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Abstract. The paper provides an overview of the work performed by the
authors since the year 2000 in the field of runtime verification. Runtime
verification is the discipline of analyzing program/system executions us-
ing rigorous methods. The discipline covers such topics as specification-
based monitoring, where single executions are checked against formal
specifications; predictive runtime analysis, where properties about a sys-
tem are predicted/inferred from single (good) executions; fault protec-
tion, where monitors actively protect a running system against errors;
specification mining from execution traces; visualization of execution
traces; and to be fully general: computation of any interesting informa-
tion from execution traces. The paper attempts to draw lessons learned
from this work, and to project expectations for the future of the field.

1 Introduction

Runtime verification (RV) [10, 32, 41] has emerged as a field of computer science
within the last couple of decades. RV is concerned with the rigorous monitoring
and analysis of software and hardware system executions. The field, or parts
of it, can be encountered under several other names, including, e.g., runtime
checking, monitoring, dynamic analysis, and runtime analysis. Since only single
executions are analyzed, RV scales well compared to more comprehensive formal
methods, but of course at the cost of coverage. Nonetheless, RV can be useful
due to the rigorous methods involved.

The first and last author’s initial interest in RV started around 2000. We had
at that time explored software model checking with the Java PathFinder tool
[43, 49]. Part of that work focused on exploring the spectrum from full formal
verification to more scalable testing. That investigation led to our interest in RV.
Our initial efforts were inspired by Doron Drusinky’s Temporal Rover system [30]
for monitoring temporal logic properties, and by the company Compaq’s work
on predictive data race and deadlock detection algorithms [36]. These algorithms
can detect the potential for a data race or deadlock by analyzing a run that does
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not necessarily encounter the error. This paper reports on our own RV work,
with some references to related work that specifically inspired us or which we
find closely related, and discusses the lessons learned and our perspective on the
future of this field.

A particular software or hardware system to be monitored is from here on
referred to as the System Of Interest (SOI). We shall, due to our own lack of
experience in monitoring hardware systems, limit our focus to monitoring of
software systems, although for the majority of the discussion this distinction is
not important. An important part of RV is how to extract an execution trace
from an SOI, for example through manual logging or automated code instru-
mentation. This touches on the combination of static and dynamic analysis. We
are not dealing with how to obtain various executions, as in e.g. test case gen-
eration (another important topic covered e.g. in [18] in this volume). Runtime
verification can be used prior to deployment for testing purposes, referred to as
test oracles in [18], and during deployment for ensuring safety and security, e.g.
as part of a fault protection strategy.

As a more formal account, assume an SOI S, and assume that an execution
of S is captured as an execution trace σ = 〈e1, e2, . . . , en〉, which is a sequence
of observed events. Each event ei captures a snapshot of S’s execution state.
Monitors can be deeply embedded in the running system, able to access the full
state of the system, or they can observe from a “distance”, receiving execution
events (data records) from the running system. Assume the type E of events,
then the RV problem can be formulated as constructing a program M : E∗ → D,
which when applied to a trace σ, as in M(σ), returns some data value d ∈ D in
a domain D of interest. The problem can be generalized to computing a result
from multiple traces (as e.g. done in learning and statistical model checking),
giving M the type4 M : P(E∗)→ D.

In specification-based RV, M can be generated from a formal specification
given in e.g. temporal logic, state machine notation, regular expressions, and d is
a value in the Boolean domain (d ∈ B), or some extension of the Boolean domain
as discussed in [12], indicating whether the trace conforms to the specification.
However, the field should be perceived broadly, e.g. d can be a visualization
of the execution trace, a learned specification (specification mining), statistical
information about the trace, an action to perform on the running system S, etc.

The body of the paper is largely organized according to the time periods
in which the research was performed. Section 2 describes the first systems we
developed, starting with monitoring propositional events, and transitioning to
monitoring of parametric events carrying data, focusing on expressive logics as
well as efficient monitoring algorithms based on trace slicing. Section 3 describes
our experiments with aspect-oriented programming as a natural way of combin-
ing RV and code instrumentation. Section 4 describes early rule-based systems,
as well as systems developed specifically targeting space mission applications.
Section 5 describes our experiments with internal DSLs defined as APIs in a
programming language. Furthermore, trace slicing is yet again pursued for an

4 For any set S, P(S) is the power set of S, containing all subsets of S as elements.
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Fig. 1. The JPaX architecture.

expressive logic, and a system for Complex Event Processing (CEP) is devel-
oped, where the result of monitoring is a more complex data structure than just
a Boolean value. Section 6 covers mostly the entire period, and describes efforts
in predictive analysis, concerned with predicting anomalies in programs from
successful observed executions. Finally, Section 7 reflects on the presented work,
and provides thoughts on the future of the field of runtime verification.

2 2000-2005 - From Propositional to Parametric RV

2.1 Java PathExplorer

Architecture Our first monitoring system, Java PathExplorer (JPaX) [48, 47]
was a general framework for analyzing execution traces. It supported three kinds
of algorithms: propositional temporal logic conformance checking, data race de-
tection, and deadlock detection. Figure 1 shows JPaX’s architecture. A Java
program is instrumented (at byte code level) to issue events to the monitoring
side, which is customizable, allowing the addition of new monitors. The tempo-
ral logic monitoring module was originally based on a propositional future time
linear temporal logic, but was later extended to also cover past time.

Future time LTL The future time LTL monitoring used Maude to rewrite
formulas. Consider, e.g., the LTL formula p U q, meaning q eventually becomes
true and until then p is true. The implementation of JPaX was based on classical
equational laws for temporal operators, such as:

p U q = q ∧©(p U q) and �p = p ∧©(�p) (1)

Consider the sample formula �(green → ©(¬red U yellow)). Upon encoun-
tering a green in a trace, the formula will be rewritten into the following for-
mula, which must be true in the next state: (¬red U yellow) ∧ �(green →
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(¬red U yellow)). In Maude this was realized by a few simple rewrite rules, in-
cluding the following two for the until operator (E is an event and T is a trace,
the first rule handles the case of a trace consisting of only one event):

eq E |= X U Y = E |= Y .
eq E,T |= X U Y = E,T |= Y or E,T |= X and T |= X U Y .

Past time LTL Later, an efficient dynamic programming algorithm for moni-
toring past time logic was developed [47]. Consider the following past time for-
mula: red → �green (whenever red is observed, in the past there has been a
green). The algorithm for checking past time formulas like this uses two arrays,
now and pre, recording the status of each sub-formula now and previously. Index
0 refers to the formula itself with positions ordered by the sub-formula relation.
Then for this property, for each observed event the arrays are updated as follows.

bool pre [0..3], now [0..3];

fun processEvent(e) { // Sub−formula:
now[3] := (event = red) // red
now[2] := (event = green) // green
now[1] := now[2] || pre [1] // PREV green
now[0] := !now[3] || now[1] // red −> PREV green
if !now[0] then output (‘‘ property violated ’’);
pre := now;
}

Data races and deadlocks When used for bug finding, the effectiveness of
runtime verification depends on the choice of test suite. For concurrent systems
this is critical, due to the many possible non-deterministic execution paths. Pre-
dictive runtime analysis approaches this problem by replacing a target property
P with a stronger property Q such that there is a high probability that the pro-
gram satisfies P iff a random trace of the program will satisfy Q. Some of the first
such algorithms, which greatly inspired us, were implemented in Compaq’s Vi-
sual Threads tool [36] for analyzing multi-threaded applications in C and C++.
One such algorithm was the Eraser algorithm [68], for detecting potentials for
data races (where two threads can access a shared variable simultaneously). It
is often referred to as the lock set algorithm as each variable is associated with
a set of locks protecting it. Alternatively, the lock graph algorithm, would detect
“dining philosopher”-like deadlock potentials by building a simple lock graph
where a cycle indicates a deadlock potential. We continued this line of work in a
variety of ways. In [37] we explored the idea of letting a predictive analysis guide
a model checker towards data race and deadlock potentials. In [15] we augment
the original lock graph algorithm to reduce false positive in the presence of guard
locks (locks that prevent cyclic deadlocks). Other forms of data races than those
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detected by Eraser are possible. In [3] is described a dynamic algorithm for de-
tecting so-called high-level data races (races involving collections of variables).
Section 6 goes into more detail with research on predictive analysis.

