
Runtime Verification:
From Propositional to First-Order Temporal Logic?

Klaus Havelund1 and Doron Peled2

1Jet Propulsion Laboratory,
California Institute of Technology, USA

2 Department of Computer Science
Bar Ilan University, Israel

Abstract. Runtime Verification is a branch of formal methods concerned with
analysis of execution traces for the purpose of determining the state or gen-
eral quality of the executing system. The field covers numerous approaches, one
of which is specification-based runtime verification, where execution traces are
checked against formal specifications. The paper presents syntax, semantics, and
monitoring algorithms for respectively propositional and first-order temporal log-
ics. In propositional logics the observed events in the execution trace are rep-
resented using atomic propositions, while first-order logic allows universal and
existential quantification over data occurring as arguments in events. Monitoring
of the first-order case is drastically more challenging than the propositional case,
and we present a solution for this problem based on BDDs. We furthermore dis-
cuss monitorability of temporal properties by dividing them into different classes
representing different degrees of monitorability.

1 Introduction

Runtime verification (RV) [2, 16] allows monitoring (analysis) of executions of a sys-
tem, directly, without the need for modeling the system. It has some commonality with
other formal methods such as testing, model checking and formal verification, including
the use of a specification formalisms1. However, it differs a lot in goals, the algorithms
used, and the complexity and the coverage it suggests. Model checking performs a com-
prehensive search on a model of the system under test. Testing generates inputs to drive
system executions, trying to provide a good coverage, yet keeping the complexity low,
at the price of losing exhaustiveness. Formal verification attempts full proof of cor-
rectness based on deductive techniques. Runtime verification does not directly concern

? The research performed by the first author was carried out at Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and Space
Administration. The research performed by the second author was partially funded by Israeli
Science Foundation grant 2239/15: “Runtime Measuring and Checking of Cyber Physical Sys-
tems”.

1 RV can be understood more broadly to mean: any processing of execution traces for the pur-
pose of evaluating a system state or quality. Some approaches do not involve specifications but
rather use pre-programmed algorithms as monitors.



itself with coverage and the selection of execution paths, but rather focuses on analyz-
ing a single execution trace (or a collection thereof). An execution trace is generated
by the observed executing system, typically by instrumenting the system to generate
events as important transitions take place. Instrumentation can be manual by inserting
logging statements in the code, or it can be automated using instrumentation software,
such as aspect-oriented programming frameworks.

Runtime verification can take place on-line, as the system executes, or off-line, by
processing log files produced by the system. In the case of on-line processing, runtime
verification obtains the information about the execution as it unfolds, oftentimes without
seeing the complete sequence; yet it is required to provide a verdict as soon as possible.
The critical complexity measure here is the incremental complexity, which is performed
for each new event reported to the monitor. The calculation needs to be fast enough to
keep in pace with the executing system.

Following in part [26] and [17], we present algorithms for the runtime verification
of linear temporal logic properties, which is the most common specification formalism
used for both runtime verification and model checking. We start with the propositional
case, where an execution trace is checked against a future or past time propositional
LTL formula. For an online algorithm, which observes the execution trace event by
event, a verdict is not guaranteed in any finite time. Runtime monitorability identifies
what kind of verdicts can be expected when monitoring an execution against a temporal
property. Monitoring temporal properties is often restricted to safety properties. There
are two main reasons for this restriction: the first is that the algorithm for checking
safety is rather efficient, polynomial in the size of the property; the other reason is that
for safety properties we are guaranteed to have a finite evidence for a negative verdict
(albeit there is not always a bound on when such an evidence can be given).

After presenting the theory of monitoring propositional temporal logic we move on
to the more demanding challenge of monitoring properties that depend on data reported
to the monitor. This can be handled by a parametrized version of temporal logic (or
using parametrized automata), but more generally it calls for using a first-order version
of the temporal logic. We will concentrate on first-order safety properties. One of the
challenges here is that the data may, in principle, be unbounded and we only learn about
the actual values that are monitored as they appear in reported events. Another problem
is that, unlike the propositional case, the amount of data that needs to be kept may
keep growing during the execution. This calls for a clever representation that allows
fast processing of many data elements. We present an algorithm based on BDDs, which
is implemented in the tool DEJAVU [15].

The paper is organized as follows. Section 2 introduces propositional linear tempo-
ral logic, including future as well as past time operators, its syntax, semantics, and some
pragmatics. Section 3 presents a general theory of monitorability of temporal proper-
ties, such as those formulated in LTL. Section 4 outlines algorithms for monitoring
propositional LTL properties, first future time, and then past time. Section 5 introduces
first-order past time LTL, its syntax, semantics, and some pragmatics. Section 6 outlines
an algorithm for monitoring first-order past LTL properties. Finally, Section 7 concludes
the paper.



2 Propositional LTL

The definition of linear temporal logic including future and past time operators is as
follows [23]:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕ U ϕ) | ©ϕ|(ϕSϕ) | 	ϕ

where p is a proposition from a finite set of propositions P, with U standing for until,©
standing for next-time, S standing for since, and 	 standing for previous-time. One can
also write (ϕ∨ψ) instead of ¬(¬ϕ∧¬ψ), (ϕ→ψ) instead of (¬ϕ∨ψ), 3ϕ (eventually
ϕ) instead of (true U ϕ), 2ϕ (always ϕ) instead of ¬3¬ϕ, P ϕ (past ϕ) instead of
(true S ϕ) and H ϕ (history ϕ) instead of ¬P ¬ϕ.

LTL formulas are interpreted over an infinite sequence of events ξ = e1.e2.e3 . . .,
where ei ⊆ P for each i > 0. These are the propositions that hold in that event. LTL’s
semantics is defined as follows:

– ξ, i |= true.
– ξ, i |= p iff p ∈ ei.
– ξ, i |= ¬ϕ iff not ξ, i |= ϕ.
– ξ, i |= (ϕ∧ψ) iff ξ, i |= ϕ and ξ, i |= ψ.
– ξ, i |=©ϕ iff ξ, i+1 |= ϕ.
– ξ, i |= (ϕ U ψ) iff for some j≥ i, ξ, j |=ψ, and for all i≤ k < j it holds that ξ,k |=ϕ.
– ξ, i |=	ϕ iff i > 1 and ξ, i−1 |= ϕ.
– ξ, i |= (ϕS ψ) iff ξ, i |= ψ or the following hold2: i > 1, ξ, i |= ϕ and ξ, i− 1 |=
(ϕS ψ).

