), for ϕ a subformula of the monitored property, to be the Boolean truth value
of ϕ over the prefix inspected by the RV algorithm so far. For (R)PFLTL, now(ϕ) de-
notes the set of assignments satisfying ϕ (in the form of relations over the free variables
in the subformula), rather than a Boolean value. We provide an alternative set semantics
for the logic RPFLTL, without changing its interpretation, in a way that is more directly
related to the calculation of values in now by the RV algorithm that will be presented
below. Under the set semantics (introduced in [18] for PFLTL, and extended here for
RPFLTL), I[ϕ,σ, i] denotes a set of assignments such that γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ.
We present here only two simple cases of the set semantics.

– I[(ϕ∧ψ),σ, i] = I[ϕ,R , i]
⋂

I[ψ,σ, i].
– I[(ϕ S ψ),R , i] = I[ψ,R , i]

⋃
(I[ϕ,R , i]

⋂
I[(ϕSψ),R , i−1]).

Runtime verification algorithm for PFLTL. We start by describing an algorithm for
monitoring PFLTL properties, presented in [18] and implemented in the tool DEJAVU.
We enumerate data values appearing in monitored events, as soon as we first see them.
We represent relations over the Boolean encoding of these enumeration, rather than over
the data values themselves. A hash function is used to connect the data values to their
enumerations to maintain consistency between these two representations. The relations
are represented as BDDs [7]. For example, if the runtime-verifier sees the input events
open(“a”), open(“b”), open(“c”), it will encode the argument values as 000, 001 and
010 (say, we use 3 bits b0, b1 and b2 to represent each enumeration, with b2 being the

10 It is interesting to note that for QPLTL, restriction to existential quantification does not change
the expressive power.
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most significant bit). A Boolean representation of the set of values {“a”,“b”} would be
equivalent to a Boolean function (¬b1∧¬b2) that returns 1 for 000 and 001.

Since we want to be able to deal with infinite domains (where only a finite number
of elements may appear in a given observed prefix) and maintain the ability to perform
complementation, unused enumerations represent the values that have not been seen yet.
In fact, it is sufficient to have just one enumeration representing these values per each
variable of the LTL formula. We guarantee that at least one such enumeration exists by
preserving for that purpose the enumeration 11 . . .11. We present here only the basic
algorithm. For versions that allow extending the number of bits used for enumerations
and garbage collection of enumerations, consult [17].

Given some ground predicate p(a), observed in the monitored execution, matching
with p(x) in the monitored property, let lookup(x,a) be the enumeration of a (a lookup
in the hash table). If this is a’s first occurrence, then it will be assigned a new enu-
meration. Otherwise, lookup returns the enumeration that a received before. We can
use a counter, for each variable x, counting the number of different values appearing
so far for x. When a new value appears, this counter is incremented and converted to
a Boolean representation. The function build(x,A) returns a BDD that represents the
set of assignments where x is mapped to (the enumeration of) v for v ∈ A. This BDD
is independent of the values assigned to any variable other than x, i.e., they can have
any value. For example, assume that we use the three Boolean variables (bits) x0, x1
and x2 for representing enumerations over x (with x0 being the least significant bit), and
assume that A = {a,b}, lookup(x,a) = 000, and lookup(x,b) = 001. Then build(x,A)
is a BDD representation of the Boolean function (¬x1∧¬x2).

Intersection and union of sets of assignments are translated simply into conjunction
and disjunction of their BDD representation, respectively; complementation becomes
BDD negation. We will denote the Boolean BDD operators as and, or and not. To im-
plement the existential (universal, respectively) operators, we use the BDD existential
(universal, respectively) operators over the Boolean variables that represent (the enu-
merations of) the values of x. Thus, if Bϕ is the BDD representing the assignments sat-
isfying ϕ in the current state of the monitor, then exists(〈x0, . . . ,xk−1〉,Bϕ) is the BDD
that represents the assignments satisfying ∃x ϕ in the current state. Finally, BDD(⊥)
and BDD(>) are the BDDs that return always 0 or 1, respectively. The algorithm for
monitoring a formula η is as follows.

1. Initially, for each subformula ϕ of η, now(ϕ) := BDD(⊥).
2. Observe a new state (as a set of ground predicates) si as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(pk(a)) := if Rk[i](a) then BDD(>) else BDD(⊥).
– now(pk(x)) := build(x,{a | Rk[i](a)}).
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕ S ψ)))).
– now(	 ϕ) := pre(ϕ).