2.2 Eagle

JPaX had a number of limitations. The perhaps most important was the propo-
sitional nature of the temporal logics. One could not, for example, monitor para-
metric events carrying data, such as openFile(“data.txt”). A second drawback
of JPaX was the separation between past time and future time temporal logic,
in two different logical systems. More generally, it seemed to us unfortunate
that one had to pick a particular logic amongst the many existing for writing
temporal properties, including past and future time temporal logic, extended
regular expressions, state machines, interval logics, real-time logics, data con-
straint logics, and statistical logics. It would be very attractive if a user could
define his/her own temporal logic from a small set of primitives. These thoughts
lead, during 2003, to the work on Eagle, first documented in [6]. Eagle was a
small and general logic having similarities with the µ-calculus.

The logic allowed the definition of new temporal operators which could be pa-
rameterized with formulas and primitive data such as integers. In addition to the
standard Boolean operators, the logic includes: © f (next f),

⊙
f (previous

f), f1 · f2 (concatenation: f1 on part of the trace and f2 on the remaining
part of the trace), f (now f), and N(f1 ,...,fn ) (call N with arguments). A
fundamental idea in Eagle was the option for a user to define temporal opera-
tors using recursion similar to the equations in (1) on page 3. Such user-defined
temporal operators are defined as follows in Eagle:

min Until(Form f1 , Form f2 ) = f2 ∨ (f1 ∧ © Until(f1 ,f2 ))
max Always(Form f ) = f ∧ © Always(f )

Note how the different operators are defined as respectively minimal and max-
imal fixpoints, reflecting the definition of liveness and safety properties respec-
tively. The difference in semantics appears at the boundaries of a trace where
remaining minimal terms evaluate to false whereas maximal terms evaluate to
true. These can now be used in writing monitors as follows:

mon M = Always(x > 0 ⇒ Eventually(y > 0))

Eagle handles data parameterized formulas through data parameterized rules.
Consider the first-order temporal logic formula (“whenever x > 0, then if we
name x’s value k, then eventually y = k”): �(x > 0→ ∃k . (x = k ∧ ♦y = k)).
This can be formulated in Eagle using a data parameterized rule as follows.

min yBecomes(int k) = Eventually(y = k)
mon M = Always(x > 0 ⇒ yBecomes(x))

The later Hawk system [27] was an attempt to tie Eagle to the monitoring of
Java programs with automated code instrumentation using aspect-oriented pro-
gramming, specifically AspectJ [57]. A similar (and simultaneous) integration of
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parametric runtime verification (with LTL) and AspectJ was presented in the
J-LO tool [78]. Hawk supports two modal constructs inspired by dynamic logic:
the construct <e> F means that e can occur and the proposition F is true there-
after. The construct [e] F means that if e occurs, then F is true thereafter. As
a complete example, consider the following observer, monitoring that elements
put into a buffer eventually get taken out of the buffer:

observer BufferObserver {
var Buffer b ; var Object o ; var Object k ;

mon B = Always ([b?.put(o?)]
Eventually ( <b.get() returns k?> (o == k) )) .

}

2.3 JavaMOP

The same JPaX limitations that motivated the development of Eagle also stim-
ulated the apparition of monitoring-oriented programming (MOP) [22, 21, 23].
MOP proposed that runtime monitoring be supported and encouraged as a fun-
damental principle of software development, where monitors are automatically
synthesized from formal specifications and integrated at appropriate places in the
program. Violations and/or validations of specifications can trigger user-defined
code at any points in the program, in particular recovery code, outputting/send-
ing messages, or raising exceptions. MOP has made three important early contri-
butions. First, it proposed specification formalism independence, allowing users
to insert their favorite or domain-specific requirements specification formalisms
via logic plugin modules. Second, it proposed automated code instrumentation
as a means to weave the monitoring checking code within the application; the
first version in 2003 used Perl for instrumentation [22], while the subsequent ver-
sions starting with 2004 [21] used AspectJ [57]. Finally, it proposed a formalism-
independent semantics and implementation for parametric specifications.

Parametric properties are properties with free variables, allowing us to de-
scribe behaviors of collections of related objects. Consider, for example, the
following JavaMOP parametric property.

SafeLock(Lock l, Thread t) {
event acquire before(Lock l , Thread t):

call ( ∗ Lock.acquire ()) && target( l ) && thread(t) {}
event release before(Lock l , Thread t):

call ( ∗ Lock. release ()) && target( l ) && thread(t) {}
event begin before(Thread t):

execution( ∗ ∗.∗(..)) && thread(t) && !within(Lock+) {}
event end after(Thread t):

execution( ∗ ∗.∗(..)) && thread(t) && !within(Lock+) {}

cfg: S −> S begin S end | S acquire S release | epsilon
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@fail { System.out. println ("Improper lock usage"); }
}

It has two parameters: a lock and a thread. The four event declarations declare
the parametric events of interest, and the property, in this case formalized using
the context-free grammar (CFG) plugin, states that each acquire and release
event should be paired in the same method. Any mismatched acquire or release
is considered to be a violation of the property. At violation we chose to report
an error message, but any Java code can be executed, e.g., recovery code. Note
that this property cannot be expressed using regular patterns or automata.

It is not trivial to monitor parametric properties efficiently. For the example
it is not uncommon in a multi-threaded Java program execution to see thou-
sands of threads created/terminated and thousands of synchronization locks ac-
quired/released by such threads dynamically. Conceptually, execution traces are
sliced according to each observed instance of the parameters, and each slice is
checked by its own monitor instance in a manner that is independent of the
employed specification formalism. The practical challenge is how to deal with
the potentially huge number of monitor instances.

JavaMOP proposed several optimizations, presented in [66] together with the
mathematical foundations of parametric monitoring. For example, we can ignore
parameter instances that can never reach the target monitor states (e.g., not
all threads use all locks). Also, some monitors can become unnecessary during
execution because the objects that can generate the triggering events have died;
such unnecessary monitors can and should be garbage collected.

A demo of JavaMOP is found at http://fsl.cs.uiuc.edu/JavaMOPDemo.html.
The academic JavaMOP project has been migrated into the commercial RV-
Monitor tool at http://runtimeverification.com/monitor. In addition to efficient
support for simultaneous monitoring of multiple specifications, a major innova-
tions of RV-Monitor is to separate instrumentation from the efficient monitor-
ing data-structures. The former can be done either manually or using AspectJ
(statically at compile time or dynamically as a Java agent), while the latter is
automatically generated as a library from the parametric specifications.

3 2005-2006 - Further Experimentation with AOP

Whilst initial runtime verification frameworks targeted Java, the RMOR (Re-
quirement Monitoring and Recovery) framework [38] targeted the monitoring of
C programs against state machines using a homegrown aspect-oriented frame-
work to perform program instrumentation. RMOR is implemented in OCaml
using CIL (C Intermediate Language), a C program analysis and transforma-
tion system, itself written in OCaml. Consider as an example an application for
uplinking data from a planetary rover to a space craft, and consider the prop-
erty: “It is illegal to have more than one connection opened at any time”. This
requirement can be formulated as follows.
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monitor UplinkRequirement {
event OPEN = after call(main.c:open connection);
event CLOSE = after call(main.c:close connection);

initial state Closed {
when OPEN → Opened;

}

live state Opened {
when CLOSE → Closed;
when OPEN → error;
}
}

The Opened state is a live state as indicated by the modifier keyword live,
meaning a non-acceptance state. Other state modifiers include super states as
in hierarchical state charts. It is possible to provide a call-back handler function
to be called for each detected violation. However, RMOR is propositional.