Then ξ |= ϕ when ξ,1 |= ϕ.
This definition of propositional temporal logic contains both future modalities (U,

2, 3 and©) and past modalities (S , H, P and 	). However, we do not always need to
use all off them:

– Removing the past temporal operators does not affect the expressiveness of the
logic [13]. On the other hand, there are examples of properties that are much more
compact when expressed using both the past and the present operators.

– Properties of the form 2ϕ, where ϕ does not contain the future operators form
an important class. There are several reasons for restricting runtime verification
to such properties. These properties correspond to temporal safety properties [22,
1]: failure can always be detected on a finite prefix [7]. Moreover, expressing safety
properties in this form allows an efficient runtime verification algorithm that is only
polynomial in the size of the specification [17]3.

2 This definition is equivalent to the traditional definition ξ, i |= (ϕ S ψ) iff for some 0 < j ≤ i,
ξ, j |= ψ, and for all j < k ≤ i it holds that ξ,k |= ϕ, but is more intuitive for the forthcoming
presentation of the RV algorithm.

3 There are examples of safety properties that are much more compact when expressed with the
past temporal operators [24], and for symmetrical considerations also vice versa.



3 Monitorability of Propositional Temporal Logic

Online runtime verification of LTL properties inspects finite prefixes of the execution.
Assume an observed system S, and assume further that a finite execution of S up to a
certain point is captured as an execution trace ξ = e1.e2. . . . .en, which is a sequence
of observed events, each of type E. Each event ei captures a snapshot of S’s execution
state. Then the RV problem can be formulated as constructing a program M with the
type M :E∗→D, which when applied to the trace ξ, as in M(ξ), returns some data value
d ∈ D in a domain D of interest. Typically M is generated from a formal specification,
given as a temporal logic formula or a state machine. Because online RV observes
at each time only a finite part of the execution, it can sometimes provide only a partial
verdict on the satisfaction and violation of the inspected property [6, 25]. This motivates
providing three kinds of verdicts as possible values for the domain D:

failed when the current prefix cannot be extended in any way into an execution that
satisfies the specification,

satisfied when any possible extension of the current prefix satisfies the specification,
and

undecided when the current prefix can be extended to satisfy the specification but also
extended to satisfy its negation.

For example, the property 2p (for some atomic proposition p), which asserts that
p always happens, can be refuted by a runtime monitor if p does not hold in some ob-
served event. At this point, no matter which way the execution is extended, the property
will not hold, resulting in a failed verdict. However, no finite prefix of an execution can
establish that 2p holds. In a similar way, the property 3p cannot be refuted, since p
may appear at any time in the future; but once p happens, we know that the property
is satisfied, independent on any continuation, and we can issue a satisfied verdict. For
the property (2p∨3q) we may not have a verdict at any finite time, in the case where
all the observed events satisfy both p and ¬q. On the other hand, we may never “lose
hope” to have such a verdict, as a later event satisfying q will result in a positive ver-
dict; at this point we can abandon the monitoring, since the property cannot be further
violated. On the other hand, for the property 23p we can never provide a verdict in
finite time: for whatever happens, p can still appear an infinite number of times, and we
cannot guarantee or refute that this property holds when observing any finite prefix of
an execution. The problem of monitorability of a temporal property was studied in [7,
12, 27], basically requiring that at any point of monitoring we still have a possibility to
obtain a finite positive or negative verdict.

Safety and liveness temporal properties were defined informally on infinite execu-
tion sequences by Lamport [22] as something bad cannot happen and something good
will happen. These informal definitions were later formalized by Alpern and Schnei-
der [1]. Guarantee properties where used in an orthogonal characterization by Manna
and Pnueli [23]. Guarantee properties are the dual of safety properties, that is, the nega-
tion of a safety property is a guarantee property and vice versa.

These classes of properties can be seen as characterizing finite monitorability of
temporal properties: if a safety property is violated, there will be a finite prefix wit-
nessing it; on the other hand, for a liveness property, one can never provide such a



finite negative evidence. We suggest the following alternative definitions of classes of
temporal properties.

AFR / safety Always Finitely Refutable: when the property does not hold on an infinite
execution, a failed verdict can be identified after a finite prefix.

AFS / guarantee Always Finitely Satisfiable: when the property is satisfied on an infi-
nite execution, a satisfied verdict can be identified after a finite prefix.

NFR / liveness Never Finitely Refutable: when the property does not hold on an infi-
nite execution, refutation can never be identified after a finite prefix.

NFS / morbidity Never Finitely Satisfiable: When the property is satisfied on an infi-
nite execution, satisfaction can never be identified after a finite prefix.

It is easy to see that the definitions of the classes AFR and safety in [1] are the same
and so are those for AFS and guarantee. A liveness property ϕ is defined to satisfy that
any finite prefix can be extended to an execution that satisfies ϕ. The definition of the
class NFR only mentions prefixes of executions that do not satisfy ϕ; but for prefixes
of executions that satisfy ϕ this trivially holds. The correspondence between NFS and
morbidity is shown in a symmetric way.

The above four classes of properties, however, do not cover the entire set of possible
temporal properties, independent of the actual formalism that is used to express them.
The following two classes complete the classification.

SFR Sometimes Finitely Refutable: for some infinite executions that violate the prop-
erty, refutation can be identified after a finite prefix; for other infinite executions
violating the property, this is not the case.

SFS Sometimes Finitely Satisfiable: for some infinite executions that satisfy the prop-
erty, satisfaction can be identified after a finite prefix; for other infinite executions
satisfying the property, this is not the case.

Bauer, Leucker and Schallhart [7] define three categories of prefixes of elements from
2P.

– A good prefix is one where all its extensions (infinite sequences of elements from
2P) satisfy the monitored property ϕ.

– A bad prefix is one where none of its infinite extensions satisfy ϕ.
– An ugly prefix cannot be extended into a good or a bad prefix.

When identifying a good or a bad finite prefix, we are done tracing the execution and
can announce that the monitored property is satisfied or failed, respectively. After an
ugly prefix, satisfaction or refutation of ϕ depends on the entire infinite execution, and
cannot be determined in finite time. Note that a property has a good prefix if it is not
a morbidity property, and a bad prefix if it is not a liveness property. Monitorability
of a property ϕ is defined in [7] as the lack of ugly prefixes for the property ϕ. This
definition is consistent with [27].