12



– now(∃x ϕ) := exists(〈x0, . . . ,xk−1〉,now(ϕ)).
5. If now(η) = false then report a violation, otherwise goto step 2.

RV algorithm for RPFLTL We extend now the algorithm to capture RPFLTL. The
auxiliary relations r j extend the model, and we need to keep BDDs representing now(r j)
and pre(r j) for each relation r j. We also need to calculate the subformulas ϕi that ap-
pear in a specification, as part of the runtime verification, as per the above PFLTL al-
gorithm. One subtle point is that the auxiliary relations r j may be defined in a rule with
respect to a variable x j as in r j(x j) := ϕ j(x j) (this can be generalized to any number
of variables), but r j can be used as a subformula with other parameters in other rules
or in the statement e.g., as r j(y). This can be resolved by a BDD renaming function
rename(r j(x j),y). We then add the following updates to step 4 of the above algorithm.

For each rule r j(x j) := ϕ j(x j):
calculate now(ϕ j);
now(r j) := now(ϕ j);
now(r j(y)) := rename(r j(x j),y);
now(r j(a)) := if now(r j)(a) then BDD(>) else BDD(⊥)

As in the propositional case, the evaluation order cannot be simply top down or bottom
up, since relations can appear both on the left and the right of a definition such as
r(x) := p(x)∨	r(x); we need to use the mixed evaluation order, described in Section 3.

Complexity. BDDs were first introduced to model checking [8] since they can often
(but not always) allow a very compact representation of states. In our context, each
BDD in pre or now represents a relation with k parameters, which summarizes the
value of a subformula of the checked PFLTL or RPFLTL property with k free variables
over the prefix observed so far. Hence, it can grow up to a size that is polynomial in the
number of values appearing in the prefix, and exponential in k (with k being typically
very small). However, the marriage of BDDs and Boolean enumeration is in particular
efficient, since collections of adjacent Boolean enumerations tend to compact well.

6 Implementation

DEJAVU is implemented in SCALA. DEJAVU takes as input a specification file con-
taining one or more properties, and synthesizes the monitor as a self-contained SCALA
program. This program takes as input the trace file and analyzes it. The tool uses the
JavaBDD library for BDD manipulations [24].

Example properties. Figure 1 shows four properties in the input ASCII format of the
tool, the first three of which are related to the examples in Section 4, which are not
expressible in (P)FLTL. That is, these properties are not expressible in the original first-
order logic of DEJAVU presented in [18]. The last property illustrates the use of rules to
perform conceptual abstraction. The ASCII version of the logic uses @ for	, | for ∨, &
for ∧, and ! for ¬. The first property telemetry1 is a variant of formula 6, illustrating the
use of a rule to express a first-order version of Wolper’s example [32], that all the states
with even indexes of a sequence satisfy a property. In this case we consider a radio on
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prop telemetry1 : Forall x . closed (x) → !telem(x) where
closed (x) := toggle (x) ↔ @!closed (x)

prop telemetry2 : Forall x . closed (x) → !telem(x) where
closed (x) := (!@true & !toggle (x)) | (@closed (x) & !toggle (x)) |

(@open(x) & toggle(x)) ,
open(x) := (@open(x) & !toggle (x)) | (@closed (x) & toggle(x))

prop spawning : Forall x . Forall y . Forall d . report (y,x,d) → spawned(x,y) where
spawned(x,y) := @spawned(x,y) | spawn(x,y) |

Exists z . (@spawned(x,z) & spawn(z,y))

prop commands : Forall c . dispatch (c) → ! already dispatched (c) where
already dispatched (c) := @ [ dispatch (c) , complete(c) ) ,
dispatch (c) := Exists t . CMD DISPATCH(c,t),
complete(c) := Exists t . CMD COMPLETE(c,t)

Fig. 1: Properties stated in DEJAVU’s logic

board a spacecraft, which communicates over different channels (quantified over in the
formula) that can be turned on and off with a toggle(x); they are initially off. Telemetry
can only be sent to ground over a channel x with the telem(x) event when radio channel
x is toggled on.