In previous solutions (such as Hawk and MOP) we have seen monitors trans-
lated to aspects. A more radical approach is to take the view that monitors are
aspects. Some of our experiments went in the direction of what today is called
state-full aspects [80, 1]. We proposed this line of work already in [34]. An (non-
finished) attempt in this direction was XspeC [50], designed to be an extension
of ACC (an aspect-oriented programming framework for C) with data parame-
terized monitoring using state machines. As an example, consider the property
of a C program that a file should be opened and eventually closed in that order.
When an already opened file is re-opened the attempt should be logged and
when the program terminates all opened files should be closed. The specification
in XspeC becomes as follows.

xspec OpenClose(char ∗file) {
pointcut open : call (void openfile (char∗)) && args(file );
pointcut close : call (void closefile (char∗)) && args(file );

state FileClosed {
after : open( file ) → FileOpen;
after : close ( file ) ⇒ error ;
}

live state FileOpen {
after : open( file ) ⇒ error { log( file ); }
after : close ( file ) → FileClosed ;
before : end { closefile ( file ); }
}
}
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The specification is parameterized with a file, meaning that it is intended to
track the behavior of a file. The intended semantics is similar to the semantics
of Tracematches [1] and MOP in that we consider a specification to denote an
infinite set of monitors, one for each file as indicated by the parameter to the
specification. The double arrow (⇒) denotes a transition that stays in the source
state (for continued verification), in contrast to the single arrow (→).

In [34] we discussed the idea (and similar work was proposed in HandlErr
[74]), to extend aspect-oriented programming in two ways: vertically and hori-
zontally. The pointcut languages originally supported, for example in AspectJ,
have been limited, reducing to method calls and assignment to variables. A verti-
cal extension consists of enriching the pointcut language to cover more concepts,
such as e.g. branching on a conditional, cycling through a loop, or acquiring
and releasing a lock. Some of the algorithms described in this paper analyz-
ing multi-threaded programs for data races and deadlocks, for example, cannot
use AspectJ for instrumentation since AspectJ does not support definition of
pointcuts catching lock acquisitions and releases in the general case. In [17] we
proposed extending AspectJ with new pointcuts: lock() and unlock(). A hor-
izontal extension consists of changing the definition of advice to incorporate
tracecuts. The ultimate extension of aspect-oriented programming is the prod-
uct of a horizontal and a vertical extension. In addition, static analysis (theorem
proving) can be invoked to prove stated properties. HandlErr e.g. allowed pre
and post conditions, invariants in aspects.

A much later work presented in [73] is the InterAspect system, an aspect-
oriented API in C for instrumenting C programs compiled with the GCC com-
piler infrastructure. InterAspect is implemented using the GCC plug-in API.
The system allows for specification of tracecuts using regular expressions, much
along the lines of MOP. InterAspect has access to GCC internals, which allows
one to exploit static analysis during the weaving process. Consider the following
file access property. Any access to a file object after the file has been closed is a
memory error which might not manifest itself as incorrect behavior during test-
ing. This can be formalized in InterAspect as the following “aspect” matching
an execution as soon as any read is performed on a closed file.

tc = tc create tracecut (); tc add param(tc,"file", aop t all pointer ());
tc declare call symbol (tc ,"open","(file)fopen()",AOP AFTER);
tc declare call symbol (tc ,"read","fread(?,?,?,file)",AOP BEFORE);
tc declare call symbol (tc ,"read_char","fgetc(file)",AOP BEFORE);
tc declare call symbol (tc ,"close","fclose(file)",AOP BEFORE);
tc add rule (tc ,"open (read | read_char)* close (read | read_char)");

4 2006-2010 - Missions and Rules

4.1 Commanding and Monitoring

One project, described in [14], was driven by a collaboration between JPL and
KSC (Kennedy Space Center) from where NASA’s rocket launches take place.
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The project had as a goal to develop a DSL for commanding and monitoring all
aspects of a rocket launch platform in the moments up to a launch. The DSL was
implemented as a Python API. A program would, through a publish-subscribe
framework, command and monitor items distributed geographically across the
KSC launch site. The state can be understood as a collection of measurements,
representing data samples collected from sensors in the items, and distributed
throughout the system on a message bus. Each measurement maps a variable
name to a value. The DSL then provides a collection of functions for monitoring
the state (collection of measurements) of the entire system as it evolves over
time. From a temporal logic point of view, a trace is a sequence of collections of
measurements. Some of these functions are shown below.

def verify (C, [R], [S ]): ...
def verify within (C, D, [R], [S ]): ...
def verify subset within (N, C list , D list , [R], [S ]): ...
def assert constraint (S, C, R, [D], [F ]): ...
def conditional interrupt (S, C, R, [D], [F ]): ...

The following symbols are used for arguments: C stands for a condition to be
verified and R stands for a reaction to be executed in case a condition gets
violated. Both C and R are assumed to be parameter-less functions. D stands
for a duration, expressed in seconds. S stands for a string, generally a name
associated with the verification operation for documentation purposes. N stands
for a natural number. Finally, F stands for a Boolean flag indicating whether
verification should be repeated in case of property violations. Arguments in
square brackets [...] denote optional arguments (this is not Python syntax).

The functions (the first three of which are blocking, waiting for the verifi-
cation to terminate) have the following meaning. verify verifies that the condi-
tion is true now. verify within verifies that the condition C eventually becomes
true within the time duration D. verify subset within verifies that at least N
of a list of conditions become true within given durations, provided as a sep-
arate list matching in length. assert constraint verifies that the condition is
continuously true throughout the duration. conditional interrupt is a variant
of assert constraint where if the condition at some point evaluates to true, the
calling application is interrupted (temporarily stopped) while the reaction is ex-
ecuted. The DSL also provides functions for commanding items and interacting
with users at terminals. The team at KSC subsequently developed a tabular
DSL using spreadsheets, which is a form of external DSL built on top of the
(internal) Python DSL.

4.2 RuleR.

RuleR [9] started life as a low-level event-based rule system into which other
temporal specification languages were supposed to be compiled for efficient trace
checking. The work was directly inspired by the complexity of the Eagle imple-
mentation. However, it then assumed a life of its own as a specification language.
RuleR preserves the interest in monitoring data via parametric events but also
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achieves high expressiveness through the use of powerful low-level features. The
flavor of specifications in RuleR is different from those based on temporal logic
seen earlier as they tend to be more operational. For example, to monitor the
previous property �(x > 0→ ∃k . (x = k ∧ ♦y = k)) we would monitor events
x and y and whenever observing a relevant x event create an obligation to see a
future y event with that value. This is captured by the following rule system.

ruler M {
observes x(int ), y( int );
always start{ x(n: int ) & n>0 −> wait(n); }
state wait(n: int ){ y(n) −> Ok; }
forbidden wait;
initials start ;
}

This monitor declares a set of events being observed and then two rules. Rules
are of the form

conditions → obligations

and define rewrite rules on sets of rule instances. If the set of rule instances
satisfy the conditions then the obligations should be applied to this set where an
obligation may add or remove a rule instance from the set. Importantly, the only
rules that can be applied are those that have a corresponding rule activation in
the current set. This extends to data parameterization. If wait(1) is not in the
current set then the event y(1) would not satisfy any conditions. Another aspect
of a rule is its modifier. In the above example the always modifier means that
a rule activation should be kept if its corresponding rule is applied to it, whilst
the state modifier indicates that it should be removed. The following evaluation
illustrates the above rule system applied to a sequence of events.

