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Abstract. This work presents a runtime verification approach imple-
mented in the tool MESA (MEssage-based System Analysis) which al-
lows for using concurrent monitors to check for properties specified in
data parameterized temporal logic and state machines. The tool is im-
plemented as an internal Scala DSL. We employ the actor programming
model to implement MESA where monitors are captured by concurrent
actors that communicate via messaging. The paper presents a case study
in which MESA is used to effectively monitor a large number of flights
from live US airspace data streams. We also perform an empirical study
by conducting experiments using monitoring systems with different num-
bers of concurrent monitors and different layers of indexing on the data
contained in events. The paper describes the experiments, evaluates the
results, and discusses challenges faced during the study. The evaluation
shows the value of combining concurrency with indexing to handle data
rich events.

1 Introduction

Distributed computing is becoming increasingly important as almost all modern
systems in use are distributed. Distributed systems usually refer to systems with
components that communicate via message passing. These systems are known to
be very hard to reason about due to certain characteristics, e.g. their concurrent
nature, non-determinism, and communication delays [27,16]. There has been a
wide variety of work focusing on verifying distributed systems including dynamic
verification techniques such as runtime verification [29,14] which checks if a run
of a System Under Observation (SUO) satisfies properties of interest. Properties
are typically captured as formal specifications expressed in forms of linear tem-
poral logic formulas, finite state machines, regular expressions, etc. Some of the
proposed runtime verification techniques related to distributed computing them-
selves employ a distributed system for monitoring for a variety of reasons such
as improving efficiency [8,18,5,9,17,11]. Exploiting parallelism, one can use addi-
tional hardware resources for running monitors to reduce their online overhead
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[9]. Moreover, using concurrent monitors instead of one monolithic monitor, one
can achieve higher utilization of available cores [17].

In this paper, we propose a runtime verification approach for analyzing dis-
tributed systems which itself is distributed. Our approach is generic and is not
tied to a particular SUO. It is motivated by a use case which aims to analyze
flight behaviors in the National Airspace System (NAS). NAS refers to the U.S.
airspace and all of its associated components including airports, airlines, air nav-
igation facilities, services, rules, regulations, procedures, and workforce. NAS is
a highly distributed and large system with over 19000 airports including public,
private, and military airports, and up to 5000 flights in the U.S. airspace at the
peak traffic time. NAS actively evolves under the NextGen (Next Generation
Air Transportation System) project, led by the Federal Aviation Administration
(FAA), which aims to modernize NAS by introducing new concepts, and tech-
nologies. Considering the size and complexity of NAS, efficiency is vital to our
approach. Our ultimate goal is to generate a monitoring system that handles
high volume of live data feeds, and can be used as a ground control station to
analyze air traffic data in NAS.

Our approach is based on employing concurrent monitors, and adopts the
actor programming model, a model for building concurrent systems. The actor
model was proposed in 1973 as a way to deal with concurrency in high per-
formance systems [23]. Concurrent programming is notoriously difficult due to
concurrency errors such as race conditions and deadlocks. These errors occur
due to lack of data encapsulation to avoid accessing objects’ internal state from
outside. Thus, mechanisms are required to protect objects’ state such as blocking
synchronization constructs which can impact scalability and performance. The
actor programming model offers an alternative which eliminates these pitfalls.
Primary building blocks in the actor programming model are actors, which are
concurrent objects that do not share state and only communicate by means of
asynchronous messages that do not block the sender. Actors are fully indepen-
dent and autonomous and only become runnable when they receive a message in
their buffer called mailbox. The model also guarantees that each runnable actor
only executes in one thread at a time, a property which allows to view an actor’s
code as a sequential program.

We create a framework, MESA, using the Akka toolkit [1,38], which provides
an implementation of the actor model in Scala. The actor model is adopted
by numerous frameworks and libraries. However, what makes Akka special is
how it facilitates the implementation of actor-based systems that refrain users
from dealing with the complexity of key mechanisms such as scheduling actors
and communication. We also use the Runtime for Airspace Concept Evaluation
(RACE) [31,30] framework, another system built on top Akka and extending it
with additional features. RACE is a framework to generate airspace simulations,
and provides actors to import, translate, filter, archive, replay, and visualize data
from NAS, that can be directly employed in MESA when checking for properties
in the NAS domain.
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MESA supports specification of properties in data parameterized temporal
logic and state machines. The support for formal specification is provided by
integrating the trace analysis tools TraceContract [6,22] and Daut (Data au-
tomata) [20,21], implemented as domain specific languages (DSLs) [2]. Trace-
Contract, which was also used for command sequence verification in NASA’s
LADEE (Lunar Atmosphere And Dust Environment Explorer) mission [7], sup-
ports a notation that combines data-parameterized state machines, referred to
as data automata, with temporal logic. Daut is a modification of TraceContract
which, amongst other things, allows for more efficient monitoring. In contrast
to general-purpose languages, external DSLs offer high levels of abstractions but
usually limited expressiveness. TraceContract and Daut are, in contrast, internal
DSLs since they are embedded in an existing language, Scala, rather than pro-
viding their own syntax and runtime support. Thus, their specification languages
offer all features of Scala which adds adaptability and richness.

