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Abstract. Runtime verification is used for monitoring the execution of systems,
e.g. checking sequences of reported events against formal specifications. Typi-
cally the specification refers to the individual monitored events. In this work we
perceive the events as defining intervals, each defined by a begin and a subse-
quent end event. Allen’s logic allows assertions about the relationship between
such named intervals. We suggest a formalism that extends Allen’s logic into
a first-order logic that allows quantification over intervals; in addition, intervals
can carry data. We provide a monitoring algorithm and describe an implementa-
tion and experiments performed with it. We furthermore describe an alternative
method for monitoring properties in this logic, by translating them into first-order
past-time temporal logic, monitored with the tool DejaVu.

1 Introduction

Runtime verification allows monitoring of system executions, represented as execution
traces, against a specification, either online as traces are generated, or offline after their
generation. The monitored trace consists typically of events that can also carry data. The
specification is often given using a temporal logic or as a state machine. The runtime
algorithm checks for compatibility with the execution in an incremental way, where
some summary of the reported execution prefix is updated upon the arrival of newly
occurring event. This practice is aimed at both providing an early verdict, and at man-
aging the incremental computational effort between consecutive events. Keeping pace
with the speed of the reported events is a challenge to the online monitoring.

While runtime verification, as described above, is concerned with monitoring spec-
ifications that refer to single observed events, we study here monitoring specifications
that refer to observed intervals. We consider an interval as being generated from a pair
of observed begin and end events, with appropriate parameters. The focus on inter-
vals is motivated by our experience [14], that engineers, as a way of comprehending
complexity, tend to perceive large traces as being partitioned into overlapping sections
(intervals), each concerned with a particular task. Temporal logic does not capture this
sectional view well, since the formulas get overly complex.
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Allen’s (temporal) logic [1], also referred to as Allen’s interval algebra, is a popular
formalism for reasoning about the relation between intervals that occur on a timeline. It
is often used for planning in AI. Allen’s logic deals with a finite set of named intervals,
referring directly to the interval names, e.g., A < B means that the interval A must end
before the interval B begins. This can be quite restrictive for describing the behavior
of systems, where many intervals with the same characteristics can occur, and where
distinguishing specific intervals directly by name in the specification is inconvenient or
even impossible.

We look at the more general problem of monitoring properties where we can quan-
tify over intervals, as e.g., in the formula ∃A∃B (A < B), stating that there exist (at least)
two intervals A and B such that A ends before B begins. We also consider the problem
where intervals may contain data. Consequently, the logic allows expressing cases that
involve relations between intervals that are embedded in the trace with many, some-
times irrelevant, intervals in between. The runtime verification allows “pattern match-
ing” against these cases in a monitored trace.

We present a matching runtime verification algorithm. The algorithm decides
whether any prefix of the execution (the currently observed trace) satisfies the speci-
fication. The runtime verification is based on updating a summary of the observed pre-
fixes upon the arrival of each new interval begin and end event. The trick we employ is
to maintain several sets of interval identifiers, and tuples of such, corresponding to the
different Allen operators. These variables record those intervals and relations that have
begun and not completed yet, as well as those intervals and relations that have been
completed. For example, a begin event for one interval A followed by a begin event
for another interval B, is stored (in some variable containing a set of such pairs) as a
potential for an A interval, as well as (in a different variable) a potential for an A inter-
val overlapping with a B interval, where A starts, then B starts, then A ends and then B
ends. An occurrence of an end event for A and then an end event for B will complete the
picture to decide that A overlapped with B, as well as, of course, having seen completed
A and B intervals.

Our logic and runtime verification algorithm is implemented in the tool MonAmi1.
The implementation encodes interval identifiers and data as bit vectors, which are then
represented as BDDs. The bit vectors are obtained by a simple enumeration scheme.
Such BDDs are useful for compacting interval identifiers and data when storing them
in sets, and also makes negation (set complement) non-problematic. We provide an
alternative monitoring algorithm by translating into past first-order logic and using the
tool DejaVu. We experiment and compare the two methods.

Related Work The use of BDDs in runtime verification has been explored in [12] for
the first-order past time temporal logic DejaVu, which is an event logic, in contrast to the
interval logic explored here. However, the enumeration scheme for creating bit vectors
from data and then converting them to BDDs is similar. Numerous event logics have
been developed during the past two decades, including [15, 18, 4, 23, 10, 9, 5, 3, 12, 29]
to mention just a few.

1 Monitoring Allen logic modal intervals.
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Monitoring of Allen logic is explored in [24]. In that logic, however, intervals are
referred to by explicit names, such as A < B. This means that one can only specify
static patterns, one instance of a particular pattern: that there is one A and one B, such
that A < B. This is in contrast to MonAmi, where we can quantify over such intervals.
Specifically this means that we can specify repeated patterns in the trace e.g., that every
interval A with some specific data d is always followed by some other interval B with
some data d′.

The most closely related monitoring system is nfer [14, 21, 22], also influenced by
Allen’s logic. Its specification formalism consists of Prolog-like interval-generating
rules (see, e.g., Figure 1). The objective of nfer is to generate intervals from a trace
of events, as an abstraction of the trace, to e.g. support trace comprehension by hu-
mans. Generated intervals can, for example, be visualized. In contrast, the objective of
MonAmi is to verify intervals, provided as input. nfer only allows a limited form of nega-
tion, referred to as exclusive rules in [21], making property specification harder, and it is
unknown what the limitations are wrt. expressiveness. Our logic allows free negation,
and consequently implication. nfer supports Boolean conditions over data as well as
computations on data, resulting in new data being stored in the generated intervals. In
order to reduce computational complexity, nfer operates in its default mode with a min-
imality principle, where the before-operator (MonAmi’s < operator) only matches the
smallest intervals, whereas MonAmi matches all candidate intervals. Section 6 compares
MonAmi with nfer further.