{start} x(5)−→ {start, wait(5)}︸ ︷︷ ︸
A

y(5)−→ {start}︸ ︷︷ ︸
B

x(1)−→ {start, wait(1)} end−→ ⊥

The final result is failure (⊥) as the wait rule is in the forbidden set, which
means that a trace ending with one of these rules in its set of rule activations is
not accepted. RuleR was given a finite-trace semantics with four verdicts. The
verdicts still true and still false are given if the rule system would accep-
t/reject the trace if it were to end at the current event, whilst the verdicts true
and false were reserved for traces where every extension would be accepted/re-
jected. For the above example, the A set of rule instances would be given the
verdict still false whilst the B set would be given still true. These multiple
verdicts support various translations of finite-trace linear temporal logics.

A more realistic example is the following rule system checking the proper
usage of Java iterators. Here the assert keyword requires that at least one of the
given rules is applied on each step. This allows, for example, the rule system to
detect failure on the event sequence consisting only of a next event.

ruler SafeIteratorCheck{
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observes hasNext(obj), next(obj );
always Start{ hasNext(i :obj) −> Next(i); }
state Next(i : obj){ next( i ) −> Ok; }
assert Start , Next;
initials Start ;
}

RuleR allowed for very complex rule systems that could be chained together
such that one rule system produced outputs for another rule system to consume
as input events. Rule systems could be combined sequentially, in parallel, and
conditionally. Another powerful feature was the use of non-determinism and rules
as data. However, it was difficult to find a practical need for such features.

4.3 LogScope

A project solidly rooted in an actual space mission was the development of the
LogScope temporal logic for log analysis [7]. The purpose of the project was to
assist the team testing the flight software for JPL’s Mars rover Curiosity, which
successfully landed on Mars on August 6, 2012. The software produces rich log
information. Traditionally, these logs are analyzed with complex Python scripts.
The LogScope logic was developed to support notions more comprehensible to
test engineers, including a very simple and convenient data parameterized tem-
poral logic, which was translated to a form of data parameterized automata,
which themselves can be used for specification of more complex properties that
the temporal logic cannot express. LogScope was furthermore implemented in
Python, allowing Python code fragments to be included in specifications, all in
order to integrate with the existing Python scripting culture at JPL.

As an example, consider the property “Whenever a flight software power
command is issued, before the next flight software command there should follow
a dispatch of that command on board, and then exactly one success of that com-
mand within 5 seconds. Before the dispatch there should be no dispatch failure,
and in between the dispatch and the success there should be no execution fail-
ure”. Commands have names x and numbers y. This property can be specified
as follows in LogScope:

pattern Commands :
COMMAND{Type:"FSW", Name:x, Num:y} where {: x.startswith("PWR") :} ⇒

[
!EVR{DispatchFailure:x, Num:y},
EVR{Dispatch:x, Num:y, Time: t1},

!EVR{Failure:x, Num:y},
EVR{Success:x, Num:y, Time: t2} where {: t2 − t1 <= 5 :},

!EVR{Success:x, Num:y}
] upto COMMAND{Type: "FSW"}

A specification consists of one or more specification units, each of which is either
a temporal logic pattern (as above), or a parameterized automaton. A pattern
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has a name, and is triggered by an event. When the event is observed in the log,
the consequence must be observed, optionally up to some other event, which
then limits the scope of the pattern. The consequence can be that an event
must eventually occur, or not occur, or it can be a list of consequences, enclosed
in either square brackets (as here) indicating the consequences must occur in
that order, or curly brackets (not shown) indicating that the consequences must
occur but any order is allowed. Note the lack of temporal operators as found in
classical LTL. The where-clauses can contain Python expressions inside {: . . . :}
brackets. The formula reflects the linear ordering of a time line [75], but textually
presented. In general the user can define Python functions at the beginning of a
specification file to be used in such predicates.

LogScope also allows testers to write properties as parameterized automata,
to which the temporal patterns are also translated. Just as events can be pa-
rameterized with values, so can states. Automata can furthermore be visualized,
which has shown to be useful for creators of patterns to confirm their meaning.
The automaton for pattern Commands above is the following.

automaton Commands {
always S1 {

COMMAND{Type:"FSW", Name:x, Num:y}
where {: x. startswith ("PWR") :} ⇒ S2(x,y)

}
hot state S2(x,y) {

EVR{DispatchFailure:x, Num:y} ⇒ error
EVR{Dispatch:x, Num:y, Time: t1} ⇒ S3(x,y,t1)
}
hot state S3(x,y,t1) {

EVR{Failure:x, Num:y} ⇒ error
EVR{Success:x, Num:y, Time:t2} where {: t2 − t1 <= 5 :} ⇒ S4(x,y)
}
state S4(x,y) {

EVR{Success:x, Num:y} ⇒ error
}
}

5 2010-2017 - Internal DSLs, Slicing, and CEP

5.1 TraceContract

TraceContract [8] is an internal Scala DSL (effectively an API) for monitor-
ing, based on a mixture of temporal logic and state machines. TraceContract,
although a research tool, was used for analysis of command sequences sent to
NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer) space-
craft throughout its mission. Consider the LogScope specification on page 12. In
order to specify this property in TraceContract we first define the event kinds,
for example as follows:
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trait Event
case class Command(time:Int,kind:String,name:String,nr : Int ) extends Event
case class DispatchFailure (time: Int ,name:String,nr : Int ) extends Event
case class Dispatch(time: Int ,name:String,nr : Int ) extends Event
case class Failure (time: Int ,name:String,nr : Int ) extends Event
case class Success(time: Int ,name:String,nr : Int ) extends Event

Events are commonly modeled as objects (instances) of case classes (A case
class allows pattern matching against its objects), all extending the Event trait
(similar to abstract class in Java). Each event type is parameterized with data
(the constructor parameters), which must be provided when creating an object
of the class. The following monitor corresponds to the LogScope monitor on page
12, but now expressed in the internal Scala DSL.

class Commands extends Monitor[Event] {
require {

case Command( , "FSW", x, y) if x. startsWith("PWR") ⇒
hot {

case DispatchFailure ( , ‘x ‘, ‘y ‘) ⇒ error
case Dispatch(t1, ‘x ‘, ‘y ‘) ⇒ hot {

case Failure ( , ‘x ‘, ‘y ‘) ⇒ error
case Success(t2, ‘x ‘, ‘y ‘) if t2 − t1 <= 5 ⇒

state { case Success( , ‘x‘, ‘y ‘) ⇒ error }
}
} upto { case Command( ,"FSW", , ) ⇒ true }

}
}

Our property is defined as a class Commands extending the class Monitor, which is
parameterized with the event type, and which defines all the TraceContract DSL
functions (marked in blue) and constants (marked in red). The DSL functions
in this example all take as argument a Scala partial function enclosed in curly
brackets, and defined with case statements.

The call of the function require (when a Commands object is created) causes a
side-effect, namely storing the property represented by the partial function. Note
that quotes around names, as in ‘x‘ means: match the value previously bound to
x. The underscore ‘ ’ is the wildcard pattern that always matches. The monitor
can be instantiated and applied to a trace (a list of events). TraceContract offers
numerous additional constructs, including other kinds of anonymous states (e.g.
strong next), state machines with named states, linear temporal logic, and the
possibility to combine these with Boolean combinators (and, or, not). Mixed with
general Scala programming this becomes a very powerful paradigm. A simpler
version of TraceContract, but making states queryable facts (useful for expressing
past time properties), is presented in [39].

