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Abstract

The majority of work carried out in the formal methods
community throughout the last three decades has (for good
reasons) been devoted to special languages designed to
make it easier to experiment with mechanized formal meth-
ods such as theorem provers and model checkers. In this
paper we will attempt to give convincing arguments for why
we believe it is time for the formal methods community to
shift some of its attention towards the analysis of programs
written in modern programming languages. In keeping with
this philosophy we have developed a verification and testing
environment for Java, Java PathFinder (JPF), which inte-
grates model checking, program analysis and testing. Part
of this work has consisted of building a new Java Virtual
Machine that interprets Java bytecode. JPF uses state com-
pression to handle big states, and partial order reduction,
slicing, abstraction, and runtime analysis techniques to re-
duce the state space. JPF has been applied to a real-time
avionics operating system developed at Honeywell, illus-
trating an intricate error, and to a model of a spacecraft
controller, illustrating the combination of abstraction, run-
time analysis, and slicing with model checking.

1 Introduction

The majority of work carried out in the formal methods
community throughout the last three decades, since Hoare’s
axiomatic method for proving programs correct [24], has
been devoted to special languages that differ from main
stream programming languages. Typical examples are for-
mal specification languages [40, 2, 39], purely logic based
languages used in theorem provers [13, 33, 7], and guarded
command languages used in model checkers [30, 29, 28].

In a few cases, modeling languages have been designed
to resemble programming languages [26], although the fo-
cus has been on protocol designs. Some of these linguistic
choices have made, and still make it feasible to more conve-
niently experiment with new algorithms and frameworks for
analyzing system models. For example, a logic based lan-
guage is well suited for rewriting, and a rule based guarded
command notation is convenient for a model checker. We
believe that continued research in special languages is im-
portant since this research investigates semantically clean
language concepts and will impact future language designs
and analysis algorithms.

We, however, want to argue that a next important step
for the formal methods subgroup of the software engineer-
ing community could be to focus some of its attention on
real programs written in modern programming languages.
We believe that studying programming languages somehow
will result in some new challenges that will drive the re-
search in new directions as described in the first part of the
paper. Our main interest is in multi-threaded, interactive
programs, where unpredictable interleavings can cause er-
rors, but the argument extends to sequential programs.

In the second part of the paper, we describe our own
effort to follow this vision by presenting the development
of a verification, analysis and testing environment for Java,
called Java PathFinder (JPF). This environment combines
model checking techniques with techniques for dealing with
large or infinite state spaces. These techniques include static
analysis for supporting partial order reduction of the set of
transitions to be explored by the model checker, predicate
abstraction for abstracting the state space, and runtime anal-
ysis such as race condition detection and lock order analysis
to pinpoint potentially problematic code fragments. Part of
this work has consisted of building a new Java Virtual Ma-
chine (JVMJPF ) that interprets Java bytecode. JVMJPF is



called from the model checking engine to interpret bytecode
generated by a Java compiler.

We believe it is an attractive idea to develop a verifi-
cation environment for Java for three reasons. First, Java
is a modern language featuring important concepts such as
object-orientation and multi-threading within one language.
Languages such as C and C++, for example, do not support
multi-threading as part of their core. Second, Java is sim-
ple, for example compared to C++. Third, Java is compiled
into bytecode, and hence, the analysis can be done at the
bytecode level. This implies that such a tool can be applied
to any language that can be translated into bytecode1. Byte-
code furthermore seems to be a convenient breakdown of
Java into easily manageable bytecode instructions; and this
seems to have eased the construction of our analysis tool.
JPF is the second generation of a Java model checker de-
veloped at NASA Ames. The first generation of JPF (JPF1)
[16, 20] was a translator from Java to the Promela language
of the Spin model checker.

The paper is organized as follows. Section 2 outlines our
arguments for applying formal methods to programs. Sec-
tion 3 describes JPF. Section 4 presents two applications
of JPF: a real-time avionics operating system developed at
Honeywell, illustrating an intricate error; and a model of
a space craft controller, illustrating the combination of ab-
straction, runtime analysis, and slicing with model checking
to locate a deadlock. Both errors were errors in the real code
of these systems. Finally, Section 5 contains conclusions
and a description of future work.