Any property that is in AFR (safety) or in AFS (guarantee) is monitorable [7, 12].
A property that is NFR ∩ NFS is non-monitorable. In fact no verdict is ever expected
on any sequence that is monitored against such a property. This leaves the three classes
SFR ∩ SFS, SFR ∩ NFS and NFR ∩ SFS, for which some properties are monitorable
and others are not. This is demonstrated in the following table.



AFR ∩ AFS

Morbidity

Liveness Safety

Guararantee

AFR ∩ NFSNFR ∩ NFS

NFR ∩ AFS

NFR ∩ SFS AFR ∩ SFS

SFR ∩ AFS

SFR ∩ NFS

SFR ∩ SFSQuaestio

Fig. 1: Classification of properties: safety, guarantee, liveness, morbidity and quaestio.

Class monitorable example non-monitorable example
SFR ∩ SFS ((3r∨23p)∧©q) ((p∨23p)∧©q)
SFR ∩ NFS (3p∧2q) (23p∧©q)
NFR ∩ SFS (2p∨3q) (23p∨©q)

The set of all properties Prop is not covered by safety, guarantee, liveness and morbidity.
The missing properties are in SFR ∩ SFS. We call the class of such properties Quaestio
(Latin for question). Figure 1 presents the relationship between the different classes of
properties and their intersections, with LTL specification examples.

4 Runtime Verification for Propositional LTL

4.1 Runtime Verification for Propositional Future LTL

We present three algorithms. The first one is a classical algorithm for runtime verifica-
tion of LTL (or Büchi automata) properties. The second algorithm can be used to check
during run time what kind of verdicts can still be produced given the current prefix. The
third algorithm can be used to check whether the property is monitorable.

Algorithm 1: Monitoring sequences using automata

Kupferman and Vardi [20] provide an algorithm for detecting good and bad prefixes.
For good prefixes, start by constructing a Büchi automaton A¬ϕ for ¬ϕ, e.g., using



the translation in [14]. Note that this automaton is not necessarily deterministic [30].
States of A¬ϕ, from which one cannot reach a cycle that contains an accepting state, are
deleted. Checking for a positive verdict for ϕ, one keeps for each monitored prefix the
set of states that A¬ϕ would be in after observing that input. One starts with the set of
initial states of the automaton A¬ϕ. Given the current set of successors S and an event
e ∈ 2P, the next set of successors S′ is set to the successors of the states in S according
to the transition relation ∆ of A¬ϕ. That is, S′ = {s′|s ∈ S∧ (s,e,s′) ∈ ∆}. Reaching the
empty set of states, the monitored sequence is good, and the property must hold since
the current prefix cannot be completed into an infinite execution satisfying ¬ϕ.

This is basically a subset construction for a deterministic automaton Bϕ, whose ini-
tial state is the set of initial states of A¬ϕ, accepting state is the empty set, and transition
relation as described above. The size of this automaton is O(22|P|), resulting in dou-
ble exponential explosion from the size of the checked LTL property. But in fact, we
do not need to construct the entire automaton Bϕ in advance, and can avoid the dou-
ble exponential explosion by calculating its current state on-the-fly, while performing
runtime verification. Thus, the incremental processing per each event is exponential in
the size of the checked LTL property. Unfortunately, a single exponential explosion is
unavoidable [20].

Checking for a failed verdict for ϕ is done with a symmetric construction, translating
ϕ into a Büchi automaton Aϕ and then the deterministic automaton B¬ϕ (or calculating
its states on-the-fly) using a subset construction as above. Note that A¬ϕ is used to con-
struct Bϕ and Aϕ is used to construct B¬ϕ. Runtime verification of ϕ uses both automata
for the monitored input, reporting a failed verdict if B¬ϕ reaches an accepting state, a
satisfied verdict if Bϕ reaches an accepting state, and an undecided verdict otherwise.
The algorithm guarantees to report a positive or negative verdict on the minimal good
or bad prefix that is observed.

Algorithm 2: Checking availability of future verdicts

We alter the above runtime verification algorithm to check whether positive or negative
verdicts can still be obtained after the current monitored prefix at runtime. Applying
DFS on Bϕ, we search for states from which one cannot reach the accepting state. We
replace these states with a single state ⊥ with a self loop, obtaining the automaton Cϕ.
Reaching ⊥, after monitoring a finite prefix σ with Cϕ happens exactly when we will
not have a good prefix anymore. This means that after σ, a satisfied verdict cannot be
issued anymore for ϕ.

Similarly, we perform BFS on B¬ϕ to find all the states in which the accepting state
is not reachable, then replace them by a single state > with a self loop, obtaining C¬ϕ.
Reaching > after monitoring a prefix means that we will not be able again to have a
bad prefix, hence a failed verdict cannot be issued anymore for ϕ. There is no point in
continuing the monitoring if we reach the pair of states (⊥,>), since there is no further
information, positive or negative, that will be later given by the runtime verification.
This happens when the currently monitored prefix is ugly.

We can perform runtime verification while updating the state of both automata, Cϕ

and C¬ϕ on-the-fly, upon each input event. However, we need to be able to predict if,



from the current state, an accepting state is not reachable. While this can be done in
space polynomial in the size of Cϕ and C¬ϕ, it makes an incremental calculation whose
time complexity is doubly exponential in the size of ϕ, as is the algorithm for that by
Pnueli and Zaks [27]. This is hardly a reasonable complexity for the incremental calcu-
lation performed between successive monitored events for an on-line algorithm. Hence,
a pre-calculation of these two automata before the monitoring starts is preferable, leav-
ing the incremental complexity exponential in ϕ, as in Algorithm 1.

Algorithm 3: Checking monitorability

A small variant on the construction of Cϕ and C¬ϕ allows checking if a property is mon-
itorable. The algorithm is simple: construct the product Cϕ×C¬ϕ and check whether the
state (⊥, >) is reachable. If so, the property is non-monitorable, since there is a prefix
that will transfer the product automaton to this state and thus it is ugly. It is not suffi-
cient to check separately that Cϕ can reach > and that C¬ϕ can reach ⊥. In the property
(¬(p∧ r)∧ ((¬pU(r∧3q))∨ (¬rU(p∧2q)))): both ⊥ and > can be reached, sepa-
rately, depending on which of the predicates r or p happens first. But in either case, there
is still a possibility for a good or a bad extension, hence it is a monitorable property.

If the automaton Cϕ×C¬ϕ consists of only a single state (⊥,>), then there is no
information whatsoever that we can obtain from monitoring the property.

