
The DejaVu Runtime Verification Benchmark∗

Klaus Havelund1, Doron Peled2, and Dogan Ulus3

1 Jet Propulsion Laboratory, California Inst. of Technology, Pasadena, CA, USA
2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

3 Boston University, Boston, MA, USA

1 Introduction
In this paper we present a benchmark for evaluating runtime verification tools. It was originally created
in order to compare the DEJAVU runtime verification tool1 with another similar tool. DEJAVU’s logic
is first-order past time temporal logic. In order to monitor such properties efficiently, Binary Decision
Diagrams (BDDs) [1] are used for representing the data observed in a trace. The details on the logic
and its algorithm are described in e.g. [2, 3, 4]. The benchmark consists of six properties, formulated
in English, and formalized in DEJAVU’s logic. For each property is provided (normally) three traces, of
sizes varying from 10,000 events to one million events. Traces are represented in CSV format.

2 The DejaVu Logic

2.1 Syntax
The formulas of the core logic (minimal set of operators) are defined by the following grammar, where
p is a predicate (an event), a is a constant, and x is a variable. For simplicity of the presentation,
we define here the logic with unary predicates, but this is not due to any principle limitation, and, in
fact, our implementation supports predicates with multiple arguments, including zero arguments, which
correspond to propositions.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ

At a given state the formula p(“a”) means that p(“a”) happened, that is, p(“a”) is among the ground
predicates of the state. Consider now the formula p(x). We interpret it such that x is assigned any value
“a” where p(“a”) appears in the current state. Thus, for interpreting (p(x)∧q(y)) in a state that has the
predicates p(“a”) and q(3), we have the assignment [x 7→ “a”,y 7→ 3]. The formula (ϕ1 S ϕ2) (reads ϕ1
since ϕ2) means that ϕ2 occurred in the past (including now) and since then (beyond that state) ϕ1 has
been true. The property 	 ϕ means that ϕ is true in the previous state. Existential quantification has the
“obvious” meaning.

We can define the following derived operators as syntactic sugar using the operators defined in the
above core: false = ¬true, ∀x ϕ = ¬∃x ¬ϕ, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), P ϕ = (trueSϕ) (“previously”),
H ϕ = ¬P ¬ϕ (“always in the past” or “historically”), and [ϕ1,ϕ2) = (¬ϕ2 S ϕ1) (a semi-open interval).

∗The research performed by the first author was carried out at Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration. The research performed by the second author was
partially funded by Israeli Science Foundation grant 2239/15: “Runtime Measuring and Checking of Cyber Physical Systems”.
c© 2018. All rights reserved.

1The DEJAVU tool is available at https://github.com/havelund/dejavu.

https://github.com/havelund/dejavu

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

2.2 Semantics
An assignment over a set of variables maps each variable x to a value. For example [x→ 5,y→ “abc”]
assigns the values 5 to x and the value “abc” to y. A state is a finite set of ground predicates, also referred
to as events, where each predicate name may appear at most once. An execution σ = s1s2 . . . (observed
at any time) is a finite sequence of states.

Let vars(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. We denote by γ|vars(ϕ)
the restriction (projection) of an assignment γ to the free variables appearing in ϕ. Let ε be the empty
assignment and let γ be an assignment to the variables that appear free in a formula ϕ. Then (γ,σ, i) |= ϕ

iff. ϕ holds for the prefix s1s2 . . .si of the trace σ. In any of the following cases, (γ,σ, i) |= ϕ is defined
when γ is an assignment over vars(ϕ), and i≥ 1.

• (ε,σ, i) |= true.

• (ε,σ, i) |= p(a) if p(a) ∈ σ[i].

• ([v 7→ a],σ, i) |= p(v) if p(a) ∈ σ[i].

• (γ,σ, i) |= (ϕ∧ψ) if (γ|vars(ϕ),σ, i) |= ϕ and (γ|vars(ψ),σ, i) |= ψ.

• (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.

• (γ,σ, i) |= (ϕ S ψ) if for some 1≤ j≤ i, (γ|vars(ψ),σ, j) |= ψ and for all j < k≤ i, (γ|vars(ϕ),σ,k) |=
ϕ.

• (γ,σ, i) |=	ϕ if i > 1 and (γ,σ, i−1) |= ϕ.