2 Why Analyze Code?

It is often argued that verification technologies should
be applied to designs rather than to programs since catch-
ing errors early at the design level will reduce maintenance
costs later on. We do agree that catching errors early is
crucial. State of the art formal methods also most natu-
rally lend themselves to designs, simply due to the fact that
designs have less complexity, which make formal analysis
more feasible and practical. Hence, design verification is a
very important research topic, with the most recent popular
subject being analysis of statecharts [15], such as for exam-
ple found in UML [3]. However, we want to argue that the
formal methods community should put some of its attention
on programs for a number of reasons that we will describe
below.

First of all, programs often contain fatal errors in spite of
the existence of careful designs. Many deadlocks and criti-
cal section violations for example are introduced at a level
of detail which designs typically do not deal with, if formal
designs are made at all. This was for example demonstrated

1For example, there already exist translators from Eiffel, Ada,
OCAML, Scheme and Prolog to bytecode.

in the analysis of NASA’s Remote Agent spacecraft con-
trol system written in the LISP programming language, and
analyzed using the Spin model checker [19]. Here several
classical multi-threading errors were found that were not re-
ally design errors, but rather programming mistakes such as
forgetting to enclose code in critical sections. One of the
missing critical section errors found using Spin was later
introduced in a sibling module, and caused a real deadlock
during flight in space, 60,000 miles from earth [18]; see
Section 4.1. Another way of describing the relationship be-
tween design and code is to distinguish between two kinds
of errors. On the one hand there are errors caused by flaws
in underlying complex algorithms. Examples of complex
algorithms for parallel systems are communication proto-
cols [21, 23] and garbage collection algorithms [17, 35].
The other kind of errors are more simple minded concur-
rency programming errors, such as forgetting to put code
in a critical section or causing deadlocks. This kind of er-
rors will typically not be caught in a design, and they are
a real hazard, in particular in safety critical systems. Com-
plex algorithms should probably be analyzed at the design
level, although there is no reason such designs cannot be ex-
pressed in a modern programming language. However, as
will be shown on a real example in Section 4.2, deep design
errors can also appear in the code.

Second, one can argue that since modern programming
languages are the result of decades of research, they are the
result of good language design principles. Hence, they may
be good design/modeling languages. This is to some ex-
tent already an applied idea within UML where statechart
transitions (between control states) can be annotated with
code fragments in your favorite programming language.
In fact, the distinction between design and program gets
blurred since final code may get generated from the UML
designs. An additional observation is that some program de-
velopment methods suggest a prototyping approach where
the system is incrementally constructed using a real pro-
gramming language, rather than being derived from a pre-
constructed design. This was for example the case with the
Remote Agent [32] mentioned above. Furthermore, any re-
search result on programming languages can benefit design
verification since designs typically are less complex.

A third, and very different kind of argument for studying
verification of real programs is that such research will force
the community to deal with very hard problems, and this
may drive the research into new areas. We believe for exam-
ple that it could be advantageous for formal methods to be
combined with other research fields that traditionally have
been more focused on programs, such as program analysis
and testing. Such techniques are typically less complete, but
they often scale better. We believe that the objective of for-
mal methods is not only to prove programs correct, but also
to debug programs and locate errors. With such a more lim-



ited ambition, one may be able to apply techniques which
are less complete and based on heuristics, such as certain
testing techniques.

Fourth, studying formal methods for programming lan-
guages may furthermore have some derived advantages for
the formal methods community due to the fact that there
is a tendency to standardize programming languages. This
may make it feasible to compare and integrate different
tools working on the same language - or on “clean sub-
sets” of these languages. As mentioned above, it would be
very useful to study the relationship between formal meth-
ods and other areas such as program analysis and testing
techniques. Working at the level of programs will make it
possible to better interact with these communities. We have
already had one such experience in our informal collabora-
tion with Kansas State University, where our tool generated
a slicing criteria based on a runtime analysis, and their tool
could slice the Java program based on this criteria, where
after we could apply our model checker to the resulting pro-
gram. A final derived advantage will be the many orders of
magnitude increased access to real examples and users who
may want to experiment with the techniques produced. This
may have a very important impact on driving the research
towards scalable solutions.