A different kind of extension to Allen’s logic, where the various relations between
operators are promoted into modalities was suggested by Halpern and Shoham [11].

2 Preliminaries

To motivate the study of interval-based specification, we first present the original Allen
Temporal Logic (ATL).

Syntax. In its basic form, ATL has the following syntax:

ϕ ::= (ϕ∧ϕ) |¬ϕ |A < B |AmB |AoB |AsB |Ad B |A f B |A = B

where A and B are intervals from a finite set of intervals I, m stands for meets, o for
overlaps, s for starts, d for during, and f for finishes. The original definition of the logic
also includes the symmetric versions of these operators, e.g., an operator for AmiB for
BmA, etc., which does not add to the expressive power.

Semantics. A model M = 〈E,≺,�〉 for Allen’s logic, consists of a finite set of events
E = {begin(A) | A∈ I}∪{end(A) | A∈ I}, a linear order≺⊆E×E, and an equivalence
relation�⊆ E×E, where�= (≺∪�)∗ (the transitive closure of the union of the two
relations), such that:

– For each A ∈ I, begin(A)≺ end(A).
– � is a partition of the set E into equivalence classes.
– (≺ ∩�) = /0.
– For every a,b ∈ E, either a� b or b� a.
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Thus, M is a linear order between equivalence classes. We call the relation ≺ before,
and � coincides. The semantics is given as follows.

– M |= (ϕ∧ψ) if M |= ϕ and M |= ψ.
– M |= ¬ϕ if M 6|= ϕ.
– M |= A < B if end(A)≺ begin(B).
– M |= AmB if end(A)� begin(B).
– M |= AoB if begin(A)≺ begin(B)≺ end(A)≺ end(B).
– M |= AsB if begin(A)� begin(B) and end(A)≺ end(B).
– M |= Ad B if begin(B)≺ begin(A) and end(A)≺ end(B).
– M |= A f B if begin(B)≺ begin(A) and end(A)� end(B).
– M |= A = B if begin(A)� begin(B) and end(A)� end(B)

As usual, we can define additional operators, in particular, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ) and
(ϕ→ ψ) = (¬ϕ∨ψ). As an example, consider then the ATL formula:

((B1 d L∧B2 d L)∧B1 < B2) (1)

It asserts about three intervals B1, B2 and L, that B1 appears before B2 and both are
embedded within L. Monitoring Allen’s logic is described in [24].

3 A First-Order Interval Logic

We will explore now the monitoring of a first-order logic variant of Allen’s temporal
logic, which we term FoATL. While the original logic refers to a fixed set of intervals,
our variant allows quantification over the intervals that occur in the trace, which can
optionally carry data. The logic also allows to relate different intervals with respect
to their data values. The formalism supports monitoring of behaviors consisting of a
large, perhaps unbounded, number of intervals, where patterns of behavior that con-
sist of intervals are related in ways expressed using the specification. For example, a
relationship such as in formula (1) can refer to any embedding within a sequence of
intervals, matching this pattern, rather than referring to three particular intervals that
appear in the input.

The setting. We monitor a sequence of events of the form begin(z) and end(z), where
z is a sequence of parameters. The first parameter is an interval enumeration, also re-
ferred to as interval id, used to identify matching begin and end events; the rest of the
parameters, which can be of different types, is optional. An additional parameter can be
e.g., a label representing the kind of interval, where a label Boot represents that it is a
boot interval. For example, consider the sequence of events:

begin(1,Load),begin(2,Boot),end(2),begin(3,Boot),end(3),end(1)

These events form three intervals corresponding to the intervals L, B1, and B2 appearing
in ATL formula (1). Our logic alters Allen’s logic by adding quantification over the
intervals. Hence, instead of fixed intervals, which can be referred to in a formula by their
explicit name as constants, we allow interval variables A, B, . . . that can be instantiated
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to any of the intervals that appear in the model (the observed trace). Moreover, the
intervals can carry data, and we write in the logic A(d) to denote that the data of the
interval assigned to the variable A has the constant value d. We can also verify whether
two intervals A and B carry the same value using same(A,B).

We make a few simplifying assumptions in order to concentrate on the main chal-
lenges of runtime verification of a first-order interval logic. However, the presented
approach is extensible and the restrictions can be easily removed:

– We assume a matching unique integer value per interval, an enumeration, though
it does not have to appear in consecutive order, is given for each related pair of
events, e.g., begin(5) and end(5).

– Events can contain additional parameters besides the enumeration. For simplicity,
we assume that there is at most a single data value parameter, e.g., an integer or
a string, and that it appears within the interval starting event, e.g., begin(5,abc).
In a more general setting, different numbers of parameters can appear for different
intervals, and the parameters may appear only at the beginning, at the end or in both
events defining the interval.

– The monitored events appear one at a time. As there is no co-incidence of events,
the relations are restricted to A < B (before), AoB (overlaps) and AiB (for includes,
which is the symmetric operator of Allen’s d during). Hence, there is a total order
between the events. It reflects the implementation where observed events occur one
at a time. It furthermore simplifies the presentation and incurs no real restriction
on the theory involved.

– Quantification is applied to the (completed) intervals that have occurred. Thus, as
in Allen’s logic, the specification does not refer to intervals that were opened with
begin(A) and were not closed yet with end(A). The logic can of course be extended
to deal with unfinished intervals.

– We assume that as part of the monitoring, the restrictions on well formedness of the
enumerations are checked. Multiple begin(A) or end(A) events cannot occur for the
same interval A, and an end(A) event cannot precede a begin(A) event.

– We allow referring to the data elements in intervals, and also compare them. We
offer in the syntax (and our implementation) the predicate same that relates intervals
with the same data value. This can be extended to other relations that compare
values.