The above algorithm is simple enough to construct, however its complexity is dou-
bly exponential in the size of the given LTL property. This may not be a problem, as the
algorithm is performed off-line and the LTL specifications are often quite short.

We show that checking monitorability is in EXPSPACE-complete. The upper bound
is achieved by a binary search version of this algorithm4. For the lower bound we show
a reduction from checking if a property is (not) a liveness property, a problem known to
be in EXPSPACE-complete [28, 21].

– We first neutralize bad prefixes. Now, when ψ is satisfiable, then 3ψ is monitorable
(specifically, any prefix can be completed into a good prefix) iff ψ has a good prefix.

– Checking satisfiability of a property ψ is in PSPACE-complete [29]5.
– ψ has a good prefix iff ψ is not a morbidity property, i.e., if ϕ =¬ψ is not a liveness

property.
– Now, ϕ is not a liveness property iff either ϕ is valid or 3¬ϕ is monitorable.

4.2 Runtime Verification for Propositional Past LTL

Algorithm

The algorithm for past LTL, first presented in [17], is based on the observation that the
semantics of the past time formulas 	ϕ and (ϕS ψ) in the current step i is defined in
terms of the semantics in the previous step i− 1 of a subformula, here recalled from
Section 2:

4 To show that a property is not monitorable, one needs to guess a state of Bϕ×B¬ϕ and check
that (1) it is reachable, and (2) one cannot reach from it an empty component, both for Bϕ and
for B¬ϕ. (There is no need to construct Cϕ or C¬ϕ.)

5 Proving that liveness was PSPACE-hard was shown in [3].



– ξ, i |=	ϕ iff i > 1 and ξ, i−1 |= ϕ.
– ξ, i |= (ϕS ψ) iff ξ, i |=ψ or the following hold: i> 1, ξ, i |=ϕ and ξ, i−1 |= (ϕS ψ).

One only needs to look one step, or event, backwards in order to compute the new truth
value of a formula and of its subformulas. The algorithm, shown below, operates on two
vectors (arrays) of values indexed by subformulas: pre for the state before that event,
and now for the current state (after the last seen event).

1. Initially, for each subformula ϕ, now(ϕ) := false.
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).

– now(true) := true.
– now((ϕ∧ψ)) := now(ϕ) and now(ψ).
– now(¬ϕ) := not now(ϕ).
– now((ϕ S ψ)) := now(ψ) or (now(ϕ) and pre((ϕSψ))).
– now(	 ϕ) := pre(ϕ).

5. Goto step 2.

An Example

As an example6, consider the formula close∧	open, and suppose we evaluate it against
the trace open.close at step i = 2 (after seeing the close event). The algorithm per-
forms the following assignments, resulting in the formula becoming true (assuming
that pre(open) is true):

now(open) := false

now(close) := true

now(	open) := pre(open)

now(close∧	open) := now(close)∧now(	open)

The above suggested algorithm interprets a formula on a trace. As an alternative we can
synthesize a program that is specialized for monitoring the property as in [17]. Figure 2
(left) shows a generated monitor program for the property. Two Boolean valued arrays
pre for the previous state and now are declared and operated on. The indices 0 . . .3
correspond to the enumeration of the subformulas shown in the Abstract Syntax Tree
(AST) in Figure 2 (right). For each observed event, the function evaluate() computes
the now array from highest to lowest index, and returns true (property is satisfied in this
position of the trace) iff now(0) is true.

6 All examples of safety properties henceforth will omit the implied 2 operator.



class Formula p extends Formula {
var pre: Array[Boolean] = Array. fill (4)( false )
var now: Array[Boolean] = Array. fill (4)( false )
var tmp: Array[Boolean] = null

override def evaluate(): Boolean = {
now(3) = isTrue("open")
now(2) = pre(3)
now(1) = isTrue("close")
now(0) = now(1).and(now(2))
val result = now(0)
tmp = now; now = pre; pre = tmp
result

}
}

0 : close & @ open

1 : close 2 : @ open

3 : open

Fig. 2: Monitor (left) and AST (right) for propositional property.

5 First-Order Past LTL

First-order past LTL allows universal and existential quantification over data occurring
as parameters in events. Such events are referred to as predicates (or parametric events).
Consider a predicate open( f ), indicating that a file f is being opened, and a predicate
close( f ) indicating that f is being closed. We can formulate that a file cannot be closed
unless it was opened before with the following first-order past LTL formula:

∀ f (close( f )−→ Popen( f )) (1)

Here P is the “sometimes in the past” temporal operator. This property must be checked
for every monitored event. Already in this very simple example we see that we need to
store all the names of files that were previously opened so we can compare to the files
that are being closed. A more refined specification would be the following, requiring
that a file can be closed only if it was opened before, and has not been closed since.
Here, we use the temporal operators 	 (“at previous step”) and S (“since”):

∀ f (close( f )−→	(¬close( f )S open( f ))) (2)

One problem we need to solve is the unboundedness caused by negation. For example,
assume that we have only observed so far one close event close(“ab”). The subformula
close( f ) is therefore satisfied for the value f = “ab”. The subformula ¬close( f ) is sat-
isfied by all values from the domain of f except for “ab”. This set contains those values
that we have not seen yet in the input within a close event. We need a representation of
finite and infinite sets of values, upon which applying complementation is efficient. We
present a first-order past time temporal logic, named QTL (Quantified Temporal Logic),
and an implementation, named DEJAVU based on a BDD (Binary Decision Diagram)
representation of sets of assignments of values to the free variables of subformulas.



5.1 Syntax

Assume a finite set of domains D1,D2, . . .. Assume further that the domains are infinite,
e.g., they can be the integers or strings7. Let V be a finite set of variables, with typical
instances x, y, z. An assignment over a set of variables W maps each variable x ∈W to
a value from its associated domain domain(x). For example [x→ 5,y→ “abc”] maps
x to 5 and y to “abc”. Let T be a set of predicate names with typical instances p, q,
r. Each predicate name p is associated with some domain domain(p). A predicate is
constructed from a predicate name, and a variable or a constant of the same type. Thus,
if the predicate name p and the variable x are associated with the domain of strings,
we have predicates like p(“gaga”), p(“baba”) and p(x). Predicates over constants are
called ground predicates. An event is a finite set of ground predicates. For example, if
T = {p,q,r}, then {p(“xyzzy”),q(3)} is a possible event. An execution σ = s1s2 . . . is
a finite sequence of events.