In general, it is our hope that formal methods will play
a role for everyday software developers. By focusing on
real programming languages we hope that our community
will be able to interact more intensively on solving common
problems. Furthermore, the technology transfer problem so
often mentioned may vanish, and instead be replaced by a
technology demand.

3 Model Checking Java Programs

It is well known that concurrent programs are non-trivial
to construct, and with Java essentially giving the capability
to anyone for writing concurrent programs, we believe, a
model checker for Java might have a bright future. In fact,
one area where we believe it can have an immediate impact
is in environments where Java is taught. In the rest of this
section we will address some of the most important issues
in the model checking of programming languages. Specifi-
cally, we will highlight the major reasons why model check-
ing programs is considered hard, and then illustrate how we
tackle these problems within JPF.

3.1 Complexity of Language Constructs

Input languages for model checkers are often kept rel-
atively simple to allow efficient processing during model
checking. Of course, there are exceptions to this, for exam-
ple, Promela the input notation of Spin [26], more resem-
bles a programming language than a modeling language.

General programming languages, however, contain many
new features almost never seen in model checking input
languages, for example, classes, dynamic memory alloca-
tion, exceptions, floating point numbers, method calls, etc.
How will these be treated? Three solutions are currently
being pursued by different groups trying to model check
Java: one can translate the new features to existing ones,
one can create a model checker that can handle these new
features, or, one can use a combination of translation and a
new/extended model checker.

3.1.1 Translation

The first version of JPF [20], as well as the JCAT system
[10], were based on a translation from Java to Promela. Al-
though both these systems were successful in model check-
ing some interesting Java programs [22], such source-to-
source translations suffer from two serious drawbacks:

Language Coverage — Each language feature of the
source language must have a “counterpart” in the desti-
nation language. This is not true of Java and Promela,
since Promela for example, does not support floating
point numbers.

Source Required — In order to translate one source to an-
other, the original source is required, which is often not
the case for Java, since only the bytecodes are available
— for example in the case of the libraries and code
loaded over the WWW.

For Java, the requirement that the source exists can be
overcome by rather doing a translation from bytecodes.
This is the approach used by the BANDERA tool [6], where
bytecodes, after some manipulation, are translated to either
Promela or the SMV model checker’s input notation.

3.1.2 Custom-made Model Checker

In order to overcome the language coverage problem it is
however obvious that either, the current model checkers
need to be extended, or a new custom-made model checker
must be developed. Some work is being done on extending
the Spin model checker to handle dynamic memory allo-
cation [11, 42], but again in terms of Java this only covers
a part of the language and much more is required before
full Java language coverage will be achieved this way. With
JPF we took the other route, we developed our own custom-
made model checker that can execute all the bytecode in-
structions, and hence allow the whole of Java to be model
checked. The model checker consists of our own Java Vir-
tual Machine (JVMJPF ) that executes the bytecodes and a
search component that guides the execution. Note that the
model checker is therefore an explicit state model checker,
similar to Spin, rather than a symbolic one based on Binary



Decision Diagrams such as SMV [29]. A nice side-effect
of developing our own model checker was the ease with
which we are able to extend the model checker with inter-
esting new search algorithms—this would, in general, not
have been easy to achieve with existing model checkers (es-
pecially not with Spin). A major design decision for JPF
was to make it as modular and understandable to others as
possible, but we sacrificed speed in the process — Spin is at
least an order of magnitude faster than JPF. We believe this
is a price worth paying in the long run.

JPF is written in Java and uses the JavaClass package2

to manipulate classfiles. Although we again sacrifice speed
to some extend by not using C/C++, there is no doubt in
our minds that doing JPF in Java has saved us months on
development time. The initial system, that could only han-
dle integer based bytecodes (i.e. the same language subset
as the Java model checkers translating to Spin), was devel-
oped in 3 man-months. The system as described in this pa-
per, required approximately 12 man-months. The current
model checker can only check for deadlocks, invariants and
user-defined assertions in the code; temporal logic model
checking will be added in the near future

3.2 Complex States

In order to ensure termination during explicit state model
checking one must know when a state is revisited. It is com-
mon for a hashtable to be used to store states, which means
an efficient hash function is required as well as fast state
comparison.