Syntax of FoATL. The syntax is as follows.

ϕ ::= (ϕ∧ϕ) |¬ϕ |A(d) |(A < B) |(AoB) |(AiB) |∃Aϕ |same(A,B)

where A and B are variables (representing intervals) from a set of interval variables I,
and d is a value from some fixed domain D of data values. Parentheses can be removed
when clear from the context. A specification does not include free variables. Consider
for example the following formula:

∃A∃B∃C (A(Load)∧B(Boot)∧C(Boot)∧AiB∧AiC∧B <C).

This specification describes the existence of three intervals with the same relations be-
tween them as the intervals L, B1, and B2 appearing in the ATL formula (1).
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Semantics of FoATL. Let I be the finite set of interval variables over the enumerations
in the observed execution prefix. We assume the following semantic components:

– σ = e(1)e(2) . . .e(n) is a sequence of events of the form begin(i) or begin(i,d), and
end(i) as described above.

– ρ : I 7→ U is a mapping from the interval variables I to a domain U, which can
be, e.g., the natural numbers, representing interval enumerations. We denote by
ρ[A 7→ j] the mapping that is identical to ρ but returns the value j for the variable
A.

– data( j) is the data value associated with the interval whose enumeration is j.
– start( j) is the number (position in the trace) of the event that starts the interval with

enumeration j, i.e., the event begin( j) (with an optional additional data value d).
– finish( j) is the number (position in the trace) of the event that ends the interval with

enumeration j, i.e., the event end( j).

We can now define the semantics of the logic inductively on the structure of the formula.

– (ρ,σ) |= (ϕ∧ψ) if (ρ,σ) |= ϕ and (ρ,σ) |= ψ

– (ρ,σ) |= ¬ϕ if (ρ,σ) 6|= ϕ.
– (ρ,σ) |= A(d) if ρ(A) = j and data( j) = d.
– (ρ,σ) |= (A < B) if ρ(A) = j and ρ(B) = k and finish( j)< start(k).
– (ρ,σ) |= (AoB) if ρ(A) = j and ρ(B) = k and start( j) < start(k) < finish( j) <

finish(k).
– (ρ,σ) |= (AiB) if ρ(A) = j and ρ(B) = k and start( j) < start(k) < finish(k) <

finish( j).
– (ρ,σ) |= ∃Aϕ if there exist events begin( j) (or begin( j,d) for some d) and end( j)

in σ such that ρ′ = ρ[A 7→ j] and (ρ′,σ) |= ϕ.
– (ρ,σ) |= same(A,B) if ρ(A) = j and ρ(B) = k and data( j) = data(k).

Example properties.

1. ¬∃A∃B(A < B∧ same(A,B)).
Disjoint intervals cannot have the same data value.

2. ¬∃A∃B∃C ((AiB∧BiC)).
No double nesting of intervals.

3. ∀A∀B((A < B∧ (¬∃C(A <C∧C < B)))→¬(A(2)∧B(2))).
No two adjacent intervals (one completely after the other without any interval in
between) can have both the same value 2.

4. ∀A∀B∀C (((AoB)∧ (BoC))→¬(AoC)).
At no point there is an overlapping of three intervals.

Interpretation. One can interpret the semantics of a formula over finite or infinite se-
quences. As the logic is tailored with an application of runtime verification in mind, one
typical use is to require that for a given trace, all prefixes will satisfy a given FoATL spec-
ification. This is similar to the common use of temporal specifications of the form 2ϕ,
where ϕ is restricted to past modalities, i.e., to safety properties [2], typically seen in
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runtime verification, see, e.g., [12, 13]. Nevertheless, other uses are possible as well.
Generally, our implementation returns a truth value for the inspected property for each
prefix of the monitored trace. Note that satisfaction of a property over an infinite trace
does not entail that it is satisfied by all finite prefixes, e.g., for ϕ = ∀A∃B(A < B),
which asserts that there is no rightmost interval. Conversely, ¬ϕ is satisfied by every
finite trace that includes at least one interval, but will not hold for a trace with infinitely
many linearly ordered intervals.

4 The Monitoring Algorithm

Calculating the Relations between Intervals. Recall that in our setting, we are re-
stricted to three possible relations between intervals: <, o, and i. Let X and Y be dif-
ferent intervals, defined by begin and end events, that appeared in the current observed
monitored prefix. We distinguish the following three sets of pairs (X ,Y ) of enumera-
tions of intervals.

– X < Y (before). Events appear in the order begin(X),end(X),begin(Y ),end(Y ).
– X oY (overlaps). Events appear in the order begin(X),begin(Y ),end(X),end(Y ).
– X iY (includes). Events appear in the order begin(X),begin(Y ),end(Y ),end(X).

We maintain for each prefix of an execution three sets of pairs of enumerations, XXYY
for X <Y , XY XY for X oY and XYY X for X iY . Further sets of pairs (X ,Y ) correspond
to possible prefixes of the four events (begin(X),end(X),begin(Y ), and end(Y )) in the
above three cases, namely XY , XYY , XY X and XXY . The names of the sets reflect the
order of appearance of interval events. For example, XXY represents pairs of intervals
where some events of the type begin(X),end(X),begin(Y ) have already appeared in this
order, but not yet end(Y ). When end(Y ) subsequently appears, this pair of intervals is
removed from XXY and is added to XXYY .

We further define the set X of enumerations for events begin(X) where an end(X)
has not yet appeared and XX as the set of enumerations, where both begin(X) and
end(X) have occurred; this latter is the set of completed intervals. Together, this defines
two sets of enumerations, and seven sets of pairs. Note that the names of these variables
reflect patterns and are not to be taken literally. For example, the set denoted by XX
will contain any interval Z where the begin and end events have been observed. It does
not only contain intervals specifically named X .