As a basic optimization technique, MESA supports indexing, a restricted
form of slicing [32,36]. Indexing slices the trace up into sub-traces according to
selected data in the trace, and feeds each resulting sub-trace to its own sub-
monitor. As an additional optimization technique, MESA allows concurrency at
three levels. First, MESA runs in parallel with the monitored system(s). Second,
multiple properties are translated to multiple monitors, one for each property.
Third, and most importantly for this presentation, each property is checked by
multiple concurrent monitors by slicing the trace up into sub-traces using in-
dexing, and feeding each sub-trace to its own concurrent sub-monitor. One can
configure MESA to specify how to check a property in a distributed manner.
We present a case study demonstrating the impact of using concurrent monitors
together with indexing. In this case study it is flight identifiers that are used
as slicing criteria. We evaluate how different concurrency strategies impact the
performance. The results are positive, demonstrating that concurrency used to
handle slices of a trace can be beneficial. This is not a completely obvious result
considering the cost of scheduling threads for small tasks. The main contribution
of the paper is providing an extensive empirical assessment of asynchronous con-
current monitors implemented as actors. The paper also presents a new runtime
verification tool, MESA, and its application on a real case study.

2 Related Work

Amongst the most relevant work is that of Basin et. al. [8]. In this work the
authors use data parallelism to scale first-order temporal logic monitoring by
slicing the trace into multiple sub-traces, and feeding these sub-traces to differ-
ent parallel executing monitors. The approach creates as many slices as there
are monitors. The individual monitors are considered black boxes, which can
host any monitoring system fitting the expected monitor interface. Another at-
tempt in a similar direction is that of Hallé et. al. [18], which also submits trace
slices to parallel monitors, a development of the author’s previous work on using
MapReduce for the same problem [5]. Reger in his MSc dissertation [35] experi-
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mented with similar ideas, creating parallel monitors to monitor subsets of value
ranges. However, in that early work the results were not promising, possibly
due to the less mature state of support for parallelism in Java and hardware at
the time. Berkovich et. al. [9] also address the splitting of the trace according
to data into parallel executing monitors. However, differently from the other
approaches, the monitors run on GPUs instead of on CPUs as the system be-
ing monitored does. Their monitoring approach incurs minimal intrusion, as the
execution of monitoring tasks takes place in different computing hardware than
the execution of the system under observation. Francalanza and Seychell [17] ex-
plore structural parallelism, where parallel monitors are spawned based on the
structure of the formula. E.g. a formula p ∧ q will cause two parallel monitors,
one for each conjunct, co-operating to produce the combined result. El-Hokayem
and Falcone [13] review different approaches to monitoring multi-threaded Java
programs, which differs in perspective from the monitoring system itself to be
parallel. Francalanza et. al. [16] survey runtime verification research on how to
monitor systems with distributed characteristics, solutions that use a distributed
platform for performing the monitoring task, and foundations for decomposing
monitors and expressing specifications amenable for distributed systems.

The work by Burlò et. al. [10] targets open distributed systems and relies on
session types for verification of communication protocols. It applies a hybrid ver-
ification technique where the components available pre-deployments are checked
statically, and the ones that become available at runtime are verified dynami-
cally. Their approach is based on describing communication protocols via session
types with assertions, from the lchannels Scala library, which are used to syn-
thesize monitors automatically. The work by Neykova and Yoshida [33] applies
runtime verification to ensure a sound recovery of distributed Erlang processes
after a failure occurs. Their approach is based on session types that enforce
protocol conformance. In [28], Lavery et. al. present an actor-based monitoring
framework in Scala, that similar to our approach is built using the Akka toolkit.
The monitoring system does not, as our approach, provide a temporal logic API
for specifying properties, which is argued to be an advantage. Daut as well as
TraceContract allow defining monitors using any Scala code as well. A monitor
master actor can submit monitoring tasks to worker actors in an automated
round robin fashion manner. This, however, requires that the worker monitors
do not rely on an internal state representing a summary of past events. The work
by Attard and Francalanza [3] targets asynchronous distributed systems. Their
approach allows for generating partitioned traces at the instrumentation level
where each partitioned trace provides a localized view for a subset of the system
under observation. The work focuses on global properties that can be cleanly
decomposed into a set of local properties which can be verified against local
components. It is suggested that one could use the partitioned traces to infer
alternative merged execution traces of the system. The implementation of the
approach targets actor-based Erlang systems, and includes concurrent localized
monitors captured by Erlang actors.
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3 An Overview of MESA

MESA is a framework for building actor-based monitoring systems. An overview
of a system that can be built using MESA is shown in Figure 1. A MESA system

…

Data acquisition

…
…

Data processing ReportMonitoringSUO

Fig. 1: Overview of a MESA actor-based monitoring system.

is solely composed of actors that implement a pipeline of four processing steps.
The vertical lines between actors represent publish-subscribe communication
channels resembling pipelines where outputs from one step are used as inputs
for the following step. The first step is data acquisition which extracts data from
the SUO. The second step is data processing which parses raw data extracted
by the previous step and generates a trace composed of events that are relevant
to the properties of interest. Next step is monitoring which checks the trace
obtained from the previous step against the given properties. Finally, the last
step is reporting which presents the verification results. What MESA offers are
the building blocks to create actors for each step of the runtime verification.
Often one needs to create application specific actors to extend MESA towards
a particular domain. Besides the NAS domain, MESA is extended towards the
UxAS project which is developed at Air Force Research Laboratory and provides
autonomous capabilities for unmanned systems [34].