The Verisoft system [12] was developed to model check
software, but the design premise was that the state of a soft-
ware system is too complex to be encoded efficiently, hence
Verisoft does not store any of the states it visits (Verisoft
limits the depth of the search to get around the termination
problem mentioned above). Since the Verisoft system exe-
cutes the actual code (C/C++), and has little control over the
execution, except for some user-defined “hooks” into com-
munication statements, it is almost impossible to encode the
system state efficiently. This insight also convinced us that
we cannot tie our model checking algorithm in with an ex-
isting JVM, that is in general highly optimized for speed,
but will not allow the memory to be encoded easily.

Our design philosophy was to keep the states of the JVM
in a complex data-structure, but one that would allow us to
encode the states in an efficient fashion in order to deter-
mine if we have visited states before. Specifically, each
state consists of three components: information for each
thread in the Java program, the static variables (in classes)
and the dynamic variables (in objects) in the system. The
information for each thread consists of a stack of frames,
one for each method called, whereas the static and dynamic

2http://www.inf.fu-berlin.de/˜dahm/JavaClass/

information consists of information about the locks for the
classes/objects and the fields in the classes/objects. Each of
the components mentioned above is a Java data-structure.
In early stages of JPF development we did store these struc-
tures directly in a hashtable, but with terrible results in terms
of memory and speed: 512Mb would be exhausted after
only storing ������ states, and ��� states could be evalu-
ated each second (on a SPARC ULTRA60).

The solution we adopted to make the storing of states
more efficient, was a generalization of the Collapse method
from Spin [25]: each component of the JVM state is stored
separately in a table, and the index at which the component
is stored is then used to represent the component. More
specifically, each component (for example the fields in a
class/object) is stored in a table for that component, if the
specific component is already in the table its index is re-
turned, and if it is unique it is stored at the next open slot
and that index is returned. This has the effect of encoding
a large structure into no more than an integer3. Collapsing
states in this fashion allows fast state comparisons, since
only the indexes need to be compared and not the structures
themselves. The philosophy behind the collapsing scheme
is that although many states can be visited by a program
the underlying components of many of these states will be
the same. A somewhat trivial example of this is when a
statement updates a local variable within a method: the only
part of the system that changed is the frame representing the
method, all the other parts of the system state is unaffected
and will collapse to the same indexes. This actually alludes
to the other simple optimization we added: only update the
part of the system that changes, i.e., keep the indexes calcu-
lated for the previous state the same, only calculate the one
that changed (to date we have only done this optimization
in some parts of the system). Currently the system can store
millions of states in 512Mb and evaluates between 500 and
1500 states per second depending on the size of the state (on
a SPARC ULTRA60).

JPF in its current state already illustrates that software
systems with complex states can be efficiently analyzed (see
section 4), but with some further extensions and better hard-
ware platforms to run it on, we believe, systems of up to 10k
lines of code could be analyzed.

3.3 Curbing the State-explosion

Maybe the most challenging part of model checking is
reducing the size of the state-space to something that your
tool can handle. Since designs often contain less detail than
implementations, model checking is often thought of as a
technique that is best applied to designs, rather than im-
plementations. We believe that applying model checking

3All the tables are implemented as hashtables, and in some cases the
“index” used will be a reference to an object rather than an integer value.



by itself to programs will not scale to programs of much
more than 10k lines. The avenue we are pursuing is to aug-
ment model checking with information gathered from other
techniques in order to handle large programs. Specifically,
we are investigating the use of abstract interpretation, static
analysis and runtime analysis to allow more efficient model
checking of Java programs.