We define these sets inductively on the length i of the trace: for i = 0, all the sets are
empty; then the update of these sets after the ith event is defined according to Table 1.
The rows correspond to the sets that are updated, and the columns to the ith event.
The entries in the table detail how the set is updated after the ith event based on the
values of the prior values of the sets. For example, for the set X (containing the open
intervals), if the ith event is a begin(Z) (or begin(Z,d)), then Xi = Xi−1∪{Z}, and if the
ith event is an end(Z) (or end(Z,d)), then Xi = Xi−1 \ {Z}. Our algorithm follows the
updates in Table 1 upon arrival of any new event. We denote by U the universal set of
enumerations. The empty set is denoted by /0. We denote by S the complement of S, i.e.,
the set U \S. We will describe later how to implement these sets and operations using
BDDs. Note that even through U, the set of enumerations, can be infinite, at any point
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in time we have observed only a finite number of enumerations. Hence, both the current
set of observed enumerations and its complement can be represented in a finitary way,
as will be described later.

The following rules impose validity checks on the order of the begin(Z,d) (d, the
data value, is optional) and end(Z,d) events, causing the system to halt when vio-
lated. Specifically, for any interval Z, we allow only one begin(Z,d) respectively one
end(Z,d) to occur, and begin(Z,d) must appear before end(Z,d). That is, on observing:

– begin(Z,d): If {Z}∩ (X ∪XX) 6= /0 then output “multiple begin”.
– end(Z,d): If {Z}∩XX 6= /0 then output “multiple end”.

If {Z}∩X = /0 then output “intervals ends before it begins”.

Set \ Event begin(Z,d) end(Z,d)
X (opened) X ∪{Z} X ∩{Z}
XX (closed) XX ∪{Z}
XY XY ∪ ((X×{Z})) XY ∩ (U×{Z})∩ ({Z}×U)
XYY (XYY ∩XYY X)∪ (XY ∩ (U×{Z}))
XYY X (X iY , includes) XYY X ∪ (XYY ∩ ({Z}×U))
XY X (XY X ∩XY XY )∪ (XY ∩ ({Z}×U)
XY XY (X oY , overlaps) XY XY ∪ (XY X ∩ (U×{Z}))
XXY XXY ∪ (XX×{Z}) XXY ∩ (U×{Z})
XXYY (X <Y , before) XXYY ∪ (XXY ∩ (U×{Z}))
XD (X has data d) XD∪{(Z,d)}

Table 1: The update table.

The order of updating the sets is important: a set that is a prefix of another set, e.g.,
XY is a prefix set of XY X , hence it is updated after the latter. Thus, upon arrival of a
new event, the value of XY X is updated based on the old value of XY , before updating
XY .

In order to handle intervals with data, we add another set, XD, of pairs of the form
(Z,d), where Z is an interval enumeration and d is a data element. Then, upon the arrival
of an event of the form end(Z,d), we update XD := XD∪{(Z,d)}. This construction
can be easily extended to capture a different number of parameters n by keeping sets of
n+1 tuples.

Using BDDs to represent relations. Our algorithm is based on representing relations
between data elements using Ordered Binary Decision Diagrams (OBDD, although we
write BDD) [6]. A BDD is a compact representation for a Boolean function (arguments
as well as result are Booleans) as a directed acyclic graph (DAG).

A BDD is obtained from a binary tree that represents a Boolean formula with some
Boolean variables x1 . . .xk by gluing together isomorphic subtrees. Each non-leaf node
is labeled with one of the Boolean variables. A non-leaf node xi is the source of two
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arrows leading to other nodes. A dotted arrow represents that xi has the Boolean value
false (i.e., 0), while a thick arrow represents that it has the value true (i.e., 1). The vari-
ables (nodes) in the DAG occur in the same order along all paths from the root (hence
the letter ‘O’ in OBDD). Nodes may be absent along some paths, when the result of the
Boolean function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either true or false, corresponding to
the Boolean value returned by the function for the Boolean values on the path.

A Boolean function, and consequently a BDD, can represent a set of integer values
as follows. Each integer value is, in turn, represented using a bit vector: a vector of bits
x1 . . .xk represents the integer value x1×1+ x2×2+ . . .xk×2k, where the bit value of
xi is 1 for true and 0 for false and where x1 is the least significant bit, and xk is the most
significant. For example, the integer 6 can be represented as the bit vector 110 (here,
the most significant bit appears to the left) using the bits x1 = 0, x2 = 1 and x3 = 1.
To represent a set of integers, the BDD returns true for any combination of bits that
represent an integer in the set. For example, to represent the set {4,6}, we first convert 4
and 6 into the bit vectors 100 and 110, respectively. The Boolean function over x1,x2,x3
is (¬x1∧ x3), which returns true exactly for these two bit vector combinations.

This representation can be extended to relations, or, equivalently, a set of tuples over
integers. Here the Boolean variables are partitioned into n bitstrings x1 = x1

1, . . . ,x
1
k1

, . . .,
xn = xn

1, . . . ,x
n
kn

, each representing an integer number, forming the bit string2:

x1
1, . . . ,x

1
k1
, . . . ,xn

1, . . . ,x
n
kn
.

Using BDDs over enumerations of values. Representing data values such as strings
and integers, which appear within the observed trace of events, may not lead to a good
compact representation. Instead, based on the limited ability to compare data values
allowed by FoATL, we represent in the BDD enumerations (natural numbers) for these
values, rather than the values themselves. When a value (associated with a variable in
the specification) appears for the first time in an observed event, we assign to it a new
enumeration. Values can be assigned consecutive enumeration values3. We use a hash
table to point from the value to its enumeration so that in subsequent appearances of
this value the same enumeration will be used. For example, if the runtime verifier sees
the input events begin(1,a), begin(2,b), begin(3,c), it may encode the data a, b, and
c as the bit vectors 000, 001, and 010, respectively. The approach results in several
advantages:

1. It allows a shorter representation of very big values in the BDDs; the values are
compacted into a smaller number of bits.

