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Abstract. Software systems cannot in general be assumed proven cor-
rect before deployment. Testing is still the most common approach to
demonstrate a satisfactory level of correctness. However, some errors
will survive verification efforts, and it is therefore reasonable to monitor
a system after deployment, to determine whether it executes correctly.
Both for testing and post-deployment monitoring, it may be desirable to
be able to formalize correctness properties that can be monitored against
program executions. This is also referred to as runtime verification. We
present a specification language and a monitoring system for monitoring
such specifications against event streams. The monitoring engine front-
end, written in Scala, translates the specification to C++, whereas the
back-end (the monitoring engine), written in C++, interprets the gener-
ated C++ monitor on an event stream. This makes it feasible to monitor
the execution of C and C++ programs online.

1 Introduction

The correctness of software is usually demonstrated through extensive testing.
A test suite usually consists of test cases, where each test case consists of a test
input vector and a test oracle, which determines whether the test case executes
properly. Since testing does not provide 100% coverage of all execution paths,
there is also a need after deployment to monitor the software as it executes. For
this the concept of monitors is needed. We present LogScope (available at [24]),
a system for monitoring event streams (traces) against formal specifications,
also referred in literature as Runtime Verification (RV). A formal specification,
written by a user, is translated into a monitor in C++, which can be used both as
a test oracle before deployment, or for monitoring the system as it executes after
deployment. A monitor generated from a formal specification is event-driven. It
receives events, one by one, modifying its internal state for each observed event,
and emitting an error message or calling a callback function in case a violation
of the specification is encountered. Such a system can be used offline, analyzing
log files, or online, monitoring the system real-time as it executes. The system
solves the following problem:

⋆ The research performed was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.



Given a sequence of events emitted from a software application, how can
we assure that the event stream satisfies a set of desired properties?

The frontend, written in the Scala programming language, parses a specifi-
cation and translates it to an Abstract Syntax Tree (AST) in C++. The backend,
the monitoring engine itself, written in C++, imports the C++ AST generated
by the frontend, and interprets it over a sequence of events emitted to it. The
fact that the backend is implemented in C++ makes it possible to monitor ap-
plications online that themselves are written in C or C++, which is important
for embedded systems. It is for example unthinkable to call a monitor in Java or
Python from a C/C++ program in an embedded application, unless monitor-
ing is performed remotely and asynchronously. Numerous RV systems have been
developed in the past, as discussed in Section 2, but most are implemented in
high-level languages such as Java. In most cases there will be a need to convert
events generated by the software to the event format of LogScope. This is,
however, a straightforward task.

The specification language allows to state properties about events that can
carry data, e.g. relating data occurring in events at different positions in the
trace. We refer to this as parametric monitoring. What makes the specification
language stand out compared to most related work is that it combines a rule-
based language and a state machine language. A rule-based system consists of a
set of rules operating on a set of facts in a memory, where a fact is a named data
record. Each rule has a condition and an action. The condition of a rule can refer
to the memory and query whether certain facts are present or not, including the
data they carry, which is used to support parametric monitoring. The action of
a rule can add or delete facts from the memory. As such several facts can be
active at any moment in time. The ability to refer to the presence/absence of
facts can be used to model past time temporal properties by letting facts be
generated when certain events occur that need to be remembered in the future.
LogScope is fundamentally a rule-based system but its specification language
has a state machine look and feel by supporting the definition of event triggered
transitions as part of fact definitions.

The paper is organized as follows. Section 2 discusses related work. Section 3
provides an overview of the tool. Section 4 explains the notation through a series
of examples. Section 5 outlines how to use the tool. Section 6 briefly outlines
aspects of the implementation. Section 7 describes experimentation performed.
Finally, Section 8 concludes the paper. Appendix A contains visualizations of
the monitors presented throughout the paper, generated by LogScope.

2 Related Work

LogScope’s concepts can be traced back to the early RuleR system [2], where
the idea of merging rule-based programming with state machine notation was
first explored, and implemented in Java. That work was followed by the first ver-



sion of LogScope1 [4, 23], implemented and executing monitors in Python, in
contrast to the here presented system where monitors are generated in the higher
performing C++. The algorithmic approach, however, was the same, namely
parsing a monitor specification into an Abstract Syntax Tree (AST) and then
interpreting it over the trace, as we shall discuss later on. The earlier system did
not allow to query the fact memory for presence/absence of facts. It was, how-
ever, richer in a number of other ways, including providing a temporal logic layer
translated to the automaton layer, and allowing Python code to be written as
part of monitors, such as in e.g. conditions and actions. The here presented ver-
sion does not yet offer similar capabilities for including C++ code in monitor
specifications.

We have developed other runtime verification systems based on the same
idea of merging rule-based programming with state machines, including Daut
[17, 10] (in Scala) and PyContract [8, 27] (in Python). Both are so-called
internal DSLs, in contrast to LogScope, which is an external DSL with its
own grammar and parser. In an internal DSL monitors are written directly in
the host language, which we in Section 7 shall see can have important impact
on performance. We also developed the purely rule-based runtime verification
system LogFire [18, 22], also an internal Scala DSL, based on the RETE
algorithm [13, 12] traditionally used in expert systems, in order to explore the
applicability of this algorithm for runtime verification. The Rmor monitoring
framework for C [16] generates C code from an external state machine DSL that
includes aspect-oriented programming for instrumenting code to be monitored.