3.3.1 Abstraction

Recently, the use of abstraction algorithms based on the the-
ory of abstract interpretation [8], have received much atten-
tion in the model checking community [14, 9, 36, 37, 5].
The basic idea underlying all of these is that the user spec-
ifies an abstraction function for certain parts of the data-
domain of a system, and the model checking system then,
by using decision procedures, either automatically gener-
ates, on-the-fly during model checking, a state-graph over
the abstract data [14, 36, 9] or automatically generates an
abstract system, that manipulates the abstract data, which
can then be model checked [37, 5]. The trade-off between
the two techniques is that the generation of the state-graph
can be more precise, but at the price of calling the deci-
sion procedures throughout the model checking process,
whereas the generation of the abstract system requires the
decision procedures to be called proportional to the size of
the program. It has been our experience that abstractions
are often defined over small parts of the program, within
one class or over a small group of classes, hence we favor
the generation of abstract programs, rather than the on-the-
fly generation of abstract state-graphs. Also, it is unclear
whether the abstract state-graph approach will scale to sys-
tems with more than a few thousand states, due to the time
overhead incurred by calling the decision procedures.

Specifically we have developed an abstraction tool
for Java that takes as input a Java program anno-
tated with user-defined predicates and, by using the
Stanford Validity Checker (SVC) [1], generates another
Java program that operates on the abstract predicates.
For example, if a program contains the statement x++
and we are interested in abstracting over the predi-
cate x==0, written as Abstract.addBoolean("B",x
== 0), then the increment statement will be abstracted
to the code: “if (B) then B = false else B =
Verify.randomBool()” where the randomBool()
method indicates a nondeterministic choice. The BAN-
DERA tool uses similar techniques to abstract the data-
domains of say an integer variable in Java to work over
the positive, negative and zero (the so-called sign abstrac-
tion), by using the PVS model checker. The novelty of
our approach lies in the fact that we can abstract predi-
cates over more than one class: for example, if class A has
a field x and class B has a field y then we can specify a

predicate Abstract.addBoolean("xGTy", A.x >
B.y). The abstracted code allows for many instantiations
of objects of class A and B to be handled correctly — the
interested reader is referred to [43] for more details on the
techniques used.

Although our Java abstraction tool is still under develop-
ment we have had very encouraging results. For example
we can, in a matter of seconds, abstract the omnipresent
infinite-state Bakery algorithm written in Java to one that
has finite-state and can be checked exhaustively. In sec-
tion 4.1 we also show how the abstraction tool is used on a
real example.

3.3.2 Static Analysis

Static analysis is a technique often used, in all areas of soft-
ware engineering, to achieve a reduction in program size.
Only comparatively recently has there been any activity in
using it to reduce the size of systems before model check-
ing. Specifically, it was noticed that slicing [41], can be
a useful way of reducing program size to allow more effi-
cient model checking [31, 4]. The best exponent of using
slicing to reduce Java programs for model checking is the
BANDERA tool [6], where they use the variables occurring
in an LTL formula in their slicing criteria. We believe this
is a very interesting avenue for further research and are cur-
rently in the process of interfacing JPF with the BANDERA
tool.

Within JPF we are currently using static analysis tech-
niques to determine which Java statements in a thread are
independent of statements in other threads that can execute
concurrently. This information is then used to guide the
partial-order reductions [27] built into JPF. Partial-order re-
duction techniques ensure that only one interleaving of in-
dependent statements is executed within the model checker.
It is well established from experience with the Spin model
checker that partial-order reductions achieve an enormous
state-space reduction in almost all cases. We have had sim-
ilar experience with JPF, where switching on partial-order
reductions caused model checking runs that ran for hours to
finish within minutes. We believe model checking of (Java)
programs will not be tractable in general if partial-order re-
ductions are not supported by the model checker and in or-
der to calculate the independence relations required to im-
plement the reductions, static analysis is required.

3.3.3 Runtime Analysis

Runtime analysis is conceptually based on the idea of ex-
ecuting the program once, and observing the generated ex-
ecution trace to extract various kinds of information. This
information can then be used to predict whether other differ-
ent execution traces may violate some properties of interest
(in addition of course to demonstrate whether the generated



trace violates such properties). Note that the generated ex-
ecution trace itself does not have to violate these properties
in order for their potential violation in other traces to be de-
tected. These algorithms typically will not guarantee that
errors are found since they work on an arbitrary trace. They
also may yield false positives. What is attractive about such
algorithms is, however, that they scale very well, and that
they often catch the problems they are designed to catch. In
practice runtime analysis algorithms will not store the entire
execution trace, but will maintain some selected informa-
tion about the past, and either do analysis of this informa-
tion on-the-fly, or after program termination. An example
is the data race detection algorithm Eraser [38] developed
at Compaq. Another example is a locking order analysis
called LockTree which we have developed. Both these al-
gorithms have been implemented in JPF. Below we describe
these two algorithms, and then describe how they are inte-
grated in JPF to run stand-alone, or integrated with model
checking to reduce the state space.