2. It contributes to the compactness of the BDDs because enumerations of values that
are not far apart often share large bit patterns.

2 In the implementation the same number of bits are used for all variables: k1 = k2 = . . .= kn.
3 A refined algorithm can reuse enumerations that were used for values that can no longer affect

the verdict of the RV process, see [12].
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3. The monitoring algorithm is simple; the Boolean operators over summary elements:
conjunction, disjunction, and negation, are replaced by the same operators over
BDDs.

4. Given an efficient BDD package, the implementation can be very efficient. One can
also migrate between BDD packages.

5. It allows full use of negation.

For implementing negation, we keep at least one enumeration value that represents
all the enumerations that did not occur yet in begin and end events. For that matter, we
can reserve the bitstring 11 . . .11. When the number of values represented by the BDDs
grows so that the BDD bits are insufficient, we dynamically add one more bit to the
representation, doubling the available number of enumerations.

BDD Operators. We list now the operators on BDDs representing sets of value tuples,
used in evaluating the verdict of the specification on the currently inspected prefix. A
value tuple represents an interval and its data values, each being elements of the tuple.
Recall, however, that we represent data by their enumerations (natural numbers), so
we need to represent sets of tuples of enumerations. Recall furthermore that we can
represent a tuple of data enumerations as a bit vector: x1

1, . . . ,x
1
k1
, . . . ,xn

1, . . . ,x
n
kn

, being
the concatenation of the bit vectors for the individual enumerations. A set of such is
naturally represented by the BDD that returns true (1) for all the bit-vectors in the set.
Useful operators on such BDDs are:

conj(B,C ) The conjunction (intersection) of the BDDs B and C .
comp(B) The complement of the BDD B .
project(B,X) Projects out the Boolean variables x1 . . .xn that correspond to the param-

eter X of B , obtaining ∃x1 . . .∃xnB.
restrict(z,B) Restricts a BDD B of the form XD relating intervals with their data

i.e., with bits x1 . . .xnd1 . . .dm to those sequences of bits where x1 . . .xn encodes the
interval and d1 . . .dm encodes the data value z.

rename(B,X ← X ′,Y ← Y ′, . . .) Replaces the bits x1x2 . . .xn with x′1 . . .x
′
n, the bits

y1 . . .yn by y′1 . . .y
′
n, etc. in the BDD B .

Other operators, such as e.g. disjunction (union, or database co-join), can be defined
in terms of the operators above in the standard way.

Completing the algorithm. The algorithm for the complete logic starts with setting
all the sets in Table 1 to BDDs representing the empty sets of elements/pairs, according
to their types. Upon the arrival of each new event of the type begin(z), (with or without
an additional data parameter d) or end(z), two steps are executed.

Step 1: The sets of values/pairs are updated according to Table 1.
Step 2: BDDs of the form Bϕ for the subformulas ϕ of the monitored property are
updated recursively as follows:

– B(ϕ∧ψ) = conj(Bϕ,Bψ)

10



– B¬ϕ = comp(Bϕ)
– BA(d) = project(restrict(d,rename(XD,X ← A)),D)
– BA<B = rename(XXYY,X ← A,Y ← B)
– BAoB = rename(XY XY,X ← A,Y ← B)
– BAiB = rename(XYY X ,X ← A,Y ← B)
– B∃Aϕ = project(Bϕ,A)
– Bsame(A,B) = project(conj(rename(XD,X ← A),rename(XD,X ← B)),D)

5 Alternative Algorithm Translating to Past First-Order LTL

Given a representation of intervals as pairs of events of the form begin(Z,d) and end(Z),
we can perform monitoring by translating the specification into past first-order LTL,
referred to as QTL, as used by the tool DejaVu [12, 20].
Syntax. The formulas of the core QTL logic are defined by the following grammar,
where a is a constant representing a value in domain(p). For simplicity of the presenta-
tion, we define here the logic with unary predicates, but this is not due to any principle
limitation, and, in fact, DejaVu supports predicates with multiple arguments, including
zero arguments, which correspond to propositions.

ϕ ::= true | false | p(a) | p(x) | (ϕ∨ϕ) | (ϕ∧ϕ) | ¬ϕ | (ϕ S ϕ) | 	ϕ | ∃x ϕ | ∀x ϕ

The formulas have the following informal meaning. The formula p(a) is true when the
current (last observed) event is p(a). The formula p(x), for some variable x ∈V , is true
if x is bound to a constant a such that p(a) appears as the current event. Variables get
bound to constants with the quantifiers ∃ and ∀. The formula (ϕ1 S ϕ2) (reads ϕ1 since
ϕ2) means that ϕ2 occurred in the past (including now) and since then (beyond that
state) ϕ1 has been true. This is the past dual of the common future time until modality.
The property 	 ϕ means that ϕ is true in the previous step. This is the past dual of the
common future time next modality. The formula ∃x ϕ is true if there exists a constant
a such that ϕ is true with x bound to a. The formula ∀x ϕ is true if for all constants
a, ϕ is true with x bound to a. We can also define the following additional temporal
operators: P ϕ = (trueS ϕ) (“previously”), and Hϕ = ¬P¬ϕ (“always in the past” or
“historically”).
Semantics. Let σ be a sequence of events and i a natural number. Let γ be an assignment
to the variables that appear free in a formula ϕ. Then (γ,σ, i) |=ϕ if ϕ holds for the prefix
s1s2 . . .si of the trace σ with the assignment γ. This is a standard definition, agreeing,
e.g., with [5]. Note that by using past operators, the semantics is not affected by states
s j for j > i. Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ.
We denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ. Let ε be an empty assignment. In any of the following cases, (γ,σ, i) |=ϕ

is defined when γ is an assignment over free(ϕ), and i≥ 1.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if p(a) ∈ σ[i].
– ([v 7→ a],σ, i) |= p(v) if p(a) ∈ σ[i].
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
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– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|free(ψ),σ, j) |= ψ and for all j < k ≤ i,

(γ|free(ϕ),σ,k) |= ϕ.
– (γ,σ, i) |=	ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that (γ [x 7→ a],σ, i) |= ϕ.