A few other internal runtime verification DSLs/APIs have been developed.
For example, a propositional Haskell DSL for linear temporal logic [79], and a
Java API re-implementing MOP’s trace slicing algorithms [16].
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5.2 LogFire

Another example of an internal Scala DSL is LogFire [40]. LogFire is a rule-based
system similar to RuleR, but based on the Rete algorithm implemented in several
rule-based systems. LogFire was part of an investigation of the Rete algorithm’s
applicability for runtime verification. The algorithm maintains a network of facts
to avoid re-evaluating all conditions in each rule’s left-hand side each time the
fact memory changes. We modified the Rete algorithm in a couple of ways to
fit the runtime verification objective, including an indexing optimization and
introducing the distinction between events and facts. As an example of a rule-
system in LogFire consider safe use of Java iterators, where hasNext must be
called before any call of next. This property can be formalized in LogFire as
follows.

class HasNext extends Monitor {
val hasNext, next = event
val Safe = fact

"r1" − hasNext(’ i ) 7→ insert (Safe(’i))
"r2" − Safe (’ i ) & next (’ i ) 7→ remove (Safe)
"r3" − next (’ i ) & not(Safe (’ i )) 7→ error
}

As in TraceContract, a monitor is defined as an extension of a class Monitor,
which defines the LogFire DSL features. The first two lines define the events
that are observed and the facts (Safe) that the rules will generate. The monitor
contains three named rules. Each rule has the form:

"name" − cond1(...) & ... & condn(...) 7→ action

starting with a name (a string value), a conjunction of conditions, and an action
to execute (following the 7→ symbol) in case the conditions evaluate to true. The
insert function adds a new fact to the fact database, and the function remove (id)
removes the fact id referred to on the left-hand side of the rule. The specification
should be self-explanatory. In [40] it is described how higher-level operators can
be defined in a few lines of code, generating rules automatically.

5.3 QEA

Quantified event automata (QEA) [5] and the associated MarQ tool [65] were
introduced to take advantage of the efficient trace slicing approach previously
introduced in the JavaMOP tool [63] (see Section 2.3) whilst dealing with some
of the limitations with respect to expressiveness. QEA consist of a list of quan-
tifications and an automaton. Consider the following example specification of
the command property given on page 12. The specification begins with univer-
sal quantification over the command name and number and then gives an au-
tomaton structure similar to that of the LogScope monitor but the underlying
semantics are quite different.
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qea(Commands){
forall (name, number)
accept skip(1){

command(name,number) → 2
}
next(2){

dispatchFailure (name,number) → Fail
dispatch(name,number,t1) → 3
}
next(3){

failure (name,number) → Fail
success(name,number,t2) if t2−t1 ≤ 5 → 4
}
accept skip(4){

success(name,number,t) → Fail
}
}

The semantics is defined in terms of slicing with respect to the quantified
variables. For a given name and number pair an input trace is projected to
preserve only events relevant to those values, giving a so-called trace slice. This
trace slice is checked with respect to the given automaton. This semantics allows
for efficient indexing structures that lookup the relevant part of the monitoring
data to update given an event. However, to make the above slicing framework
work incrementally is non-trivial as the values with which the trace is to be sliced
are being discovered as the slice is being observed. The QEA work formalizes the
notion of acceptance using quantification and extends5 the framework to allow
for existential quantification and local state via unquantified/free variables. The
two specifications below demonstrate these features.

qea(RoverCommand){
forall (q) exists (s) forall (r)
accept skip( start ) {

declare (q, r) → inside
}
skip( inside ) {

ping(r , s) → pinged
}
skip(pinged){

ack(s , r) → Success
}
}

qea(AuctionBidding) {
forall ( i )
accept next(start){

list ( i , r) do c := 0 → listed
}
accept next( listed ){

bid( i ,a)
if a>c do c := a → listed

}
}

5 This is not a proper extension as some concepts expressible in the original framework
are no longer expressible. For example, partial matches or multiple verdicts. The
main reason is that the original framework was defined in terms of matching and
triggering advise whilst this framework is defined in terms of correctness.
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The specification on the left is a variation of a property given in [44] and
demonstrates existential quantification. It specifies the property that for every
quadrant q there exists a satellite s such that every rover r in q has pinged s and
received an acknowledgement i.e. there is a known single point of contact in that
quadrant. The specification on the right is from [5] and specifies that bids on an
item placed for auction should be strictly increasing. To support local state in a
useful way it was necessary to introduce the notion of variables that do not take
part in slicing (called free variables in this work).

Like RuleR, QEA has a four-valued semantics allowing for anticipatory re-
sults i.e. there are false and true verdicts if all extensions of a trace have the same
verdict and still-false and still-true verdicts otherwise. An example where false
may be returned is where a quantification is purely universal and slice enters a
state from which no accepting state is reachable. Whilst the addition of local
state and arbitrary actions and guards on transitions can theoretically make
the expressiveness of QEA Turing-complete, overuse of such features can make
QEA unreadable, arguably rendering the usable expressiveness almost regular.
The automaton model means that specifications often capture low-level details.
This can lead to less readable specifications than in, e.g., temporal logic [45] and
a plug-in style approach as taken by JavaMOP may be beneficial in the future.

5.4 Nfer

Complex Event Processing (CEP) can be characterized as event abstraction,
where a stream of low-level events are aggregated and transformed into higher-
level events. CEP can be used for further analysis and/or human comprehension,
e.g. through visualization. We here briefly describe nfer [56], in part influenced
by our work on rule-based systems, and LogFire in particular. Consider the com-
mand example, where we monitor events such as Command(time,kind,name,nr),
Distpatch(time,name,nr), and Success(time,name,nr). Assume further that an
event Starvation indicates that a task on board the spacecraft is starved from
executing. We now want to highlight the situation where a starvation warning is
issued during a period where at the same time there is Earth communication ac-
tivity and data-fetch (from the cameras) activity. The following nfer specification
defines this scenario.

command :− Dispatch before Success
where Dispatch.name = Success.name & Dispatch.nr = Success.nr
map {name → Dispatch.name}

communication :− command where command.name = "COMM"

fetchdata :− command where command.name = "FETCH"

starvation :− Starvation during (communication intersect fetchdata)

The result of a applying an nfer specification to an event stream is a set of inter-
vals, tuples of the form (η, t1, t2,m) consisting of a name η, a start time t1, an end
time t2, and a map m holding data. The specification consists of four interval-
generating rules, each of the form: name :− body (a rule name followed by a rule
body). The semantics is similar to that of Prolog (hence the :− symbol): when
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the body is true an interval is generated with that name. A difference from Prolog
is that rule bodies contain temporal constraints. The first rule defines an interval
describing the execution of a command as occurring between a command dis-
patch and a subsequent success where the command names and numbers match.
The resulting command interval will also have an associated map that maps x
to the command name. The next two rules named communication and fetchdata
define the intervals where communication and data fetching commands are ex-
ecuted. The rule starvation captures the starvation occurring during the inter-
section of communication and data fetching. Other temporal operators (inspired
by Allen temporal logic), include: meet, coincide, start, finish , and overlap.
Rules can also access and explicitly reason about time values.

6 2003-2017 - Sound Predictive Runtime Analysis

An increasingly important class of runtime analysis algorithms are concerned
with predicting anomalies in programs from successful observed executions. Two
such early algorithms implemented in JPaX, one for predicting deadlocks and
another for predicting data-races, were discussed in Section 2.1. Both of those al-
gorithms are unsound, that is, they can and do report false positives. In contrast
to static analysis, in predictive runtime analysis a sound algorithm is one which
predicts only real errors, i.e., no false alarms. We discuss two categories of sound
algorithms, one based on vector-clocks and another based on SMT solving.