• (γ,σ, i) |= ∃x ϕ if there exists a value a such that2 (γ [x 7→ a],σ, i) |= ϕ.

3 Properties
We present six properties below. DEJAVU accepts properties in ASCII format. In the formulas below
the used notation should be straightforward, although we point out that exclamation mark ‘ !’ stands for
¬ (negation), ‘&’ stands for ∧ (conjunction), and ‘@’ stands for 	 (previous state).

3.1 Access Property
3.1.1 Informally

The Access property states that if a file is accessed by a user, then the user should have
logged in and not yet logged out, and the file should have been opened and not yet closed.

3.1.2 Events

The events of interest are the following.

Event Explanation
access(user,file) user accesses file
login(user) user logs in
logout(user) user logs out
open(file) file is opened
close(file) file is closed

2γ [x 7→ a] is the overriding of γ with the binding [x 7→ a].

2

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

3.1.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop access :
forall u . forall f . access (u, f) → [login (u) , logout (u)) & [open(f) , close (f))

3.1.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : login(John).open(file1).access(John,file1).close(file1).logout(John)

• Violate : login(John).open(file1).close(file1).access(John,file1).logout(John)

3.2 File Property

3.2.1 Informally

The File property states that if a file is closed, then it must have been opened (and not yet
closed) with some mode m (e.g. read or write).

3.2.2 Events

The events of interest are the following.

Event Explanation
open(file,mode) file is opened with a particular mode (e.g, read or write)
close(file) file is closed

3.2.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop file :
forall f . close (f) → exists m . @ [open(f ,m),close (f))

3.2.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : open(file2,write).close(file2)

• Violate : open(file1,write).close(file2)

3

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

3.3 FIFO Property
3.3.1 Informally

The FIFO property is a conjunction of four subproperties about data entering and exiting
a queue:

• A datum can enter the queue at most once.
• A datum can exit the queue at most once.
• A datum can only exit if it has previously been entered.
• The queue has to respect the FIFO principle.

3.3.2 Events

The events of interest are the following.

Event Explanation
enter(x) datum x is entered into the queue
exit(x) datum x is removed from the queue

3.3.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop fifo :
forall x .

(enter (x) → ! @ P enter (x)) &
(exit (x) → ! @ P exit (x)) &
(exit (x) → @ P enter (x)) &
(forall y . (exit (y) & P (enter (y) & @ P enter (x))) →

@ P exit (x))

3.3.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : enter(1).enter(2).exit(1).exit(2)

• Violate : enter(1).enter(2).exit(2).exit(1)

3.4 Lock Property
3.4.1 Informally

This property concerns the acquisition and release of locks by concurrently executing
threads. It consists of three subproperties:

• A thread going to sleep must have released all acquired locks before then.
• If a thread acquires a lock, no thread may prior have acquired the lock and not yet

released it.
• A thread cannot release a lock without having acquired it and not yet released it.

4

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

3.4.2 Events

The events of interest are the following.

Event Explanation
acq(thread,lock) thread acquires lock
rel(thread,lock) thread releases lock
sleep(thread) thread goes to sleep

3.4.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop locking :
forall t . forall l .

(
(sleep (t) → ![acq(t , l) , rel (t , l))) &
(acq(t , l) → ! exists s . @ [acq(s , l) , rel (s , l))) &
(rel (t , l) → @ [acq(t , l) , rel (t , l)))

)

3.4.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : acq(t,l).rel(t,l).sleep(t)

• Violate : acq(t,l).sleep(t).rel(t,l)

3.5 Deadlock Property
3.5.1 Informally

The Deadlock property states that any two threads are not allowed to acquire any two locks
in opposite order. That is, if a thread t1 acquires a lock l1, and then before releasing it,
acquires a lock l2, then another thread t2 is not allowed to first acquire l2 and then, be-
fore releasing it, acquire l1. Following this discipline prevents cyclic deadlocks between
two threads. Note that a violation of this property in a trace only indicates that the mon-
itored application has a potential for deadlocking (in a different schedule), not that it is
necessarily deadlocking in the observed schedule.

3.5.2 Events

The events of interest are the following.