For runtime verification, a property ϕ is interpreted on prefixes of a monitored se-
quence. We check whether ϕ holds for every such prefix, hence, conceptually, check
whether 2ϕ holds, where 2 is the “always in the future” linear temporal logic operator.
The formulas of the core logic QTL are defined by the following grammar. For sim-
plicity of the presentation, we define here the logic with unary predicates, but this is
not due to any principle limitation, and, in fact, our implementation supports predicates
with multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground predicate
p(a) occurs in the most recent event. The formula p(x), for a variable x ∈V , holds with
a binding of x to the value a if a ground predicate p(a) appears in the most recent event.
The formula (ϕ1 S ϕ2) means that ϕ2 held in the past (possibly now) and since then ϕ1
has been true. The property 	 ϕ means that ϕ was true in the previous event. We can
also define the following additional operators: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ),
(ϕ−→ ψ) = (¬ϕ∨ψ), P ϕ = (true S ϕ) (previously ϕ), H ϕ = ¬P ¬ϕ (historically ϕ,
or ϕ always in the past), and ∀x ϕ = ¬∃x¬ϕ. The operator [ϕ,ψ), borrowed from [19],
has the same meaning as (¬ψ S ϕ), but reads more naturally as an interval.

5.2 Semantics

Predicate Semantics

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. Then
(γ,σ, i) |= ϕ, where γ is an assignment over free(ϕ), and i≥ 1, if ϕ holds for the prefix
s1s2 . . .si of the execution σ with the assignment γ. We denote by γ|free(ϕ) the restriction
(projection) of an assignment γ to the free variables appearing in ϕ and by ε the empty
assignment. The semantics of QTL can be defined as follows.

– (ε,σ, i) |= true.

7 For dealing with finite domains see [15].



– (ε,σ, i) |= p(a) if p(a) ∈ σ[i].
– ([x 7→ a],σ, i) |= p(x) if p(a) ∈ σ[i].
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |=(ϕS ψ) if (γ|free(ψ),σ, i) |=ψ or the following hold: i> 1, (γ|free(ϕ),σ, i) |=

ϕ, and (γ,σ, i−1) |= (ϕS ψ).
– (γ,σ, i) |=	ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that8 (γ [x 7→ a],σ, i) |= ϕ.

Set Semantics

It helps to present the BDD-based algorithm by first redefining the semantics of the
logic in terms of sets of assignments satisfying a formula. Let I[ϕ,σ, i] be the semantic
function, defined below, that returns a set of assignments such that γ ∈ I[ϕ,σ, i] iff
(γ,σ, i) |= ϕ. The empty set of assignments /0 behaves as the Boolean constant 0 and the
singleton set that contains an assignment over an empty set of variables {ε} behaves
as the Boolean constant 1. We define the union and intersection operators on sets of
assignments, even if they are defined over non identical sets of variables. In this case,
the assignments are extended over the union of the variables. Thus intersection between
two sets of assignments A1 and A2 is defined like a database “join” operator; i.e., it
consists of the assignments whose projection on the common variables agrees with an
assignment in A1 and with an assignment in A2. Union is defined as the dual operator
of intersection. Let A be a set of assignments over the set of variables W ; we denote
by hide(A,x) (for “hiding” the variable x) the set of assignments obtained from A after
removing from each assignment the mapping from x to a value. In particular, if A is a
set of assignments over only the variable x, then hide(A,x) is {ε} when A is nonempty,
and /0 otherwise. Afree(ϕ) is the set of all possible assignments of values to the variables
that appear free in ϕ. We add a 0 position for each sequence σ (which starts with s1),
where I returns the empty set for each formula. The assignment-set semantics of QTL
is shown in the following. For all occurrences of i, it is assumed that i > 0.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
– I[p(x),σ, i] = {[x 7→ a]|p(a) ∈ σ[i]}.
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[	ϕ,σ, i] = I[ϕ,σ, i−1].
– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

As before, the interpretation for the rest of the operators can be obtained from the above
using the connections between the operators.

8 γ [x 7→ a] is the overriding of γ with the binding [x 7→ a].



6 Runtime Verification for First-Order Past LTL

We describe an algorithm for monitoring QTL properties, first presented in [15] and im-
plemented in the tool DEJAVU. To give a brief overview of the contents of this section,
instead of storing the data values occurring in events, we enumerate these data values
as soon as we see them and use Boolean encodings of this enumeration. We use BDDs
to represent sets of such enumerations. For example, if the runtime verifier sees the in-
put events open(“a”), open(“b”), open(“c”), it will encode them as 000, 001 and 010
(say, we use 3 bits b0, b1 and b2 to represent each enumeration, with b2 being the most
significant bit). A BDD that represents the set of values {“a”,“c”} would be equivalent
to a Boolean function (¬b0 ∧¬b2) that returns 1 for 000 and 010 (the value of b1 can
be arbitrary). This approach has the following benefits:

– It is highly compact. With k bits used for representing enumerations, the BDD
can grow to 2O(k) nodes [8]; but BDDs usually compact the representation very
well [10]. In fact, we often do not pay much in overhead for keeping surplus bits.
Thus, we can start with an overestimated number of bits k such that it is unlikely
to see more than 2k different values for the domain they represent. We can also
incrementally extend the BDD with additional bits when needed at runtime.

– Complementation (negation) is efficient, by just switching between the 0 and 1
leaves of the BDD. Moreover, even though at any point we may have not seen
the entire set of values that will show up during the execution, we can safely (and
efficiently) perform complementation: values that have not appeared yet in the ex-
ecution are being accounted for and their enumerations are reserved already in the
BDD before these values appear.

– Our representation of sets of assignments as BDDs allows a very simple algorithm
that naturally extends the dynamic programming monitoring algorithm for propo-
sitional past time temporal logic shown in [17] and summarized in Setion 4.2.

6.1 BDDs

We represent a set of assignments as an Ordered Binary Decision Diagram (OBDD,
although we write simply BDD) [9]. A BDD is a compact representation for a Boolean
valued function of type Bk→B for some k > 0 (where B is the Boolean domain {0,1}),
as a directed acyclic graph (DAG). A BDD is essentially a compact representation of
a Boolean tree, where compaction glues together isomorphic subtrees. Each non-leaf
node is labeled with one of the Boolean variables b0, . . . ,bk−1. A non-leaf node bi is
the source of two arrows leading to other nodes. A dotted-line arrow represents that bi
has the Boolean value 0, while a thick-line arrow represents that it has the value 1. The
nodes in the DAG have the same order along all paths from the root. However, some
of the nodes may be absent along some paths, when the result of the Boolean function
does not depend on the value of the corresponding Boolean variable. Each path leads to
a leaf node that is marked by either a 0 or a 1, representing the Boolean value returned
by the function for the Boolean values on the path. Figure 3 contains five BDDs (a)-(e),
over three Boolean variables b0, b1, and b2 (referred to by their subscripts 0, 1, and 2),
as explained below.