The second property, telemetry2, expresses the same property as telemetry1, but in
this case using two rules, reflecting how we would model this using a state machine
with two states for each channel x: closed(x) and open(x). The rule closed(x) is defined
as a disjunction between three alternatives. The first states that this predicate is true if
we are in the initial state (the only state where @true is false), and there is no toggle(x)
event. The next alternative states that closed(x) was true in the previous state and there
is no toggle(x) event. The third alternative states that in the previous state we were in
the open(x) state and we observe a toggle(x) event. Similarly for the open(x) rule.

The third property, spawning, expresses a property about threads being spawned
in an operating system. We want to ensure that when a thread y reports some data d
back to another thread x, then thread y has been spawned by thread x either directly, or
transitively via a sequence of spawn events. The events are spawn(x,y) (thread x spawns
thread y) and report(y,x,d) (thread y reports data d back to thread x). For this we need
to compute a transitive closure of spawning relationships, here expressed with the rule
spawned(x,y).

The fourth property, commands, concerns a realistic log from the Mars rover
Curiosity [28]. The log consists of events (here renamed) CMD DISPATCH(c,t) and
CMD COMPLETE(c,t), representing the dispatch and subsequent completion of a com-
mand c at time t . The property to be verified is that a command, once dispatched, is
not dispatched again before completed. Rules are used to break down the formula to
conceptually simpler pieces.
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Evaluation. In [18, 19] we evaluated DEJAVU without the rule extension against the
MONPOLY tool [4], which supports a logic close to DEJAVU’s. In [17] we evaluated
DEJAVU’s garbage collection capability. In this section we evaluate the rule extension
for the properties in Figure 1 on a collection of traces. Table 1 shows the analysis time
(excluding time to compile the generated monitor) and maximal memory usage in MB
for different traces (format is ‘trace length : time / memory’). The processing time is
generally very reasonable for very large traces. However, the spawning property re-
quires considerably larger processing time and memory compared to the other proper-
ties since more data (the transitive closure) has to be computed and stored. The evalua-
tion was performed on a Mac laptop, with the Mac OS X 10.10.5 operating system, on
a 2.8 GHz Intel Core i7 with 16 GB of memory.

Property Trace 1 Trace 2 Trace 3
telemetry1 1,200,001 : 2.6s / 194 MB 5,200,001 : 5.9s / 210 MB 10,200,001 : 10.7s / 239 MB
telemetry2 1,200,001 : 3.8s / 225 MB 5,200,001 : 8.7s / 218 MB 10,200,001 : 16.6s / 214 MB
spawning 9,899 : 29.5s / 737 MB 19,999 : 117.3s / 1,153 MB 39,799 : 512.5s / 3,513 MB
commands 49,999 : 1.5s / 169 MB N/A N/A
Table 1: Evaluation - trace lengths, analysis time in seconds, and maximal memory use

7 Conclusions

Propositional linear temporal logic (LTL) and automata are two common specification
formalisms for software and hardware systems. While temporal logic has a more declar-
ative flavor, automata are more operational, describing how the specified system pro-
gresses. There has been several proposed extensions to LTL that extend its expressive
power to that of related automata formalisms. We proposed here a simple extension for
propositional LTL that adds auxiliary propositions that summarize the prefix of the ex-
ecution, based on rules written as past formulas. Conceptually, this extension puts the
specification in between propositional LTL and automata, as the additional variables
can be seen as representing the state of an automaton that is synchronized with the tem-
poral property. It is shown to have the same expressive power as Büchi automata, and
is in particular appealing for runtime verification of past (i.e., safety) temporal proper-
ties, which already are based on summarizing the value of subformulas over observed
prefixes. We demonstrated that first-order linear temporal logic (FLTL), which can be
used to assert properties about systems with data, also has expressiveness deficiencies,
and similarly extended it with rules that define relations that summarize prefixes of the
execution. We proved that for the first-order case, unlike the propositional case, this
extension is not identical to the addition of dynamic (i.e., state dependent) quantifica-
tion. We presented a monitoring algorithm for propositional past time temporal logic
with rules, extending a classical algorithm, and similarly presented an algorithm for
first-order past temporal logic with rules. Finally we described the implementation of
this extension in the DEJAVU tool and provided experimental results. The code and
many more examples appear at [10]. Future work includes performing additional ex-
periments, and making further comparisons to other formalisms. We intend to study
further extensions, exploring the space between logic and programming.
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