The Eraser algorithm detects data races. A data race oc-
curs when two concurrent threads access a shared variable
and when at least one access is a write, and the threads use
no explicit mechanism to prevent the accesses from being
simultaneous. The program is data race free if for every
variable there is a nonempty set of locks that all threads
own when they access the variable. The Eraser algorithm
works by maintaining for each variable x a set Lx of those
locks active when threads access the variable. Furthermore,
for each thread t is maintained a set Lt of those locks taken
by the tread at any time. Whenever a thread t accesses the
variable x, the set Lx is refined to the intersection between
Lx andLt (Lx � Lx�Lt), although the first access just as-
signsLt toLx. A race condition may be potential ifLx ever
becomes empty. The algorithm described in [38] is relaxed
to allow variables to be initialized without locks, and to be
read by several threads without locks, if no-one writes.

The LockTree algorithm looks for potential deadlocks
by detecting differences in the order in which threads take
locks. A classical deadlock situation can be defined as one
thread T� accessing two LocksK andL, in that order, while
another thread accesses them in the reverse order. The dead-
lock may then occur if T� takes K, and then T� takes L.
Now none of the threads can continue. If we define dead-
lock in this limited way, a program is deadlock free if all
locks are accessed in the same order. The LockTree algo-
rithm searches for the violation of such an ordering between
locks. It maintains a tree of lock orders for each thread, and
compares these trees at the end of an execution. This is in
contrast with the Eraser algorithm which does the analysis
on-the-fly.

Runtime analysis can be used in two modes within JPF.
It can first of all be used stand-alone in simulation mode.
Second, runtime analysis can be used to guide the model

checker. We have made experiments where the Eraser mod-
ule in JPF generates a so-called race window consisting of
the threads involved in a race condition. The model checker
is then launched, focusing on the race window by forcing
the scheduler always to pick threads in the window before
other threads. In the near future, we plan to perform runtime
analysis during the model checking itself.

4 Applications of JPF Tools

In this section we describe the application of JPF and
its related tools to two real-world examples. The first is a
model of a spacecraft controller (section 4.1) in which we
illustrate how JPF can find errors that were introduced in
the coding phase (i.e. after design). This example also il-
lustrates how the different techniques used in JPF can be
combined. The second example is a real-time operating sys-
tem (section 4.2) with a subtle error in the time-partitioning
of threads, that is in fact an example of an error that was in-
troduced during design, but was not discovered during the
design due to a lack of detail.

4.1 The Remote Agent Spacecraft Controller

The Remote Agent (RA) is an AI-based spacecraft con-
troller that has been developed at NASA Ames Research
Center. It consists of three components: a Planner that gen-
erates plans from mission goals; an Executive that executes
the plans; and finally a Recovery system that monitors the
RA’s status, and suggests recovery actions in case of fail-
ures. The Executive contains features of a multi-threaded
operating system, and the Planner and Executive exchange
messages in an interactive manner. Hence, this system is
highly vulnerable to multi-threading errors. In fact, during
real flight in May 1999, the RA deadlocked in space, caus-
ing the ground crew to put the spacecraft on standby. The
ground crew located the error using data from the space-
craft, but asked as a challenge our group if we could locate
the error using model checking. This resulted in an effort
described in [18], and which we shall shortly describe in the
following. Basically we identified the error using a com-
bination of code review, abstraction, and model checking
using JPF1, the first generation of Java PathFinder. Dur-
ing code review we got a suspicion about the error since
it resembled one discovered using the SPIN model checker
before flight [19]. The modeling therefore focused on the
code under suspicion for containing the error. What we will
describe in the following is the abstraction process using the
abstraction tool, which also works for the new generation of
JPF.