The translation from FoATL to QTL is as follows:

– T (ϕ∧ψ) = T (ϕ)∧T (ψ)
– T (¬ϕ) = ¬T (ϕ)
– T (A(d)) = P(end(A)∧	(Pbegin(A,d)))
– T (A < B) = P(end(B)∧	P(begin(B,Bd)∧	P(end(A)∧	Pbegin(A,Ad))))
– T (AoB) = P(end(B)∧	P(end(A)∧	P(begin(B,Bd)∧	Pbegin(A,Ad))))
– T (AiB) = P(end(A)∧	P(end(B)∧	P(begin(B,Bd)∧	Pbegin(A,Ad))))
– T (∃Aϕ) = ∃A∃Ad T (ϕ)
– T (same(A,B)) = ∃d(P(end(A)∧	Pbegin(A,d))∧P(end(B)∧	Pbegin(B,d)))

It is interesting to note that the translation from FoATL to QTL does not make use of the
operator S , but only uses 	 and P. The translation has been implemented in MonAmi.
We can now monitor a FoATL formula by translating it to QTL using the above transla-
tion scheme, and monitor the generated QTL property with DejaVu using the algorithm
described in [12]. We later compare the results of monitoring using an optimization of
this translation with monitoring using MonAmi.

6 Implementation

We implemented a prototype monitoring tool [19] for our logic FoATL, called MonAmi.
It is a Python-based tool for monitoring intervals, formed by events, by checking them
against a FoATL property. The tool works with Python 3.6 and above. It uses the ‘dd’
Python package [8] for generating and manipulating BDDs, which itself uses the CUDD
BDD package [7] in C. MonAmi uses several input files that define the configuration of
the initial parameters, the property file, and the trace file when monitoring in offline
mode (log analysis). A trace T is a sequence of events [begin, i,d] or [end, i], where
i is an interval enumeration, and d is the data. The tool can also be used for online
monitoring, using the same algorithm, observing a trace dynamically generated by a
program during its execution.

6.1 Experiments.

To evaluate MonAmi, we performed a comparison with the interval-based nfer tool [14],
mentioned in the related work section on page 3. We expressed four properties us-
ing the formalisms of these two tools, all related to receiving data from a planetary
rover, and evaluated tool performances (time and memory) on traces of different sizes.
The planetary rover scenario is inspired by realistic properties of the Curiosity Mars
rover [17]. The rover’s behavior is reported to ground via the following simplified in-
tervals (amongst many): DL IMAGE (downlink an image), DL MOBPRM (downlink
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mobility parameter values), DL ARMPRM (downlink robotic arm parameter values),
DL FAIL (downlink fails), INS ON (instrument power turned on), INS FAIL (instru-
ment powering fails), INS RECOVER (instrument recovers), GET CAMDATA (reading
camera data), STARVE (thread starves), and BOOT (re-boot rover, e.g. after a failure).

The four properties expressed in the formalisms of MonAmi and nfer are shown in
Figure 1. In nfer we state a property as a collection of Prolog-like interval-generating
rules of the form id :− body, where the rule body contains Allen’s operators applied to
events and intervals generated by other rules. The result of a match of the body is a new
interval with the name id, as specified by the rule head. Events and intervals can carry
data, which can be used e.g. in where-conditions. The IVAL rule (used by all the four
properties) generates intervals for all matching (same interval identifier) BEGIN and
END events in the trace, and stores (map) their interval and data values in the generated
IVAL event. The FOUND interval in each nfer property is generated when an error is
detected. As mentioned previously, nfer allows negation, referred to as exclusive rules
in [21]. The body of a rule can e.g. have the form ‘A unless after B’, meaning an A
occurred and a B did not occur before. This form of negation has not been used in these
properties.

1. !exist B1, B2, D .

B1(’BOOT’) & B2(’BOOT’) & D(’DL IMAGE’) &

B1 < B2 &

(B1 i D |
B2 i D |
(B1 < D & D < B2) |
(B1 o D & !D i B2) |
(D o B2 & !D i B1)

)

2. !exist D, F .

(D(’DL MOBPRM’) | D(’DL ARMPRM’)) &

F(’DL FAIL’) &

D i F

3. !exist O, F, R .

O(’INS ON’) & F(’INS FAIL’) & R(’INS RECOVER’) &

O < F & F < R &

!exist X . (X(’INS ON’) | X(’INS RECOVER’)) & O < X & X < R

4. !exist D, G, S .