6.1 Vector-Clock Based Algorithms: From JMPaX to jPredictor

A series of sound predictive runtime analysis algorithms and tools have been pro-
posed for multi-threaded systems about a decade ago, based on vector clocks [33,
62] and on techniques proposed by the distributed systems debugging commu-
nity, e.g., [76, 26, 19]. The main idea is to instrument the multi-threaded program
to emit events timestamped by vector clocks, thus enabling the observer to ex-
tract a partial order reflecting the causal dependency on memory accesses. If
any linearization of that inferred partial order leads to a violation of the desired
property then an error is reported to the user, with the meaning that there are
(likely different from the observed one, but definitely feasible) executions of the
multithreaded program which violate the requirements.

Our first vector-clock-based predictive runtime verification tool was Java
MultiPathExplorer (JMPaX) [70], briefly explained below. Consider the follow-
ing multi-threaded program (in pseudocode) over shared variables x, y and z,

Initially: x = −1; y = 0; z = 0;

thread T1{
x++;
y = x+ 1;
}

thread T2{
z = x+ 1;
x++;
}
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together with a desired property “if (x > 0), then (x = 0) has been true in the
past, and since then (y > z) was always false.” Note that the shared variables
may correspond to physical actions and thus violations of this property may
result in potentially catastrophic system failures. This safety property can be
formally specified using a past-time LTL formalism (similar to that used for JPaX
in Section 2.1) but we keep the discussion informal here. A possible execution of
the program can yield the sequence of states (−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1),
(1, 1, 1), where the tuple (−1, 0, 0) denotes the state in which x = −1, y =
0, z = 0. This execution does not violate the desired property, so a normal
runtime monitor would not report a violation. However, JMPaX’ vector-clock
based algorithm will infer, from the same execution above and without access to
the actual code, that two other executions are possible (without false alarms) and
that one of them in fact violates the property, namely {x = −1, y = 0, z = 0},
{x = 0}, {y = 1}, {z = 1}, {x = 1}, which corresponds to the sequence of states
(−1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1).

The vector-clock technique employed in JMPaX essentially implements a
variant of Lamport’s happens-before causality adapted to multi-threaded sys-
tems. Our colleagues have extended the technique in various ways, essentially
demonstrating that increasingly more complex, yet more relaxed but still sound
causal models can be considered, this way improving the predictive capability
without reporting any false alarms; due to space constraints, we refer the reader
to [72, 52] for a literature review. We have ourselves contributed by further ex-
tending the technique to consider various kinds of Java-like synchronization and
communication primitives [69]. Finally, we noticed that in multi-threaded sys-
tems one can go beyond the usual happens-before causality [71]: a write event
can be atomically grouped with all its corresponding subsequent read events,
and that such groups of events can be permuted atomically; similarly, blocks of
events in different threads protected by the same lock can be permuted atom-
ically. As shown in [69, 71], these improvements led to significant increases in
prediction capability without jeopardizing soundness. However, without taking
into account information about the code of the program that generated the
trace, that is without static analysis, we were not able to improve the vector-
clock-based predictive runtime analysis algorithms any further.

jPredictor [25] was, to our knowledge, the first sound predictive runtime
analysis system which combined static and dynamic analyses. Specifically, it im-
plemented sliced causality [24], a happen-before causality drastically but soundly
sliced by removing irrelevant causalities using semantic information about the
program obtained with an a priori static analysis. Consider, e.g., a simple and
common safety property for a shared resource, that any access should be au-
thenticated, and consider the following buggy program executed as shown:

Main Thread {
1. resource.authenticate();

2. flag = true;

}

Task Thread {

3. if(!flag) Thread.yield();

4. resource.access();

}

19



The main thread authenticates and then the task thread uses the authen-
ticated resource. They communicate via the flag variable. Synchronization is
unnecessary, since only the main thread modifies flag. However, the developer
makes a common mistake, using if instead of while in the task thread. Suppose
now that we observed a successful run of the program, as shown above. Tech-
niques based on traditional happen-before will not be able to find this bug, due to
the causality induced by the write/read on flag. But since resource.access()

is not controlled by if, sliced-causality techniques will correctly predict this
error from the successful execution. When the bug is fixed replacing if with
while, resource.access() is controlled by while (since it is a potentially non-
terminating loop), so no violation is reported.

jPredictor is also implemented using vector clocks, but as discussed in [25],
we were not able to obtain a faithful implementation. The vector-clock imple-
mentation was stronger than the sliced causality, thus maintaining soundness but
potentially failing to report violations that were theoretically possible. In spite
of the limitation, [25] experimentally showed that the combination of static and
dynamic information cut, on average, about 50% of the dependencies, thus in-
creasing the predictive capability of the technique exponentially. Unfortunately,
probably due to the complex nature of resulting technique and its implemen-
tation, to our knowledge nobody continued to work in that direction. On the
positive side, a new and appealing direction took shape, discussed below.

6.2 Maximal Causality and SMT-based Algorithms: RV-Predict

As mentioned above, the runtime verification community has developed increas-
ingly more complex and more relaxed sound causal models of multithreaded
system computations. A question naturally had arisen: is there an end to this
quest? That is, is there a maximal causal model that we can extract from an ob-
served trace, which cannot be surpassed? We answered this question positively
for sequentially consistent systems [72, 67], essentially proposing a constructive
causal model and showing the following: (1) all programs which can produce
the observed execution can generate all traces in the model; and (2) for any
trace t not in the model there exists a program generating the observed trace
which cannot generate t. In other words, any sound and purely dynamic predic-
tive runtime analysis technique can only detect a subset of the violations that
the maximal causal model comprises (but albeit more efficiently). This result is
foundationally very important, because on the one hand it draws a line in the
sand w.r.t. how much sound predictive runtime analysis can go, and on the other
hand it shows that the limit can be achieved.

Consider, for example, an execution of the program in Figure 2. The program
contains a race between lines (3,10) that may cause an authentication failure of
resource z at line 12, which in consequence causes an error to occur when z
is used at line 15. Supposing the execution follows an order denoted by the
line numbers, however, previous sound causal models cannot detect this race
because line 3 causally-precedes line 10, because the two lock regions contain
conflicting accesses to y. While how to best use static analysis to further enhance
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initially x=y=0 resource z=0
Thread t1 Thread t2

1. fork t2
2. lock l

3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l

10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Fig. 2. An example program with a race (3,10).

initially x=y=0 y is volatile
Thread t1 Thread t2

1. x = 1
2. y = 1

3. À r1 = y Á while(y == 0);
4. r2 = x

Fig. 3. The two cases À and Á produce the same read/write trace. However, (1,4) is
a race in case À but not in case Á.

the maximal causal model is a valid question and worth pursuing, we found
that the maximal causal model can already elegantly deal with information flow
information if execution traces are enriched to also emit control-flow-changing (or
branching) events [52]. Consider the scenario in Figure 3 where y is volatile and
line 3 has two cases: À r1 = y and Á while(y == 0). For case À, (1,4) is a race
on x; while for case Á, it is not, because line 4 is control-dependent on the while
loop at line 3. However, without considering the control dependence between
operations, the dynamic execution traces for these two cases are identical. But
using the control flow information we can tell that, in case À, line 4 is not control-
dependent on line 3. In other words, regardless of what value line 3 reads, line 4

will always be executed. Therefore, we can safely drop the happens-before edge
from line 2 to line 3, which enables detecting the race (1,4). Similarly, we are
able to detect the race (3,10) in Figure 2 by dropping the happens-before edge
from line 4 to line 8, because there is no control flow from line 8 to line 10 and
hence no need to ensure line 8 should read value 1 (written by line 4).
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A. Happens-before (Φhb)
O1 < O2 < . . . < O5 ∧ O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking (Φlock) O5 < O7 ∨ O9 < O2

C. (3,10)Race (Φrace) O10 = O3

Fig. 4. Constraint modeling of the example execution in Figure 2.