Akka actors can use a point-to-point or publish-subscribe model to com-
municate with one another. In point-to-point messaging, the sender sends a
message directly to the receiver, whereas, in publish-subscribe messaging, the
receivers subscribe to the channel, and messages published on that channel are
forwarded to them by the channel. Messages sent to each actor are placed on
its mailbox. Only actors with a non-empty mailbox become runnable. Actors
extend the Actor base trait and implement a method receiveLive of type
PartialFunction[Any,Unit] which captures their core behavior. It includes a
list of case statements, that by applying Scala pattern matching over parame-
terized events, determine the messages that can be handled by the actor and the
way they are processed. To create a MESA monitoring system (Figure 1) one
needs to specify the actors and the way they are connected with communication
channels in a HOCON configuration file used as an input to MESA.

Figure 2 shows the MESA framework infrastructure and the existing sys-
tems incorporated into MESA. These systems are all open source Scala projects.
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MESA is also written in Scala and in the process of getting open-sourced. Akka
provides the actor model implementation. RACE, built on top of Akka, is mainly
used for connectivity to external systems. MESA employs a non-intrusive ap-
proach since for safety-critical systems such as NAS, sources are either not
available or are not allowed to be modified for security and reliability reasons.
RACE provides dedicated actors, referred to as importers, that can subscribe
to commonly-used messaging system constructs, such as JMS server and Kafka.
Using an importer actor from RACE in the data acquisition step, we extract
data from the SUO, in a nonintrusive manner.

TraceContract and Daut are trace analysis DSLs where given a program
trace and a formalized property, they determine whether the property holds for
the trace. Monitor is a main class in these DSLs which encapsulates property
specification capabilities and implements a key method, verify, that for each in-
coming event updates the state of the monitor accordingly. Instances of Monitor
are referred to as monitors from here on. Similar to actors receiveLive method,
Monitor.verify includes a series of case statements that determine the events
that can be handled by the monitor and the behavior triggered for each event.
The properties described in this paper are specified using Daut since it also pro-
vides an indexing capability within monitors to improve their performance. It
allows for defining a function from events to keys where keys are used as entries
in a hash map to obtain those states which are relevant to the event. Using
indexing, a Daut monitor only iterates over an indexed subset of states.

conectivity
RACE

Akka Daut/TraceContract

JVM/Scala & Java libs

MESA

actor model  specification

platform

 runtime verification

Fig. 2: The MESA framework infrastructure.

Properties in MESA are defined as subclasses of Monitor. The actors in
the monitoring step (Figure 1), referred to as monitor actors, hold an instance
of the Monitor classes and feed them with incoming event messages. MESA
provides components referred to as dispatchers which are configurable and can
be used in the monitoring step to determine how the check for a property is
distributed among different monitor actors. Dispatchers, implemented as actors,
can generate monitor actors on-the-fly and distribute the incoming trace between
the monitor actors, relying on identifiers extracted by data parametrized events

4 Monitoring Live Flights in the U.S. Airspace

This section presents the case study where MESA is applied to check a property
known as RNAV STAR adherence, referred to as PRSA in this paper. A STAR
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is a standard arrival procedure designed by the FAA to transition flights from
the en-route phase to the approach phase where descent starts. Every STAR
specifies a set of flight routes that merge together, and each route is specified by
a sequence of waypoints, accompanied by vertical and speed profiles specifying
altitude and airspeed restrictions. A waypoint is a geographical position with
latitude and longitude coordinates. A STAR is a form of communication between
the flight crew and air traffic controllers. When the air traffic controller gives
a clearance to the pilot to take a certain STAR route, they communicate the
route, altitude, and airspeed. A STAR route, assigned to a flight, is encoded in
the flight plan presented to the pilot as a sequence of waypoints. STARs are
specfically designed for flights operated under Instrument Flight Rules under
which the aircraft is navigated by reference to the instruments in the aircraft
cockpit rather than using visual references. STAR routes can only be used by
aircrafts equipped with a specific navigation system called RNAV.

One of the ongoing focus points of the FAA is to increase the utilization of
STAR procedures. From 2009 to 2016, as part of the NextGen project, 264 more
STAR procedures were implemented on an expedited timeline [41] which led to
safety concerns raised by airlines and air traffic controllers including numerous
unintentional pilot deviations [12,24]. A possible risk associated with deviating
from a procedure is a loss of separation which can result in a midair collision.
The work presented in [40] studies RNAV STAR adherence trends based on a
data mining methodology, and shows deviation patterns at major airports [4].