Event Explanation
acq(thread,lock) thread acquires lock
rel(thread,lock) thread releases lock

5

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

3.5.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop deadlock :
forall t1 . forall t2 . forall l1 . forall l2 .

(@ [acq(t1 , l1) , rel (t1 , l1)) & acq(t1 , l2)) →
(! @ P (@ [acq(t2 , l2) , rel (t2 , l2)) & acq(t2 , l1)))

3.5.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : acq(t1,l1).rel(t1,l1).acq(t1,l2).rel(t2,l2).acq(t2,l2).rel(t2,l2).acq(t2,l1).rel(t2,l1)

• Violate : acq(t1,l1).acq(t1,l2).rel(t1,l2).rel(t1,l1).acq(t2,l2).acq(t2,l1).rel(t2,l1).rel(t2,l2)

3.6 Datarace Property
3.6.1 Informally

The Datarace property captures data race potentials. A data race occurs when two threads
access (read or write) the same shared variable simultaneously, and at least one of the
threads writes to the variable. The property states that if a variable is acccessed by two
threads, and one writes to the variable, there must exist a lock, which both threads hold
whenever they access the variable.

3.6.2 Events

The events of interest are the following.

Event Explanation
acq(thread,lock) thread acquires lock
rel(thread,lock) thread releases lock
read(thread,var) thread reads variable
write(thread,var) thread writes variable

3.6.3 Formally

The formalization in DEJAVU’s logic is as follows.

prop datarace :
forall t1 . forall t2 . forall x .

((P (read(t1 ,x) | write (t1 ,x))) & (P write (t2 ,x))) →
exists l .

(H ((read(t1 ,x) | write (t1 ,x)) → [acq(t1 , l) , rel (t1 , l))) &
H ((read(t2 ,x) | write (t2 ,x)) → [acq(t2 , l) , rel (t2 , l))))

6

The DejaVu Runtime Verification Benchmark Havelund, Peled and Ulus

3.6.4 Example Traces

Examples of satisfying and violating traces are:

• Satisfy : acq(t1,l).write(t,x).rel(t1,l).acq(t2,l).read(t2,x).rel(t2,l)

• Violate : acq(t1,l1).write(t,x).rel(t1,l1).acq(t2,l2).read(t2,x).rel(t2,l2)

4 Traces

4.1 Trace Format
The traces are represented in CSV (Comma Separated Value) format without headers. For example a
trace consisting of the following five events:

login(John). open(file2). access(John,file2). close(file2). logout(John)

is represented as the following CSV file:

login,John
open,file2
access,John,file2
close,file2
logout,John

4.2 Trace Structure
For each property is provided (normally) three traces, of sizes approximately 10,000 events, 100,000
events, and one million events respectively. Traces have the general form that initially numerous opening
events (login, open, enter, acq) occur, in order to accumulate a large amount of data stored in the
monitor, after which a smaller number of corresponding closing events (logout, close, exit , rel) occur.

References
[1] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Survey,

24:293–318, 1992.
[2] K. Havelund and D. Peled. Efficient runtime verification of first-order temporal properties. In 25th International

Symposium on Model Checking of Software (SPIN 2018), 20-22 June, Malaga, Spain, volume 10869 of LNCS.
Springer, 2018.

[3] K. Havelund and D. Peled. Runtime verification: From propositional to first-order temporal logic (tutorial). In
18th International Conference on Runtime Verification (RV 2018), 10-13 November, Limassol, Cyprus., LNCS.
Springer, 2018.

[4] K. Havelund, D. Peled, and D. Ulus. First-order temporal logic monitoring with BDDs. In 17th Conference on
Formal Methods in Computer-Aided Design (FMCAD 2017), 2-6 October, Vienna, Austria. IEEE, 2017.

7

	Introduction
	The DejaVu Logic
	Syntax
	Semantics

	Properties
	Access Property
	Informally
	Events
	Formally
	Example Traces

	File Property
	Informally
	Events
	Formally
	Example Traces

	FIFO Property
	Informally
	Events
	Formally
	Example Traces

	Lock Property
	Informally
	Events
	Formally
	Example Traces

	Deadlock Property
	Informally
	Events
	Formally
	Example Traces

	Datarace Property
	Informally
	Events
	Formally
	Example Traces

	Traces
	Trace Format
	Trace Structure