D(’DL IMAGE’) & G(’GET CAMDATA’) & S(’STARVE’) &

D i S & G i S

IVAL :− BEGIN before END

where BEGIN.interval = END.interval

map {interval→ BEGIN.interval, data→ BEGIN.data}

1. BOOT :− IVAL where IVAL.data = "BOOT"

DL:− IVAL where IVAL.data = "DL_IMAGE"

DBOOT :− BOOT before BOOT

FOUND :− DL during DBOOT

2. DL :− IVAL where IVAL.data = "DL_MOBPRM" | IVAL.data = "DL_ARMPRM"

FAIL :− IVAL where IVAL.data = "DL_FAIL"

FOUND :− FAIL during DL

3. ON :− IVAL where IVAL.data = "INS_ON"

FAIL :− IVAL where IVAL.data = "INS_FAIL"

RECOVER :− IVAL where IVAL.data = "INS_RECOVER"

EXEC :− ON before RECOVER

FOUND :− FAIL during EXEC

4. DL :− IVAL where IVAL.data = "DL_IMAGE"

GET :− IVAL where IVAL.data = "GET_CAMDATA"

STARVE :− IVAL where IVAL.data = "STARVE"

FOUND :− STARVE during (GET slice DL)

Fig. 1: Evaluated properties in MonAmi (left) and nfer (right).

The properties. Property 1 states that there is no DL IMAGE during two BOOT in-
tervals (after the start of the first and before the end of the second). Property 2 states
that there is no DL FAIL during a DL MOBPRM or DL ARMPRM interval. Property
3 states that there is no INS FAIL in between an INS ON and a subsequent closest
INS RECOVER. Note how in the MonAmi specification we need to express the concept
of closest as an additional constraint (that there is no INS ON or INS RECOVER in be-
tween). In nfer this is the default semantics, also referred to as the minimality principle,
see discussion below. Property 4 states that there is no STARVE during a period where
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both an DL IMAGE interval and a GET CAMDATA interval are active. The nfer slice
operator produces the intersection between two intervals. As mentioned, nfer’s default
execution mode uses a principle of minimality, where nfer’s A before B operator (ana-
log to MonAmi’s A < B operator) searches the closest right-most B from a given A. The
minimality principle, however, can be switched off; so it behaves like MonAmi. Proper-
ties 1, 2, and 4 are in nfer evaluated with minimality switched off. nfer was originally
designed to run with minimality switched on. However, the C version of nfer offers
the option of switching off minimality, while the Scala version was extended with this
option in order to perform the experiment.
The traces. We created 5 trace files for each property of different sizes, with 1000,
2000, 4000, 8000, and 16000 events. The traces were generated to evaluate the natural
execution mode of MonAmi (stop on first violation) for these properties, by creating the
traces to be violated only at the last event. These were generated with a trace generator,
guided by one rule for each property. The maximal number of overlapping intervals was
also controlled by a parameter (we chose as limit of 3). To ensure that violation will not
occur in the middle of the trace we set the data to be different from the ones that appears
in the property, except for the violating events. MonAmi is compared to two versions of
nfer, a first prototype version in Scala [22], and a later developed version in C [21].
The execution modes. In addition, MonAmi is run in two different modes. Recall from
the section Completing the algorithm on page 10 that the complete algorithm executes
in two steps. In Step 1 the variables in Table 1 are updated. In Step 2, the formula is
evaluated based on the value of these variables. When run in small step mode (S), both
steps are executed for each new event. When run in big step mode (B), only Step 1 is
executed for each new event, whereas Step 2 is only executed at the end of monitoring.
It corresponds to only observing the formula’s value after the final event, the semantics
is unchanged. Small step mode will typically be used for online monitoring, whereas
big step mode will typically be used for offline monitoring, e.g. analysis of log files.
Obviously, only evaluating Step 2 once at the end provides an optimization. In our case,
which is offline log analysis, we shall apply both modes for comparison. nfer evaluates
its rules for each new event.
The results. Table 2 shows the results of the evaluation. The experiments were carried
out on a Dell Latitude 5401 laptop (Intel Core I7-9850H 9th Gen, 32GB RAM, 512GB
SSD) with Ubuntu 20.04.2 LTS OS. W.r.t. memory, nfer/C overall performs the best
and nfer/Scala the worst. MonAmi/B (big step) and MonAmi/S (small step) both perform
very close to the good performance of nfer. W.r.t. time, again nfer/C has the best perfor-
mance. MonAmi/B, however, performs as well as or close to nfer/C. MonAmi/S generally
performs least well w.r.t. time, except for the second property where nfer/Scala performs
worse for larger traces. The first property requires more time than the second property,
especially for MonAmi/S. This can be contributed to the higher complexity of the first
formula. The better performance of nfer/C in general can potentially be attributed to the
fact that it is implemented in C, whereas MonAmi is implemented in a mix of Python
and C.
MonAmi and DejaVu. Table 3 shows results of evaluating MonAmi against DejaVu.
We evaluated the FoATL properties 1-4 on page 6, monitored by MonAmi, against their
translations to QTL, monitored by DejaVu, using a manual translation inspired by the
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one presented in Section 5. The manual translation optimizes the resulting QTL formu-
las. In spite of this optimization, MonAmi clearly outperforms DejaVu on the translated
formulas, both w.r.t. memory use and time. DejaVu’s evaluation strategy corresponds to
MonAmi’s small step evaluation mode since the entire formula is evaluated in each step.