6.2 Mapping data to BDDs

Assume that we see p(“ab”), p(“de”), p(“af”) and q(“fg”) in subsequent states in a
trace, where p and q are predicates over the domain of strings. When a value associated
with a variable appears for the first time in the current event (in a ground predicate), we
add it to the set of values of that domain that were seen. We assign to each new value
an enumeration, represented as a binary number, and use a hash table to point from the
value to its enumeration.

Consistent with the DEJAVU implementation, the least significant bit in an enumer-
ation is denoted in Figure 3 (and in the rest of this paper) by BDD variable 0, and the
most significant bit by BDD variable n− 1, where n is the number of bits. Using e.g.
a three-bit enumeration b2b1b0, the first encountered value “ab” can be represented as
the bit string 000, “de” as 001, “af” as 010 and “fg” as 011. A BDD for a subset of
these values returns a 1 for each bit string representing an enumeration of a value in the
set, and 0 otherwise. E.g. a BDD representing the set {“de”,“af”} (2nd and 3rd values)
returns 1 for 001 and 010. This is the Boolean function ¬b2 ∧ (b1 ↔ ¬b0). Figure 3
shows the BDDs for each of these values as well as the BDD for the set containing the
values “de” and “af”.

When representing a set of assignments for e.g. two variables x and y with k bits
each, we will have Boolean variables x0, . . . ,xk−1,y0, . . . ,yk−1. A BDD will return a 1
for each bit string representing the concatenation of enumerations that correspond to the
represented assignments, and 0 otherwise. For example, to represent the assignments
[x 7→ “de”,y 7→ “af”], where “de” is enumerated as 001 and “af” with 010, the BDD
will return a 1 for 001010.

6.3 The BDD-based algorithm

Given some ground predicate p(a) observed in the execution matching with p(x) in
the monitored property, let lookup(x,a) be the enumeration of a. If this is a’s first oc-
currence, then it will be assigned a new enumeration. Otherwise, lookup returns the
enumeration that a received before. We can use a counter, for each variable x, counting
the number of different values appearing so far for x. When a new value appears, this
counter is incremented, and the value is converted to a Boolean representation. Enumer-
ations that were not yet used represent the values not seen yet. In the next section we
introduce data reclaiming, which allows reusing enumerations for values that no longer
affect the checked property. This involves a more complicated enumeration mechanism.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. This BDD is independent of the val-
ues assigned to any variable other than x, i.e., they can have any value. For example,
assume that we use three Boolean variables (bits) x0, x1 and x2 for representing enu-
merations over x (with x0 being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 011, and lookup(x,b) = 001. Then build(x,A) is a BDD representation
of the Boolean function x0∧¬x2.

Intersection and union of sets of assignments are translated simply to conjunction
and disjunction of their BDD representation, respectively, and complementation be-
comes BDD negation. We will denote the Boolean BDD operators as and, or and not.



01

0

1

2

(a) BDD for {“ab”}:
¬b2∧¬b1∧¬b0

0 1

0

1

2

(b) BDD for {“de”}:
¬b2∧¬b1∧b0

01

0

1

2

(c) BDD for {“af”}:
¬b2∧b1∧¬b0

0 1

0

1

2

(d) BDD for {“fg”}:
¬b2∧b1∧b0

01

0

11

2

(e) BDD for {“de”, “af”}:
¬b2∧ (b1↔¬b0)

Fig. 3: BDDs for the trace: p(“ab”).p(“de”).p(“af”).q(“fg”)

To implement the existential (universal, respectively) operators, we use the BDD ex-
istential (universal, respectively) operators over the Boolean variables that represent
(the enumerations of) the values of x. Thus, if Bϕ is the BDD representing the assign-
ments satisfying ϕ in the current state of the monitor, then exists(〈x0, . . . ,xk−1〉,Bϕ) is
the BDD that represents the assignments satisfying ∃x ϕ in the current state. Finally,
BDD(⊥) and BDD(>) are the BDDs that return always 0 or 1, respectively.

The dynamic programming algorithm, shown below, works similarly to the algo-
rithm for the propositional case shown in Section 4.2. That is, it operates on two vectors
(arrays) of values indexed by subformulas: pre for the state before that event, and now
for the current state (after the last seen event). However, while in the propositional case
the vectors contain Boolean values, here they contain BDDs. The algorithm follows.



1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a|p(a) ∈ s}.
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕSψ)))).
– now(	 ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . ,xk−1〉,now(ϕ)).

5. Goto step 2.

An important property of the algorithm is that, at any point during monitoring, enu-
merations that are not used in the pre and now BDDs represent all values that have not
been seen so far in the input. This can be proved by induction on the size of temporal
formulas and the length of the input sequence. We specifically identify one enumeration
to represent all values not seen yet, namely the largest possible enumeration, given the
number of bits we use, 11 . . .11. We let BDD(11 . . .11) denote the BDD that returns 1
exactly for this value. This trick allows us to use a finite representation and quantify
existentially and universally over all values in infinite domains.

6.4 An Example

DEJAVU is implemented in SCALA. DEJAVU takes as input a specification file contain-
ing one or more properties, and synthesizes a self-contained SCALA program (a text
file) - the monitor, as already illustrated for the propositional case in Section 4.2. This
program (which first must be compiled) takes as input the trace file and analyzes it.
The tool uses the JavaBDD library for BDD manipulations [18]. We shall illustrate the
monitor generation using an example. Consider the following property stating that if a
file f is closed, it must have been opened in the past with some access mode m (e.g.
’read’ or ’write’ mode):

∀ f (close( f )−→ ∃m P open( f ,m))

The property-specific part9 of the synthesized monitor, shown in Figure 4 (left), relies
on the enumeration of the subformulas shown in Figure 4 (right). As in the propositional
case, two arrays are declared, indexed by subformula indexes: pre for the previous state
and now for the current state, although here storing BDDs instead of Boolean values.
For each observed event, the function evaluate() computes the now array from highest
to lowest index, and returns true (property is satisfied in this position of the trace) iff
now(0) is not BDD(⊥). At composite subformula nodes, BDD operators are applied.