The maximal causal model is more mathematically involved than the previ-
ous causal models, and it is still unknown whether it can be implemented using
vector clocks. However, as Said etal. [67] first noticed, it is not very difficult
to represent the maximal causal model as a mathematical formula. Specifically,
we can associate to each event e in the trace one integer variable Oe, called its
order variable, and then use the semantics of the various concurrent objects and
control flow events to generate constraints over the order variables. For example,
all the events emitted by the same thread must follow the same order as emit-
ted (but can have other events interleaved), blocks protected by the same lock
cannot overlap, and so on. Finally, one adds constraints for the property one is
interested in; for a data-race, e.g., one says that the two involved events occur
at the same time. Figure 4 shows the constraints for the execution in Figure 2.

The formula generated for a given trace therefore encodes all the ordering
constraints that must be satisfied by any permutations of the events in the same
trace in order to maintain soundness, as well as all the constraints that must
be satisfied in order for the property of interest to be matched by the predicted
trace. All is left now is to check the satisfiability of the resulting formula (e.g.
with a SMT solver). If not satisfiable, then we can conclude that the observed
execution trace has no evidence in it that the property is matched. If satisfiable,
then a solution of it is a counter-example showing that there indeed exists a
feasible execution of the system that match the property.

One might think that it is not practical to solve large formulae that can result
from large traces. However, with some additional engineering and optimizations,
the commercial RV-Predict tool (https://runtimeverification.com/predict) [52]
has demonstrated not only that it can detect concurrency errors that no other
predictive runtime analysis tools can, but also that it can do it at a relatively
acceptable performance.

7 Reflections and Future Perspectives on RV

Logics The move from the early propositional temporal logics (such as JPaX) to
parametric temporal logics (such as Eagle and MOP) was important, leading to
an impressive community effort in researching logics and algorithms. The spec-
trum of specification logics has spanned many standard logics, such as automata,
regular expressions, (future as well as past) linear temporal logics, context-free
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grammars, variations of the µ-calculus, process algebras, stream processing, and
rule-based systems. Most of these standard logics have had to be extended with
first-order features to handle the parametric case [46]. In addition to the first-
order trend, another trend has been the attempts to extend state machine nota-
tions with special states (such as the distinction between skip and next-states).
Several attempts have been made in combining logics, specifically regular ex-
pressions and linear temporal logic, as in e.g. SALT [13]. These logics combine
sequencing (adopted from regular expressions) with temporal operators. The
LogScope language provided a formalism resembling a textual version of time
lines and without explicit temporal operators such as eventually. The MOP sys-
tem took a different view by providing a collection of different logics, such that
each property is written in “the logic that fits” that property. An interesting
logic framework is the modal µ-calculus, which e.g. is the basis for Eagle, where
temporal properties and recursion can be combined with “named states”. One
particular promising aspect of Eagle was the support for user-defined temporal
operators. Rule systems appear to be an interesting alternative to automata for
the data parameterized case. However, traditional rule programs are in many
cases not as readable as e.g. temporal logic. To improve this situation, they can
be extended with syntactic sugar, e.g. state machine concepts, as done in RuleR.
Rule systems can be powerful; for example, RuleR rules can take rules as argu-
ments as a way of modeling context-free grammars. In RuleR, rule programs can
be chained together with facts produced by one rule program becoming input
to another rule program. This is related to stream processing. The idea of an
event stream resulting in a set of facts/data can be viewed as Complex Event
Processing (CEP), and is especially realized in the nfer system. This is an inter-
esting avenue for future research. When formalizing a temporal property it can
be useful to first to draw a time-line on a piece of paper, and then plot in events.
This suggests that tool support for such a graphical time line approach might
lower the barrier for writing temporal properties. Timelines have been studied
in the context of model checking [75].

External versus Internal DSLs Whether to develop a DSL as external or
internal is a non-trivial decision. An external DSL is usually cleaner and more
directly tuned towards the immediate needs of the user. In addition, they are eas-
ier to process and therefore optimize for efficiency. However, the richer the DSL
becomes (moving towards Turing-completeness) the harder the implementation
effort becomes. An internal DSL can be very fast to implement and augment
with new (even user-defined) operators, and can provide an expressiveness that
would require a major effort to support in an external DSL. One also gains the
advantage of IDEs etc. for the host language. However, some concepts may not
be easily representable as an internal DSL. Also, a user will have to be a pro-
grammer in the host language. In this respect, some programming languages
seem to be less of a barrier than others, e.g. Python is considered easy to learn.

A hypothesis is that monitoring logics used in practice will need to support
very expressive expression languages to process data, such as strings and numbers
that are part of the observed events. TraceContract is a shallow DSL in contrast
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to LogFire, which is (mostly) a deep DSL. As a shallow DSL, TraceContract
relies on Scala’s type system. In contrast, for LogFire such a type system would
have to be implemented from scratch. Also, in LogFire names have to be symbols
or strings, which is somewhat annoying. LogScope was a compromise where the
core DSL was external but with “holes” where one could write Python code,
much like how parser generators such as yacc function. This was only possible
due to Python’s capabilities for evaluating a text string as a program (the eval-
function), and would not, e.g. be possible in Java or Scala.

Programming Languages Temporal logic could become part of a programming
language assertion language. This could be seen as part of a design-by contract
approach also supporting pre/post conditions and class invariants. Libraries can
come equipped with such temporal assertions verifying their correct use. The
paper [20] in this volume discusses what to expect from future programming
languages, and specifically likewise mentions support for “richer specifications”
supported by stronger static and dynamic analysis. Adding such concepts to a
programming language would be easier if the language came equipped with syn-
tax extension/meta programming frameworks, a need we have often experienced
in our work.

Aspect-oriented Programming Aspect-oriented programming has been a pop-
ular way of instrumenting Java programs for runtime verification. Although re-
search in aspect-oriented programming seems to have slowed down, we do believe
that the ideas of vertical (enriching pointcut language) and horizontal (stateful
aspects) extensions of AOP are interesting, and should be part of a program-
ming language’s meta-programming environment. AOP is a natural host for RV.
That is, rather than using AOP to instrument for RV, RV can be considered as a
natural extension of AOP. Note, however, that not all RV solutions require such
a close integration with a programming language; e.g. web service monitoring
does not require this form of integration.

RV Oriented Requirements Engineering An intriguing thought is an approach
to requirements engineering where at least events become part of the formal
vocabulary, and where the implementation of the designed system is obliged
to generate logs of such events, which can then be monitored. Logging (and
monitoring) should become part of programming larger systems.

Algorithms Concerning monitoring algorithms, the slicing-based algorithms,
as found in Tracematches, MOP, and QEA, have so far shown to be the most
efficient, initially at the cost of limited expressiveness, but in QEA extended to
allow for improved expressiveness. Experiments such as the use of the Rete algo-
rithm in LogFire, or the use of SMT [29] in MMT (Monitoring Modulo Theories)
have not shown the same degree of performance. We still think, however, that
new algorithms for parametric monitoring are of interest, especially since the
original limitations wrt. expressiveness can be considered a major issue. In [42]
we e.g. experiment with the use of BDDs for monitoring first-order past time
temporal logic, with interesting performance results.

Predictive Monitoring The earliest examples of predictive algorithms for
deadlock and data race detection from Compaq were very promising, and showed
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to be exceptionally effective in practice. Later results using SMT have shown
tremendous potential.