Property Tool 1000 2000 4000 8000 16000

1

MonAmi/S
1.89 s

51.86 MB
9.46 s

52.43 MB
22.00 s

54.19 MB
72.93 s

78.02 MB
250.55 s

90.50 MB

MonAmi/B
0.31 s

51.74 MB
0.60 s

52.48 MB
1.25 s

54.56 MB
3.82 s

58.94 MB
6.82 s

86.47 MB

nfer/Scala
0.19 s

140.41 MB
0.35 s

164.09 MB
1.28 s

395.83 MB
4.42 s

365.73 MB
17.32 s

385.23 MB

nfer/C
0.03 s

11.03 MB
0.05 s

11.48 MB
0.15 s

12.70 MB
0.52 s

15.15 MB
1.96 s

19.85 MB

2

MonAmi/S
0.37 s

51.71 MB
0.83 s

52.65 MB
2.88 s

54.35 MB
7.98 s

57.30 MB
10.65 s

63.39 MB

MonAmi/B
0.17 s

51.67 MB
0.30 s

52.27 MB
0.61 s

54.34 MB
1.20 s

57.06 MB
2.47 s

64.27 MB

nfer/Scala
0.25 s

147.85 MB
0.41 s

196.26 MB
1.19 s

352.84 MB
4.32 s

392.45 MB
18.73 s

662.18 MB

nfer/C
0.02 s

11.00 MB
0.04 s

11.48 MB
0.14 s

12.75 MB
0.52 s

15.12 MB
1.98 s

19.89 MB

3

MonAmi/S
1.20 s

51.69 MB
3.89 s

52.62 MB
13.06 s

54.30 MB
61.25 s

59.08 MB
385.18 s

86.24 MB

MonAmi/B
0.19 s

51.82 MB
0.36 s

52.48 MB
0.82 s

54.35 MB
1.69 s

57.09 MB
3.58 s

66.90 MB

nfer/Scala
0.24 s

142.16 MB
0.44 s

191.50 MB
1.29 s

332.99 MB
4.78 s

391.98 MB
19.82 s

562.61 MB

nfer/C
0.02 s

11.05 MB
0.05 s

11.49 MB
0.15 s

12.77 MB
0.54 s

15.18 MB
2.12 s

19.91 MB

4

MonAmi/S
0.51 s

51.85 MB
1.49 s

52.55 MB
4.74 s

53.91 MB
17.31 s

57.21 MB
54.80 s

64.79 MB

MonAmi/B
0.18 s

51.70 MB
0.32 s

52.25 MB
0.72 s

53.88 MB
1.30 s

57.09 MB
2.74 s

65.87 MB

nfer/Scala
0.20 s

150.56 MB
0.39 s

199.01 MB
1.23 s

402.66 MB
4.86 s

361.00 MB
18.29 s

531.94 MB

nfer/C
0.02 s

11.10 MB
0.05 s

11.63 MB
0.15 s

13.01 MB
0.54 s

15.67 MB
2.16 s

21.08 MB
Table 2: MonAmi’s S and B modes versus nfer’s Scala and C versions.

7 Conclusion

We described an extension to Allen’s temporal logic, termed FoATL, that allows quan-
tification over the intervals that occur in a monitored trace. We presented an efficient
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algorithm for runtime-verification and implemented a prototype tool in Python. The im-
plementation is based on representing sets of tuples of enumerations over the intervals
and their data values as BDDs using the ‘dd’ package. We also presented a monitoring
procedure that translates a FoATL formula into a first-order past-time temporal logic for-
mula, monitored by the tool DejaVu. Experiments show that the direct implementation
of our algorithm is far more efficient.

The closest tool related to MonAmi is nfer and we comment on the relation between
these two tools and their capabilities. The FoATL logic allows for a very convenient form
of quantification. nfer, in contrast, has the flavor of rule-based programming. FoATL
allows free negation, and consequently implication, which is only allowed in a limited
sense in the C version of nfer, and not at all in the Scala version. The limitation (if any)
wrt. expressiveness of nfer’s notion of negation is unknown. MonAmi can be extended
with time stamps, thereby allowing events to occur at the “same time”, and therefore
allowing the Allen operators meets, starts, finishes, and equals. nfer relies as default
on the minimal interpretation of the before-operator, choosing the closest rightmost
interval. MonAmi can be easily extended to also to allow this mode. Extending the logic
to be first-order also w.r.t. data is considered for future work.

Property Tool 1000 2000 4000 8000 16000

1

MonAmi/S
0.81 s

211.21 MB
2.14 s

216.38 MB
4.72 s

226.11 MB
13.94 s

248.01 MB
25.14 s

268.81 MB

MonAmi/B
0.28 s

214.49 MB
0.52 s

217.48 MB
0.98 s

226.99 MB
2.08 s

245.93 MB
4.27 s

275.67 MB

DejaVu
0.24 s

2.61 GB
0.73 s

2.61 GB
3.94 s

2.63 GB
21.12 s

2.63 GB
136.56 s
4.34 GB

2

MonAmi/S
0.69 s

214.19 MB
1.68 s

217.72 MB
3.52 s

224.88 MB
9.22 s

244.99 MB
26.14 s

272.22 MB

MonAmi/B
0.27 s

216.28 MB
0.49 s

220.33 MB
1.07 s

224.12 MB
2.19 s

239.32 MB
4.42 s

284.65 MB

DejaVu
21.82 s

6.09 GB
454.51 s
6.08 GB

∞

N/A
∞

N/A
∞

N/A

3

MonAmi/S
1.33 s

212.67 MB
4.28 s

219.07 MB
12.71 s

231.48 MB
46.47 s

261.21 MB
82.86 s

304.59 MB

MonAmi/B
0.28 s

217.32 MB
0.57 s

221.24 MB
1.47 s

230.17 MB
2.26 s

236.92 MB
5.13 s

264.54 MB

DejaVu
0.40 s

6.15 GB
1.36 s

6.14 GB
5.59 s

6.14 GB
38.96 s

6.12 GB
∞

N/A

4

MonAmi/S
0.95 s

210.78 MB
2.36 s

216.76 MB
6.61 s

225.45 MB
23.26 s

240.86 MB
79.95 s

287.96 MB

MonAmi/B
0.2918 s

217.39 MB
0.54 s

219.58 MB
1.11 s

226.81 MB
2.13 s

248.91 MB
4.78 s

284.80 MB

DejaVu
2.01 s

6.08 GB
13.67 s
6.08 GB

92.59 s
6.09 GB

∞

N/A
∞

N/A
Table 3: MonAmi’s S and B modes versus DejaVu

(∞ means more than 1000 seconds)
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