9 An additional 600+ lines of property independent boilerplate code is generated.



For example for subformula 4, the new value is now(5).or(pre(4)), which is the interpre-
tation of the formula P open(f, m) corresponding to the law: Pϕ = (ϕ∨	 Pϕ). As can
be seen, for each new event, the evaluation of a formula results in the computation of a
BDD for each subformula.

class Formula p extends Formula {
var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False)
var tmp: Array[BDD] = null
val var f :: var m :: Nil =

declareVariables("f", "m")

override def evaluate(): Boolean = {
now(5) = build("open")(V("f"),V("m"))
now(4) = now(5).or(pre(4))
now(3) = now(4).exist(var m)
now(2) = build("close")(V("f"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var f)
val result = !now(0).isZero
tmp = now; now = pre; pre = tmp
result

}
}

0 : forall f . close(f) -> exists m . P open(f,m)

1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

4 : P open(f,m)

5 : open(f,m)

Fig. 4: Monitor (left) and AST (right) for the property

We shall briefly evaluate the example formula on a trace. Assume that each variable
f and m is represented by three BDD bits. Consider the input trace, consisting of three
events10:

open(input,read).open(output,write).close(out)

When the monitor evaluates subformula 5 on the first event open(input, read), it will
create a bit string composed of a bit string for each parameter f and m. As previously ex-
plained, bit strings for each variable are allocated in increasing order: 000, 001, 010,...,
hence the first bit string representing the assignment [ f 7→ input, m 7→ read ] becomes
000000 where the three rightmost bits represent the assignment of input to f , and the
three leftmost bits represent the assignment of read to m. Figure 5a shows the corre-
sponding BDD B1. Recall that most significant bits are implemented lower in the BDD,
and that for each bit (node) in the BDD, the dotted arrow corresponds to this bit being 0
and the full drawn arrow corresponds to this bit being 1. In this BDD all bits have to be
zero in order to be accepted by the function represented by the BDD. We will not show

10 Traces accepted by the tool are concretely in CSV format. For example the first event is a
single line of the form: open,input,read.



01

0

1

2

3

4

5

(a) B1 @ 5 and 4
after open(input,read)

0 1

0

1

2

3

4

5

(b) B2 @ 5
after open(output,write)

01

0

1 1

2 2

3

4

5

3

(c) B3 @ 4
after open(output,write)

01

0

1

2

(d) B4 @ 2
after close(out)

01

1

2

(e) B5 @ 3
after close(out)

0 1

0

1

2

(f) B6 @ 1
after close(out)

Fig. 5: Selected BDDs, named B1, . . . ,B6, computed after each event at various subfor-
mula nodes, indicated by BDD Bi @ node (see Figure 4), during processing of the trace:
open(input,read).open(output,write).close(out).

how all the tree nodes evaluate, except observe that node 5 assumes the same BDD
value as node 4 (all the seen values in the past), and conclude that since no close(. . . )
event has been observed, the top-level formula (node 0) is true at this position in the
trace.

Upon the second open(output,write) event, new values (output,write) are observed
as argument to the open event. Hence a new bit string for each variable f and m is
allocated, in both cases 001 (the next unused bit string for each variable). The new
combined bit string for the assignments satisfying subformula 5 then becomes 001001,
forming a BDD representing the assignment [ f 7→ output, m 7→ write ], and appear-
ing in Figure 5b as B2. The computation of the BDD for node 4 is computed by



now(4) = now(5).or(pre(4)), which results in the BDD B3, representing the set of the
two so far observed assignments (B3 = or(B1,B2)).

Upon the third close(out) event, a new value out for f is observed, and allocated
the bit pattern 010, represented by the BDD B4 for subformula 2. At this point node 4
still evaluates to the BDD B3 (unchanged from the previous step), and the existential
quantification over m in node 3 results in the BDD B5, where the bits 3, 4 and 5 for m
have been removed, and the BDD compacted. Node 1 is computed as or(not(B4), B5),
which results in the BDD B6. This BDD represents all bit patterns for f that are not 010,
corresponding to the value: out. So for all such values the formula is true. This means,
however, that the top-level formula in node 0 is not true (violated by bit pattern 010),
and hence the formula is violated on the third event.

6.5 Dynamic Data Reclamation

Consider property 1 on page 10 that asserts that each file that is closed was opened
before. If we do not remember for this property all the files that were opened, then we
will not be able to check when a file is closed whether it was opened before. Consider
now the more refined property 2 on page 10, requiring that a file can be closed only if
it was opened before, and has not been closed. Observe here that if a file was opened
and subsequently closed, then if it is closed again before opening, the property would
be invalidated just as in the case where it was not opened at all. This means that we can
“forget” that a file was opened when it is closed without affecting our ability to monitor
the formula. This allows reusing enumerations of data values, when this does not affect
the decision whether the property holds or not.

Let A be a set of assignments over some variables that include x. Denote by A[x = a]
the set of assignments from A in which the value of x is a. We say that the values a and
b are analogous for variable x in A, if hide(A[x = a],x) = hide(A[x = b],x). This means
that a and b, as values of the variable x, are related to all other values in A in the same
way. A value can be reclaimed if it is analogous to the values not seen yet in all the
assignments represented in pre(ψ), for each subformula ψ.

We shall now identify enumerations that can be reclaimed, and remove the values in
the hash table that map to them, such that the enumerations can later be reused to rep-
resent new values. The search for reclaimable enumerations in a particular step during
monitoring is performed on the pre BDDs. Recall that the enumeration 11 . . .11 repre-
sents all the values that were not seen so far. Thus, we can check whether a value a for
x is analogous to the values not seen so far for x by performing the checks on the pre
BDDs between the enumeration of a and the enumeration 11 . . .11. In fact, we do not
have to perform the checks enumeration by enumeration, but use a BDD expression that
constructs a BDD representing (returning 1 for) all enumerations that can be reclaimed
for a variable x.

Assume that a subformula ψ has three free variables, x, y and z, each with k bits,
i.e., x0, . . . ,xk−1, y0, . . . ,yk−1 and z0, . . . ,zk−1. The following expression returns a BDD
representing the enumerations for values of x in assignments represented by pre(ψ) that
are related to enumerations of y and z in the same way as 11 . . .11.