The case study applies runtime verification to check if flights are compliant
with the designated STAR routes in realtime. A navigation specification for
flights assigned to a STAR requires a lateral navigation accuracy of 1 NM3 for
at least 95% of the flight time [25]. Our approach focuses on lateral adherence
where incorporating a check for vertical and speed profiles becomes trivial. We
informally define the RNAV STAR lateral adherence property as follows, adopted
by others [40].

PRSA : a flight shall cross inside a 1.0 NM radius around each waypoint in the
assigned RNAV STAR route, in order.

4.1 Formalizing Property PRSA

For a sake of brevity, we say a flight visits a waypoint if the flight crosses inside
a 1.0 NM radius around the waypoint. We say an event occurs when the aircraft
under scrutiny visits a waypoint that belongs to its designated STAR route.
For example, in Figure 3, where circles represent 1.0 NM radius around the
waypoints, the sequence of events for this aircraft is MLBEC MLBEC JONNE.

We define a state machine capturing Property PRSA. Let L be a set including
the labels of all waypoints in the STAR route. Let first and last be predicates on
L that denote the initial and final waypoints, respectively. Let next be a partial
function, L ↪→ L, where given a non-final waypoint in L it returns the subsequent

3 NM, nautical mile is a unit of measurement equal to 1,852 meters.
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MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

(1) (2) (3) (4)

Fig. 3: The sequence of events for the aircraft is MLBEC MLBEC JONNE.

waypoint in the route. For example, next(MLBEC) returns JONNE (Figure 3).
The finite state machine for Property PRSA is the tuple (Q,Σ, q0, F, δ) where

– Q = L ∪ {init, err, drop}
– Σ = {et|t ∈ L ∪ {FC, SC}}
– q0 = init
– F = {err, drop} ∪ {q ∈ L | last(q)}
– δ : Q×Σ → Q

Q is the set of all states, and init is the initial state. Σ is the set of all possible
events. The event et where t ∈ L indicates that the aircraft visits the waypoint t.
The event eFC indicates that the flight is completed, and eSC indicates that the
flight is assigned to a new STAR route. Note that FC stands for flight completed
and SC stands for STAR changed. F is the set of final states where last represents
the set of accept states indicating that the flight adhered to the assigned STAR
route. The state err represents an error state indicating the violation of the
property. The state drop represents a state at which the verification is dismissed
due to assignment of a new STAR route. The transition function δ is defined as
below.

δ(q, et) =


t if(q = init & first(t))

or (q ∈ {x ∈ L | ¬last(x)} & t ∈ {q, next(q)})
err if(q = init & t 6= SC & ¬first(t))

or (q ∈ {x ∈ L | ¬last(x)} & t /∈ {q, next(q), SC})
drop if(q 6= err & t = SC)

At init, if the flight visits the first waypoint of the assigned route, the state
machine advances to the state representing the first waypoint. Alternatively, if at
waypoint q, the flight can only visit q or the next waypoint in the route, next(q).
Otherwise, if at init, and it visits any waypoint other than the first waypoint of
the route, the state machine advances to err. Likewise, if the flight visits any
waypoint not on the route, the state advances to err. Finally, at any state other
than err, if the flight gets assigned to a new route (t = SC), the state machine
advances to drop.

4.2 PRSA Monitor Implementation

All the events and types encapsulated by them are implemented as Scala case

classes due to their concise syntax and built-in pattern matching support that



Actor-based Runtime Verification with MESA 9

1 class P RSA(config: Config) extends daut.Monitor(config) {
2 always {
3 case e@Visit(info@Info( , track: Track), wp: Waypoint) if (isValid(e)) =>
4 if (wp == first) nextState(wp, track.cs) else error(msg)
5 case e@Completed(ti) if (isValid(e)) => error(msg)
6 }
7
8 def nextState(wp: Waypoint, cs: String): state = {
9 val next = star.next(wp)

10 watch {
11 case Visit(Info(State(‘ cs ‘, , , ) , ) ,‘ wp‘) => nextState(wp, cs)
12 case Visit(Info(State(‘ cs ‘, , , ) , track:Track),‘next‘) =>
13 if (next == last) accept(last, track) else nextState(next, cs)
14 case Visit(Info(State(‘ cs ‘, , , ) , ) , ) , ) => error(msg)
15 case Completed(Track(‘cs‘, , )) => error(msg)
16 case StarChanged(Track(‘cs‘, , )) => drop(cs)
17 }
18 }
19 def accept(wp: Waypoint, track: Track): state = {report(msg);ok}
20 def error(msg: String): state = {report(msg);err}
21 def drop(cs: String) : state = {dropMonitor(cs);ok} ...
22 }

Fig. 4: Implementation of Property PRSA.

facilitates the implementation of data-parametrized state machines. The class
Visit represents an event where the flight visits the given waypoint, Waypoint.
Completed indicates that the flight is completed. StarChanged indicates that
the given flight is assigned to a new STAR route.

case class Visit( info : Info , wp: Waypoint)
case class Completed(track: Track)
case class StarChanged(track: Track)

We implement PRSA as a Daut monitor (Figure 4). A Daut monitor maintains
the set of all active states representing the current states of the state machines.
For each incoming event, new target states of transitions may be created and the
set of active states updated. A state is presented by an object of type state, and
the set of transitions out of the state is presented by an instance of Transitions,
which is a partial function of type PartialFunction[E,Set[state]] where E

is a monitor type parameter.