The major two components to be modeled were events
and tasks, as illustrated in Figure 1. The figure shows a



Java class Event from which event objects can be instan-
tiated. The class has a local counter variable and two syn-
chronized methods, one for waiting on the event and one
for signaling the event, releasing all threads having called
wait for event. In order to catch events that occur while
tasks are executing, each event has an associated event
counter that is increased whenever the event is signaled. A
task then only calls wait for event in case this counter
has not changed, hence, there have been no new events since
it was last restarted from a call of wait for event. The
figure shows the definition of one of the tasks. The task’s
activity is defined in the run method of the class Planner,
which itself extends the Thread class, a built-in Java class
that supports thread primitives. The body of the run method
contains an infinite loop, where in each iteration a condi-
tional call of wait for event is executed. The condition
is that no new events have arrived, hence the event counter
is unchanged.

class Event {
int count = 0;
public synchronized void wait_for_event() {

try{wait();}catch(InterruptedException e){};
}
public synchronized void signal_event(){

count = count + 1;
notifyAll();

} }

class Planner extends Thread{
Event event1,event2;
int count = 0;
public void run(){

count = event1.count;
while(true){

if (count == event1.count)
event1.wait_for_event();

count = event1.count;
/* Generate plan */
event2.signal_event();

} } }

Figure 1. The RAX Error in Java

The shown program has theoretically infinitely
many reachable states due to the repeated increment
of the count variable in the events. We use abstrac-
tion to remove those count variables by specifying
Abstract.remove(count) in the classes of Event and
Planner. In place of these variables, we declare abstrac-
tion predicates corresponding to those predicates in the
program that involve count variables. For instance, we put
Abstract.addBoolean("EQ",count==event1.count)

in the definition of the Planner class. After having an-
notated the program with these abstraction declarations,
the abstraction tool is applied and a new abstracted
program is generated. JPF thereafter reveals the dead-
lock in this abstracted program. The error trace shows
that the Planner first evaluates the test “(count ==

event1.count)”, which evaluates to true; then, before
the call of event1.wait for event() the Executive

signals the event, thereby increasing the event counter and
notifying all waiting threads, of which there are none. The
Planner now unconditionally waits and misses the signal.
The solution to this problem is to enclose the conditional
wait in a critical section such that no events can occur in
between the test and the wait. In fact, the same pattern
occurred in several places and in all other places there
was such a critical section around. This was simply an
omission.

The abstract Java model of what happened on board
the spacecraft was created based on a suspicion about the
source of the error obtained during code review. This
suspicion was created by the fact that this same pat-
tern had been found to cause errors in a different part
of the RA during the pre-flight effort using the SPIN
model checker two years before [19]. The source of
the error, a missing critical section, could, however, have
been found automatically using the Eraser data detection
algorithm. The variable count in class Event is ac-
cessed unsynchronized by the Planner’s run method in
the line: “if (count == event1.count)”, specifically
the expression: event1.count. Hence even though the
signal event called by the Executive will increase the
variable synchronized, the above condition in the Planner
can be executed even during such a signal. This may cause
a data race where the count variable is accessed simultane-
ously by the Planner and the Executive. When running JPF
in Eraser mode, it detects this race condition immediately.
This could be enough to locate the error, but only if one can
see the consequences. The JPF model checker, on the other
hand, can be used to analyze the consequences.

To illustrate JPF’s integration of runtime analysis and
model checking, the example was made slightly more re-
alistic by adding extra threads that made the Java program
resemble the real system. The new program had more
than ��

�� states. Then we applied JPF in its special run-
time analysis/model checking mode. It immediately identi-
fied the race condition using the Eraser algorithm, and then
launched the model checker on a thread window consisting
of those threads involved in the race condition: the Plan-
ner and the Executive, locating the deadlock - all within 25
seconds. As an additional experiment in collaboration with
the designers of the BANDERA tool, we fed part of the
result of the race detection, namely the variable that is ac-
cessed unprotected, into BANDERA’s slicing tool, which in
turn created a program slice where all code irrelevant to the
value of the counter had been removed. JPF then found the
deadlock on this sliced program. This illustrates our philos-
ophy of integrating techniques from different disciplines:
abstraction was used to turn an infinite program into a fi-
nite one, runtime analysis was used to pinpoint problematic
code, slicing was used to reduce the program, and finally
the model checker was launched to analyze the result.