Iψ,x = ∀y0 . . .∀yk−1∀z0 . . .∀zk−1(pre(ψ)[x0 \1, . . .xk−1 \1]↔ pre(ψ))



We now conjoin the above formula over each subformula that has a temporal operator at
the outermost level, and subtract from this conjunction the 11 . . .11 enumeration. This
becomes the BDD avail of available enumerations. Any enumeration that is in avail
can be reclaimed, and later reused as the enumeration of a new value. The selection of
a “free” enumeration from avail can be performed by a SAT solver that picks any enu-
meration that satisfies it, followed by removing that enumeration from avail to indicate
that it is no longer available. Note that if a value later reappears after its enumeration
was reclaimed, it is likely to be assigned a different enumeration.

7 Conclusion

We presented a collection of runtime verification algorithms for linear temporal logics.
First we introduced propositional temporal logic, including future as well as past time
operators. We presented a theory of monitorability of temporal properties, introduc-
ing classes that reflect different degrees of monitorability. The notion of monitorability
identifies the kinds of verdicts that one can obtain from observing finite prefixes of
an execution. We then presented monitoring algorithms for the future time case as au-
tomata, and for the past time case as an instance of dynamic programming. We also
provided algorithms for checking what kind of verdict (positive or negative) we can ex-
pect after monitoring a certain prefix against a given property, and whether a property
is monitorable or not. We then introduced first-order past time linear temporal logic,
and a monitoring algorithm for it. While the propositional version is independent of
the length of the prefix seen so far, the first-order version may need to represent an
amount of values that can grow linearly with the number of data values observed so
far. The challenge is to provide a compact representation that will grow slowly and can
be updated quickly with each incremental calculation that is performed per each new
monitored event. We used a BDD representation of sets of assignments for the variables
that appear in the monitored property.

References

1. B. Alpern, F. B. Schneider, Recognizing Safety and Liveness. Distributed Computing 2(3),
117-126, 1987.

2. E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, G. Reger, An Introduction to Runtime
Verification, Lectures on Runtime Verification - Introductory and Advanced Topics, LNCS
Volume 10457, Springer, 1-23, 2018.

3. D. A. Basin, C. C. Jiménez, F. Klaedtke, E. Zalinescu, Deciding Safety and Liveness in
TPTL. Information Processing Letters 114(12), 680-688, 2014.

4. D. A. Basin, F. Klaedtke, S. Müller, E. Zalinescu, Monitoring Metric First-Order Temporal
Properties, Journal of the ACM 62(2), 1-45, 2015.

5. A. Bauer, J.C. Küster, G. Vegliach, From Propositional to First-Order Monitoring, RV’13,
LNCS Volume 8174, Springer, 59-75, 2013.

6. A. Bauer, M. Leucker, C. Schallhart, The Good, the Bad, and the Ugly, But How Ugly is
Ugly?, RV’07, LNCS Volume 4839, Springer, 126-138, 2007.



7. A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL. ACM Trans.
Software Engineering Methodologies, 20(4), 14:1-14:64, 2011.

8. R. E. Bryant, On the Complexity of VLSI Implementations and Graph Representations of
Boolean Functions with Application to Integer Multiplication, IEEE Transactions on Com-
puters 40(2): 205-213 (1991).

9. R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,
ACM Comput. Surv. 24(3), 293-318, 1992.

10. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic Model Check-
ing: 1020 States and Beyond, LICS’90, 428-439, 1990.

11. Y. Falcone, J.-C. Fernandez, L. Mounier, Runtime Verification of Safety/Progress Properties,
RV’09, LNCS Volume 5779, Springer, 40-59, 2009.

12. Y. Falcone, J.-C. Fernandez, L. Mounier, What can you Verify and Enforce at Runtime?,
STTT 14(3), 349-382, 2012.

13. D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the Temporal Analysis of Fairness, POPL’80,
ACM, 163-173 1980.

14. R. Gerth, D. A. Peled, M. Y. Vardi, P. Wolper, Simple On-The-Fly Automatic Verification of
Linear Temporal Logic, PSTV’95, 3-18, 1995.

15. K. Havelund, D. Peled, D. Ulus, First-order Temporal Logic Monitoring with BDDs, FM-
CAD’17, IEEE, 116-123, 2017.

16. K. Havelund, G. Reger, D. Thoma, E. Zălinescu, Monitoring Events that Carry Data, book
chapter in: Lectures on Runtime Verification - Introductory and Advanced Topics, book edi-
tors: Ezio Bartocci and Yliès Falcone, LNCS Volume 10457, Springer, 61-102, 2018.

17. K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties, TACAS’02, LNCS Vol-
ume 2280, Springer, 342-356, 2002.

18. JavaBDD, http://javabdd.sourceforge.net.
19. M. Kim, S. Kannan, I. Lee, O. Sokolsky, Java-MaC: a Run-time Assurance Tool for Java,

RV’01, Elsevier, ENTCS 55(2), 218-235, 2001.
20. O. Kupferman, M. Y. Vardi, Model Checking of Safety Properties. Formal Methods in Sys-

tem Design 19(3): 291-314, 2001.
21. O. Kupferman, G. Vardi, On Relative and Probabilistic Finite counterability. Formal Methods

in System Design 52(2): 117-146, 2018.
22. L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE Transactions on Soft-

ware Engineering 3(2): 125-143, 1977.
23. Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical Computer Science 83,

91-130, 1991.
24. N. Markey, Temporal Logic with Past is Exponentially More Succinct, Concurrency Column.

Bulletin of the EATCS 79: 122-128 (2003).
25. P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An Overview of the MOP Runtime

Verification Framework, STTT 14(3), Springer, 249-289, 2012.
26. D. Peled, K. Havelund, Refining the Safety–liveness Classification of Temporal Properties

According to Monitorability, Submitted for publication, LNCS, Sept. 2018.
27. A. Pnueli, A. Zaks, PSL Model Checking and Run-Time Verification via Testers. FM’06,

LNCS Volume 4085, Springer, 573-586, 2006.
28. A. P. Sistla, Safety, Liveness and Fairness in Temporal Logic, Formal Aspects of Computing

6(5): 495-512, 1994.
29. A. P. Sistla, E. M. Clarke, The Complexity of Propositional Linear Temporal Logics,

STOC’82, 159-168, 1982. Journal of the ACM (JACM) JACM Homepage archive Volume
32 Issue 3, July 1985 Pages 733-749

30. W. Thomas, Automata on Infinite Objects, Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Semantics, 133-192, 1990.