The functions always and watch act as states. They accept as argument a
partial function of type Transitions and return a state object. The case state-
ments, representing transitions at states, are matched against incoming events.
The verification starts from the state always, and watch represents a state at
which the flight visits a waypoint. For case statements in always, isValid is
used as a pattern guard to narrow down the set of events triggered on the state
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to the ones relevant to the STAR routes assigned to the monitor. Moreover,
since always is always an active state, isValid ensures that only one event per
flight is triggered on always. The first case in always matches against the event
Visit where a flight visits a waypoint. Then, it checks if the waypoint, wp, vis-
ited by the flight is the first waypoint of the route. If so, the method nextState

is invoked which advances the state to watch. Otherwise, the method error ad-
vances the state to err. The second case matches against Completed, indicating
that the flight is completed without visiting any waypoints, and invokes error.

The watch state waits to receive an event that triggers one of its transitions
and then leaves the state. The input parameters of nextState, wp and cs, rep-
resent the waypoint being visited by the flight and the flight call sign. To ensure
that only events associated with this flight can match against case statements,
all the patterns match the call sign for the incoming event, cs, against the value
of the flight call sign. This is done by using back-quotes for associated parame-
ter in the typed patterns, cs. The first case in watch matches against the event
where the flight visits the current waypoint, and calls nextState(wp,cs) to
remain in the current state. The variable next is set to the next waypoint in
the STAR route. The second case matches against the event where the flight
visits the waypoint next. It checks if next is the last waypoint, and if so, it calls
accept which returns the object ok, representing the accepting state. If next is
not the last waypoint, it calls nextState(next,cs) to advance to the state cor-
responding to next. Next case matches against Completed which calls error to
advance to the err state. Finally, last case matches against StarChanged which
calls drop to discard the analysis for the flight.

4.3 A MESA Monitoring System for PRSA

Figure 5 illustrates the MESA monitoring system used to verify Property PRSA.
The data acquisition step extracts the data relevant to the property which in-
cludes flight information, position, navigation specification, flight plan, etc. To
get this data, we connect to an FAA system, SWIM (System Wide Information
Management) [19]. SWIM implements a set of information technology princi-
ples in NAS which consolidates data from many different sources, e.g. flight
data, weather data, surveillance data, airport operational status. Its purpose
is to provide relevant NAS data, in standard XML formats, to its authorized
users such as airlines, and airports. SWIM has a service-oriented architecture
which adopts the Java Message Service (JMS) interface [37] as a messaging
API to deliver data to JMS clients subscribed to its bus. We use the RACE
actor SFDPS-importer which is a JMS client configured to obtain en-route real-
time fight data from a SWIM service, SFDPS (SWIM Flight Data Publication
Service)[15]. SFDPS-importer publishes the data to the channel sfdps.

The data processing step parses the SFDPS data obtained from the previous
stage and generates a trace, composed of event objects, relevant to the property.
This done via a pipeline of actors that parse the SFDPS messages in XML
(sfdps2track and sfdps2state), filter irrelevant data (filter), and finally
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Data acquisition Data processing Monitoring Report

SWIM
SFDPS

SFDPS-2-state

SFDPS-2-track

filter event-gen

BDEGA3

DYAMD4

SERFR3

SFPDS-importer display

ww-viewer

sfdps info filtered events result

Fig. 5: A MESA instance for verifying Property PRSA for STARs at SFO.

Fig. 6: Flight deviation from assigned RNAV STARs detected at SFO.

generate Visit, Completed, and StarChanged events, which are known to the
monitor P_RSA (event-gen) and published to the channel trace.

The monitoring step includes monitor actors that encapsulate an instance of
the monitor P_RSA (Figure 4). They subscribe to the channel trace, and feed
their underlying P_RSA object with incoming events. Each monitor actor in Fig-
ure 5 is associated to a STAR procedure at SFO which checks for the flights
assigned to that STAR, and published the verification result on the channel
result. Using the dispatcher feature of MESA, one can distribute the monitor-
ing differently, for example using one monitor actor per flight. Finally, the last
step displays the results. The actor display simply prints data published on
result on the console. We also use a RACE actor, ww-viewer, that uses NASA
WorldWind system to provide interactive geospatial visualization of flight tra-
jectories.

Using the MESA system shown in Figure 5, we discovered violations of PRSA.
Figure 6 includes snapshots from our visualization illustrating two cases where
PRSA was violated. It shows that the flight United 1738 missed the waypoint
LOZIT, and the flight Jazz Air 743 missed the initial waypoint BGGLO.