4.2 The DEOS Avionics Operating System

The DEOS real-time operating system, developed by
Honeywell for use within business aircraft, is written in
C++. During a manual analysis of the code the develop-
ers noticed a subtle error in the system, that testing had
not picked up. Without relating what the error was, a slice
of the original code, that contained the error, was handed
over to NASA Ames with the goal being to see whether
a model checker can find the error. The error was subse-
quently found after a translation of the code to Promela.
A full account of this verification exercise can be found in
[34]. Since the slice of DEOS is fairly large,����� lines of
C++, and the error very subtle, it seemed like a good can-
didate on which to validate our philosophy of model check-
ing code directly. As a first step the C++ code was trans-
lated to Java; this was straight-forward, since the original
C++ code contained very little pointer arithmetic etc. This
resulted in 14 Java classes containing approximately 1000
lines of code. The DEOS system must be put in parallel
with a nondeterministic environment in order to do model
checking. Luckily the environment created for the Promela
model could be re-used (by translation into Java) to a large
extent. This added another 6 classes to the system, for a
combined total of 1443 lines of Java code, making it by
far the largest example (in terms of lines of code) ever at-
tempted by JPF. One change that was required in the Java
version of the model checking was that we had to create an
invariant that would show when the error occurred, since the
Promela version used an LTL formula, which our current
system does not support. This invariant is fairly complex,
92 lines of Java, and was created by one of the developers
of the DEOS system.

As with the Spin version we started off by limiting the
search-depth of the model checker, since the original sys-
tem has infinitely many states. Initial runs were discour-
aging, since the error was not found after running the sys-
tem for hours. However when partial-order reductions were
switched on the error was found almost instantly. In fact,
much faster than Spin found the error, but the Promela and
Java versions are not identical and hence one should read
nothing into this result (for example, the order of nondeter-
ministic choices are different). As in the Promela version,
large parts of the system is executed in atomic steps. In the
Promela version we applied a predicate abstraction by hand
to reduce the system to finitely many states, the next step
will be to do the same with our Java abstraction tool auto-
matically — the current version of the tool cannot handle
the abstraction of predicates over arrays, which is a require-
ment in this case.

5 Conclusions and Future Work

In the first part of this paper we argued why the formal
methods subgroup of the software engineering community
should devote some of their efforts to the analysis of sys-
tems described in real programming languages, rather than
just to their own special purpose notations. The second part
of the paper described how we applied this philosophy to
the analysis of Java programs. Specifically, we showed that
model checking could be applied to Java programs, without
being hampered by the perceived problems often cited as
reasons for why model checking source code will not work.
In the process we showed that augmenting model check-
ing with abstract interpretation, static analysis and runtime
analysis can lead to the efficient analysis of complex (Java)
software. Although the combination of some these tech-
niques are not new, to the best of our knowledge, our use of
automatic predicate abstraction across different classes, the
use of static analysis to support partial-order reductions and
the use of runtime analysis to support model checking are
all novel contributions.

Since we are drawing on different techniques and the
synergy between these techniques it should be clear that
many areas for future research exists. Besides the obvious
extensions and improvements of the different algorithms,
there are two areas which we feel are crucial to the success
of applying model checking to (Java) source code. Firstly,
one need to develop methods to assist in the construction
of “environments” suitable for model checking, currently
the users of a model checker will construct an environment
for their models by hand, but we believe some automation
will be required if non-experts are to use the (Java) model
checker. Secondly, it is naive to believe that model check-
ing will be capable of analyzing programs of 100k lines or
more, hence in these cases one would like to have a “mea-
sure” of how much of the system was checked. In soft-
ware testing this measure is given as a coverage measure
and hence we are currently investigating means to calculate
typical coverage measures (for example, branch coverage,
method coverage, condition/decision coverage, etc.) during
model checking with JPF.
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