Beyond Boolean Specification-based runtime verification approaches tend to
be Boolean valued algorithms: determining whether a sequence of events satisfies
a temporally oriented specification. That is, M(σ) ∈ B (or some simple extension
B+ of B). However, as stated in Section 1, runtime verification in its generality
can be considered as computing any kind of value, M(σ) ∈ D, for any domain
D. We already encountered the nfer system which computes intervals (D is the
set of intervals). In [35], a very early approach to computing values from a trace
driven by temporal formulas is described. In other approaches, the result is a
probability for a property to be satisfied, as in [77] (see discussion below). In
statistical model checking [58], see also [60] in this volume, a stochastic system is
executed multiple times, monitoring each execution against a temporal formula,
computing either the probability that the system satisfies a formula (quantitative
SMC), or determining whether the probability is greater than or equal to a
certain treshold (qualitative SMC).

Specification Mining and Inference We consider the ‘mining’ or ‘learning’ of
specifications from traces to be a very promising field. Here we consider some
work in this area (including our own e.g. [64, 77, 59]) but do not make an at-
tempt to be complete. There exist general introductions to the topic [2, 61, 28].
In [77], an approach named Runtime Verification with State Estimation (RVSE)
is described, which uses learning to estimate the probability that a trace with
missing events (gaps in the trace) satisfies a given temporal property. This idea
can, for example, be applied when monitoring overhead is reduced by sampling.
The strategy is to learn the nominal behavior (without gaps) of the system
as a Hidden Markov Model (HMM), and the later use this model to “fill in”
sampling-induced gaps in an observed trace. Two approaches have attempted
to use parametric trace slicing to learn parametric specifications. In [59], a
probabilistic automata learning algorithm was applied to trace slices to build
a hypothesis specification which was then heuristically refined. In [64] many pre-
defined patterns were checked against trace slices and then combined to form
ranked hypothesis specifications. Further work in both directions, and in spec-
ification mining in general, seems important to the field of runtime verification
as the lack of specifications is sometimes cited as a barrier to application of RV.
The above work was passive in the sense that it took as an input a given set
of traces. Another promising direction is the area of active automata learning
where queries may be given to build a (in some contexts) complete specifica-
tion of behavior. One of the more advanced instances of this approach [53] is
the learning of register automata – an extension of finite automata where data
values may be communicated, stored and manipulated. In this sense, this work
corresponds to the parametric approaches mentioned above. Additionally, an ap-
proach is described in the paper [51] in this volume for combining black-box (no
access to code) and white-box (access to code) techniques. These active learning
techniques are implemented in the well-known LearnLib tool [55]. Recent work
[54] has adapted the framework to handle the long traces encountered in RV.
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Trace Visualization Execution trace visualization is a subject that in our
opinion has promising potential, although our own work in this direction is lim-
ited to [4] and nfer (where the intent is to visualize event hierarchies). The
advantage of visualization is that it can provide a free-of-charge abstract view
of the trace, from which a user potentially may be able to conclude proper-
ties about the program, or at least the execution, without having to explicitly
formulate these properties. We can distinguish between two forms of trace vi-
sualization: still visualization, where all events are visualized in one view, and
animated visualization. In [4], an extension of UML sequence diagrams with
symbols is described for representing still visualizations of the execution of con-
current programs. There appears to be a relationship between still visualization
and automated specification mining. For example, a state machine learned from
several runs can be regarded as a still visualization, as well as a specification of
its behavior during those runs.

Combining Static and Dynamic Analysis Full verification is of course pre-
ferred over partial verification performed by a monitor. The combination of
static and dynamic verification can provide the best of both worlds: prove as
much as is feasible and verify the remaining proof obligations during runtime.

Runtime Enforcement and Fault Protection In runtime enforcement [31], one
uses a monitor as a filter in front of a system, the target, receiving events from
another system, the source. In this preventive approach, only events satisfying
the property defined by the monitor will be let through to the target. In fault-
protection strategies, the goal is to recover the system once it has failed; see
e.g. [11] where this is called adaptive runtime verification. Here, two versions of
the program being monitored exist: the complex version (running by default)
and the simple version, and in case of a property violation the simple version
overtakes the complex version. The general problem of how to recover from a
bad program state is interesting and quite challenging. The ultimate solution to
this problem can be found in planning and scheduling systems, where a planner
creates a plan (straight-line program) to execute for a limited time period, an
executive executes the plan, and a monitor monitors the execution. Upon failure
detected by the monitor, a new plan (program) is generated online.

Summary Searching for the most efficient monitoring algorithms, balanced
with expressiveness of logics, is an ongoing research topic. The field has stud-
ied and produced an interesting set of temporal logics, that differ from logics
produced by the field of e.g. model checking, in part due to the different appli-
cation scenario, such as focus on single traces with data carrying events. This
includes the distinction between external and internal DSLs, AOP, and logics
for computing data (beyond the Boolean domain) from traces. Avoiding writing
specifications, as pursued in specification mining and predictive monitoring, is
an interesting line of research with a lot of potential. The integration of static
and dynamic analysis is another important line of research, that is in its infancy
as well. Finally, it would be interesting to pursue an integration of temporal logic
in programming languages as part of the assertion language.
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annakopoulou and D. Méry, editors, 18th International Symposium on Formal
Methods (FM’12), Paris, France, August 27-31, 2012. Proceedings, volume 7436
of LNCS, pages 68–84. Springer, 2012.

6. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

7. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

8. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis. In
Proc. of the 17th International Symposium on Formal Methods (FM’11), volume
6664 of LNCS, pages 57–72. Springer, 2011.

9. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: From Eagle to RuleR. Journal of Logic and Computation, 20(3):675–
706, 2010.

10. E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, and G. Reger. An introduc-
tion to runtime verification. In Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of LNCS, pages 1–23. Springer, 2018.

11. E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok, and
J. Seyster. Adaptive runtime verification. In Proc. of RV 2012, the 12th Interna-
tional Conference on Runtime Verification, volume 7687 of LNCS, pages 168–182.
Springer, 2012.

12. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how
ugly is ugly? In Proc. of the 7th Int. Workshop on Runtime Verification (RV’07),
volume 4839 of LNCS, pages 126–138, Vancouver, Canada, 2007. Springer.

13. A. Bauer, M. Leucker, and J. Streit. SALT – structured assertion language for
temporal logic. In Proc. of the 8th International Conference on Formal Methods
and Software Engineering (ICFEM’06), volume 4260 of LNCS, pages 757–775.
Springer, 2006.

14. M. Bennett, R. Borgen, K. Havelund, M. Ingham, and D. Wagner. Prototyping a
domain-specific language for monitor and control systems. Journal of Aerospace
Computing, Information, and Communication, 7(11):338–364, 2010.

15. S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-threaded pro-
grams. In Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,
volume 3875 of LNCS, pages 208–223. Springer, 2006.

16. E. Bodden. MOPBox: A library approach to runtime verification. In Proc. of RV
2011, the 11th International Conference on Runtime Verification, San Francisco,

27



USA, September 27-30, 2011. Proceedings, volume 7186 of LNCS, pages 365–369.
Springer, 2011.

17. E. Bodden and K. Havelund. Aspect-oriented race detection in Java. IEEE Trans.
Softw. Eng., 36(4):509–527, July 2010.

18. G. Candea and P. Godefroid. Automated software test generation: Theory and
practice. In Issue Number 10000 of Lecture Notes in Computer Science, volume
10000 of LNCS. Springer, 2018. In this volume.

19. C. M. Chase and V. K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11(4):191–201, 1998.

20. R. Chatley, A. Donaldson, and A. Mycroft. The next 7000 programming languages.
In Issue Number 10000 of Lecture Notes in Computer Science, volume 10000 of
LNCS. Springer, 2018. In this volume.
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