5 Experiments

This section presents our experiments evaluating the impact of using concurrent
monitors and indexing. More details on the experiments can be found in [39].
The experiments uses a property which checks if the sequence of SFDPS mes-
sages with the same call sign received from SWIM is ordered by the time tag
attached to the messages. This property is motivated by observations where the
SFDPS messages did not send in the right order by SWIM. We use the state of
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flights as events captured by State instances, and specify the property p as a
data-parameterized finite state machine using Daut as follows, where t1 and t2
represent the event time.

always {case State(cs, , ,t1)=>watch {case State(‘cs‘, , ,t2)=>t2.isAfter(t1)}}

This property is simple and it leads to a small service time, the time used to
process the message within the monitor object. To mitigate issues associated
with microbenchmarking, we use a feature of Daut that allows for defining
sub-monitors within a monitor object. We implement a Daut monitor P_SEQ

which maintains a list of monitor instances, all capturing the same p, as its
sub-monitors.

We evaluate the impact of concurrency in the context of indexing. Indexing
can be applied both at the monitor level or the dispatcher level. Indexing at
the monitor level is supplied by Daut. We activate this feature by implementing
an indexing function in the Daut monitor that uses the call signs carried by
events to retrieve the set of relevant states for analysis instead of iterating over
all the current states. At the dispatcher level, indexing is applied by keeping the
monitor instances or references to monitor actors in a hash map, using the call
signs carried by events as entries to the hash map.

dispatcher

monitor-actor-1

……

events events

M1 cs1 …

MI1

monitor-actor-k

monitor-actor

events

MI cs1…csn Mn csn

cs1…csi

MIk csj…csn

dispatcher

(a) monitor-indexing (b) dispatcher-indexing (c) concurrent

Fig. 7: Actor-based monitoring systems used in the experiment.

5.1 Monitoring Systems

The experiments use four different MESA systems which are only different in
their monitoring step. They all use the same actors to extract the recorded
SFDPS data, generate a trace composed of State objects, and publish the trace
to a channel, events, accessed in the monitoring step. The monitoring step for
each system is illustrated in Figure 7. Let n be the total number of different
call signs in the input sequence. The outermost white boxes represent actors,
and gray boxes represent monitor instances held by the actor. Let M refer to
P_SEQ monitor instances with no indexing capability, and MI refer to P_SEQ

instances with indexing. The white box inside each monitor instance includes
call signs monitored by this instance. Next, we explain the monitoring step for
the monitoring systems, the features of which are summarized in Table 8.

– monitor-indexing - the monitoring step includes one actor with a single MI

monitor which checks for all the events in the input sequence published to
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events. In a way, the monitoring step of this configuration is equivalent to
directly using the Daut tool to process the trace sequentially.

– dispatcher-indexing - the monitoring step includes a dispatcher actor
which creates monitor instances of type M, and feeds them with incoming
events. The dispatcher actor generates one monitor instance per call sign,
and applies indexing by storing the monitor instances in a hash map. The
dispatcher obtains event objects from the channel events, and starting with
an empty hash map, for each new call sign, it adds a new monitor instance
to the hash map. For an event object with the call sign csi, the dispatcher
invokes the verify method of the monitor instance Mi.

– concurrent - the trace analysis is performed concurrently by employing mul-
tiple monitor actors, generated on-the-fly. One can configure the dispatcher
to set a limit on the number of monitor actors. If no limit is set, one monitor
actor is generated for each call sign and the indexing within the monitor
is deactivated. By setting a limit, one monitor actor could be assigned to
more than one call sign. The latter is referred to as bounded-concurrent.
Indexing is also applied at the dispatcher level, using a hash map that stores
monitor actor references with call signs as entries to the map. For each event
object, the dispatcher forwards the event object to the associated monitor
actor via point-to-point communication. Then the monitor actor invokes the
verify method on its underlying monitor instance.

monitor indx dispatcher indx concurrency

monitor-indexing X × ×
dispatcher-indexing × X ×
concurrent × X X
bounded-concurrent X X X

Fig. 8: The main features of the monitoring systems presented in Figure 7.

5.2 System Setup

All experiments are performed on an Ubuntu 18.04.3 LTS machine, 31.1 GB
of RAM, using a Intel R©Xeon R©W-2155 CPU (10 cores with hyperthreading,
3.30GHz base frequency). We use an input trace, T, including 200,000 messages
obtained from an archive of recorded SFDPS data in all experiments. T includes
data from 3215 different flights, that is, n in Figure 7 is 3215. The number of
sub-monitors in P_SEQ is set to 2000. The Java heap size is set to 12 GB. Our ex-
periment uses a default setting of the Akka scheduler which associates all actors
to a single thread pool with 60 threads, and uses the default value 5 for actors
throughput, the maximum number of messages processed by the actor before the
assigned thread is returned to the pool.
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5.3 Evaluation

Using a bash script, each MESA monitoring system is run 10 consecutive times
on the trace T, and the average of the runs is used for evaluation. Figure 7
compares the run times for the monitoring systems presented in Figure 9. The
legend bcon stands for bounded-concurrent followed by the number of monitor
actors. Considering the 3215 different call signs in T, monitor-indexing includes
one monitor actor including one monitor object that tracks all 3215 flights. The
dispatcher-indexing system creates one actor with a hash map of size 3215
storing the monitor objects where each object monitors events from one flight.
The concurrent monitoring system creates 3215 monitor actors where each
actor monitors events from one flight. The bounded-concurrent system creates
250 monitor actors where each actor monitors events from 12 or 13 flights.

The results show that the systems with concurrent monitors perform con-
siderably better than the systems with a single monitor actor. The system
monitor-indexing performs worse than dispatcher-indexing. Considering
the similarity between their indexing mechanisms, the difference mostly amounts
to the implementation. The CPU utilization profiles for the system are ob-
tained by the VisualVM profiler which represent the percentage of total com-
puting resources in use during the run (Figure 10). The CPU utilization for
monitor-indexing is mostly under 30% and for dispatcher-indexing is
mostly between 40% and 50%. For concurrent and bounded-concurrent, the
CPU utilization is mostly above 90% which shows the impact of using concur-
rent monitor actors. The VisualVM heap data profiles reveal that all the system
exhibit a similar heap usage which mostly remains under 10G.
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Fig. 9: Comparing the run times of different MESA actor systems.

Figure 9 shows that limiting the concurrent monitors to 250 results in a
better performance than using one monitor actor per flight in concurrent.
To evaluate how the number of monitor actors impact the performance,
bounded-concurrent is run with different numbers of monitor actors, 125, 250,
500, 1000, 2000, and 3215. We increase the number of monitor actors up to 3215
since this is the number of total flights in the trace T. The results are compared
in Table 11. The system performs best with 250 monitor actors, and from there
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(a) monitor-indexing (b) bounded-concurrent(250 monitors)

Fig. 10: The CPU utilization profiles obtained by VisualVM.

as the number of monitor actors increases the run time increases. Increasing the
number of monitor actors decreases the load on each monitor actor, however,
it increases the overhead from their scheduling and maintenance. Note that the
optimal number of monitor actors depends on the application and the value of
input parameters. Tweaking inputs parameters could lead to a different optimal
number of monitor actors. Our results also show that depending on the number
of flights tracked by each monitor actor, Daut indexing could lead to overhead,
e.g. it leads to 11% overhead when using 3215 monitor actors, and improves the
performance by 45% when using 125 monitor actors.

#monitors 125m 250m 500m 1000m 2000m 3215m

time (s) 169 161 167 169 183 208

Fig. 11: Comparing the run times of different MESA actor systems.

5.4 Actor Parameter Evaluation

We also evaluate performance parameters for individual dispatcher and monitor
actors in each monitoring system, including the average service time, and the
average wait time for messages in the mailbox. The relevant points for measuring
these parameters are when a message is enqueued into and dequeued from the
mailbox, and when the actor starts processing and finishes processing a mes-
sage. We provide mechanisms for actors to wrap the relevant data into container
objects and publish them to a channel accessed by an actor, stat-collector,
which collects this information and reports when the system terminates.

To measure service time, the default actor behavior, recieveLive, is replaced
by an implementation that for each message, invokes recieveLive, records the
time before and after the invocation, and publishes a data container with the
recorded times to the channel accessed by stat-collector. To obtain informa-
tion from actor mailboxes, we implement a new mailbox that extends the default
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Akka mailbox implementation with a mechanism that records the message entry
time to and the exit time from the mailbox, and publishes a data container with
the recorded times to the channel accessed by stat-collector. Any MESA ac-
tor can be configured to use these features, referred as ASF. The ASF overheads
for monitor-indexing and dispatcher-indexing are about 20% and 11%. For
systems with concurrent monitor actors, this overhead ranges between 20% to
28% and increases as the number of monitor actors increases.

Figure 12 compares the performance parameters for individual actors. Fig-
ure 12a and 12b show that the monitor actor in monitor-indexing has a longer
service time and longer wait time in the mailbox comparing to the dispatcher in
dispatcher-indexing. Figure 12c and 12d compare the dispatcher performance
metrics for bounded-concurrent with different numbers of monitor actors. Fig-
ure 12e and 12f present the monitor actors performance metrics for the same sys-
tems. The average service time for the dispatcher and monitor actors increases as
the number of actors increases. Increasing the monitor actors increases the load
on the dispatcher since it needs to generate more monitor actors. Decreasing the
number of monitor actors increases the load on individual monitor actors since
each actor monitors more flights. On the other hand, applying indexing within
the monitor actors improves their performance, however for monitors that track
small number of flights, indexing can lead to overhead leading to longer service
times.

The message wait time in the dispatcher mailbox increases as the number
of actors increases (Figure 12d). In general, with a constant thread pool size,
increasing actors in the system can increase the wait for actors to get scheduled,
leading to longer wait for messages in mailboxes. However, in the case of monitor
actors the mailbox wait is longer with smaller number of actors (Figure 12f). This
is due to higher arrival rate of messages in these systems since each monitor actor
is assigned to higher number of flights.

6 Discussion

Applying MESA on NAS demonstrates that our approach can be used to effec-
tively detect violations of temporal properties in a distributed SUO. We show the
impact of using concurrent monitors for verification. Our evaluation includes a
setting that resembles using an existing trace analysis tool, Daut, directly. Com-
paring this setting to the concurrent monitoring setting reveals that employing
concurrent actors can considerably improve the performance. MESA is highly
extensible, and provides flexibility in terms of incorporating new DSLs. It can
be viewed as a tool that provides concurrent monitoring platform for existing
trace analysis DSLs.

To maximize the performance, one needs to limit the number of concurrent
monitor actors. Due to a variety of overhead sources, the optimal number of
actors is application specific and cannot be determined a priori. The following
factors need to be taken into consideration when configuring values of the related
parameters. Limiting the number of monitor actors on a multi-core machine can
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Fig. 12: Comparing the monitors performance metrics for MESA systems.

lead to a low CPU utilization. One can elevate the CPU utilization by increasing
concurrency. However, there is overhead associated with actors. Assigning actors
to threads from the thread pool and context switching between them impose
overhead. MESA is a highly configurable platform that can facilitate finding the
optimal number of monitor actors to maximize the performance. One can easily
tune relevant parameters in the configuration file to evaluate the monitoring
systems.

As shown in Figure 2, our framework runs on top of JVM and relies on the
Akka framework. There are mechanisms, such as garbage collection at the JVM
level and actor scheduling at the Akka level, that cannot be controlled from
a MESA system. Therefore, MESA is not suitable for verifying hard real-time
systems where there are time constraints on the system response. One of the
challenges that we faced in this work is microbenchmarking on JVM which is a
well-known problem. Certain characteristics of JVM such as code optimization
can impact accuracy of the results, specially when it comes to smaller time
measures such as service time and wait time for messages in the actor mailboxes.
However, there are tools such as JMH that provide accurate benchmarking [26].

Several of the mentioned works [8,18,9,3], support the observation that con-
currency in one form or other, using asynchronous message passing, can improve
performance of runtime verification systems. The works most relevant to our
combination of slicing and concurrency are [8,18]. Basin et. al. [8] provide per-
formance results for the use of slicing together with concurrency, but do not
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compare these with runs without concurrency. However, the logs analyzed con-
tain billions of events, supporting the observation that exactly this use of con-
currency is performance enhancing. Hallé et. al. [18] do not provide performance
results for specifically the combination of slicing and concurrency.

Slicing does put a restriction on what properties can be monitored. Since
the trace is sliced into subtraces, each of which may be submitted to its own
actor, one cannot express properties that relate difference slices. An example of
a property that cannot be stated in e.g. this particular case study is that the
route taken by an airplane depends on the routes taken by other airplanes. In
MESA the slicing strategy is manually defined, and attention must be paid to
the property being verified to ensure a sound approach.

7 Conclusion

In this work we have presented a runtime verification tool that employs concur-
rent monitors as actors. Our approach allows for specifying properties in data-
parameterized temporal logic and state machines, provided by existing trace
analysis DSLs. We present a case study demonstrating how the tool is used to
obtain live air traffic data feeds and verify a property that checks if flights adhere
to assigned arrival procedures. We evaluate different combinations of indexing
and concurrency, and observe that there are clear benefits to monitor a single
property with multiple concurrent actors processing different slices of the input
trace. This is not an obvious result since there is a cost to scheduling of small
tasks.
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10. Burlò, C.B., Francalanza, A., Scalas, A.: Towards a Hybrid Verification Method-
ology for Communication Protocols (Short Paper). In: Gotsman, A., Sokolova,
A. (eds.) Formal Techniques for Distributed Objects, Components, and Systems.
Lecture Notes in Computer Science, vol. 12136, pp. 227–235. Springer (2020).
https://doi.org/10.1007/978-3-030-50086-3 13

11. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: Runtime Verifica-
tion with Configurable Resource-Aware Monitoring Boundaries. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) Software Engineering and Formal Meth-
ods. Lecture Notes in Computer Science, vol. 7504, pp. 218–232. Springer, Berlin,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7 15

12. Department of Transportation, Federal Aviation Administration: Implementation
of Descend Via into Boston Terminal area from Boston ARTCC (2015)

13. El-Hokayem, A., Falcone, Y.: Can We Monitor All Multithreaded Programs? In:
Colombo, C., Leucker, M. (eds.) International Conference on Runtime Verification.
Lecture Notes in Computer Science, vol. 11237, pp. 64–89. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 6

14. Falcone, Y., Havelund, K., Reger, G.: A Tutorial on Runtime Verification. In:
Broy, M., Peled, D., Kalus, G. (eds.) Engineering Dependable Software Systems,
NATO Science for Peace and Security Series - D: Information and Communication
Security, vol. 34, pp. 141–175. IOS Press (01 2013). https://doi.org/10.3233/978-
1-61499-207-3-141

15. SWIM Flight Data Publication Service (2020), https://www.faa.gov/air_

traffic/technology/swim/sfdps/
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