Numerous other RV systems have been developed over time providing exter-
nal DSLs. Many are written in high-level application programming languages,
such as e.g. Java, Scala, and Ocaml, which makes them less suited for online
monitoring of embedded systems. Java-MaC [21] was an early system sup-
porting a past time temporal logic, allowing for a clear separation between the
definition of the primitive events of a system and the system properties. It en-
ables automatic instrumentation of Java code to generate events for the monitor.
Java-MaC does not support parametric monitoring, however.

A number of systems support efficient parametric monitoring through slicing:
the idea of splitting the trace of events carrying data into several subtraces of
propositional events, each of which is then submitted to a propositional moni-
tor. Mop [25] offers several data parametric specification formalisms as separate
plugins, including state machines, past and future temporal logics, regular ex-
pressions, grammars, etc. The logics are separated in the sense that any property
is expressed in one of the logics. The parameterization is based on slicing, which
is very efficient, but which offers a somewhat limited expressiveness. Mop sup-
ports automated code instrumentation using aspect-oriented programming (via
AspectJ). The Qea system [28] is based on extended finite state machines,
and improves the expressiveness of the slicing approach compared to Mop by
allowing so-called free variables that can be updated in the monitors. Larva [6]

1 The original system was focused on Log analysis, hence the name LogScope (Scope
as telescope).



offers a specification language for writing Dynamic Automata with Events and
Timers (DATEs), also a form of extended finite state machines, and similar to
timed automata enriched with stopwatches. It supports a basic form of paramet-
ric monitoring with slicing. Various other specification formalisms are translated
into DATEs. DATEs can communicate via channels and global variables. The
system also supports automated code instrumentation using aspect-oriented pro-
gramming (via AspectJ).

A different branch of formalisms include those supported in stream-based
systems. Lola [9] is a synchronous stream-based language which allows the user
to specify the properties of a program in past and future linear time temporal
logic. The language guarantees bounded memory to perform online monitoring,
but differs from most other synchronous languages in that it is able to refer
to future values in a stream. It allows the user to collect statistics at runtime
and to express numerical queries. The CoPilot specification language [26] is
an internal Haskell DSL from which monitors in C are generated for moni-
toring hard real-time reactive systems. It supports a past time temporal logic
and a bounded future time temporal logic, both mapped into stream expres-
sions. It supports data parameterization, which is bounded due to the real-time
constraints requiring statically bounded execution time and memory usage.

Closely related are systems resembling variants of the linear µ-calculus, us-
ing recursion. Eagle [3] implements a recursive data parametric calculus with
past and future time operators. Hawk [7] extends Eagle with constructs for
capturing parameterized program events such as method calls and method re-
turns. Parameters can be executing thread, the objects that methods are called
upon, arguments to methods, and return values. The tool automates program
instrumentation of Java programs (via AspectJ). DetectEr [1] implements a
future time data parametric Hennessy-Milner logic with recursion for monitoring
Erlang programs.

Several systems have been developed specifically supporting forms of first-
order linear time temporal logic as the core logic. MonPoly [5] supports a first-
order linear time temporal logic with future and past time temporal operators.
The logic also supports aggregation operators (e.g., sum and average), increasing
the expressiveness of the logic. BeepBeep [15] permits writing first-order linear
time temporal logic properties over the data in a trace ofXmlmessages. In [11] is
presented a framework that lifts monitor synthesis procedures for propositional
temporal logics to a temporal logic over structures within a given first-order
theory. To evaluate such specifications, SMT solving and classical monitoring of
propositional temporal properties are combined. DejaVu [19] supports a first-
order past linear time temporal logic and represents data occurring in events
with BDDs. In [20] is described an extension that augments that logic with
rules.



3 Overview

LogScope supports formal analysis of event (telemetry) streams. The tool takes
as input:

– a formal specification in the Scope language, expressing the properties that
the event stream has to satisfy. The specification consists of a collection of
monitor specifications.

– an event stream.

LogScope produces on standard output a report describing where (if at all)
the event stream violates the specification. The results of monitoring can also
be accessed as a data structure for further processing. The Scope specification
language merges rule-based programming with state machines. An example of
a monitor specification in the Scope language is the following, formalizing the
property that: “Every command (with some apriori unknown name, bound to
the variable ‘x’) must eventually succeed, without a failure before” (the language
will be explained in detail in subsequent sections):

monitor CommandsMustSucceed {
always {

COMMAND(name : x ) ⇒ RequireSuccess (x )
}

hot RequireSuccess (cmdName) {
FAIL(name : cmdName) ⇒ error
SUCCESS(name : cmdName) ⇒ ok

}
}

Figure 1 illustrates the architecture of LogScope. A monitor specification, writ-
ten in the Scope specification language by a user, is by the frontend (written
in the Scala programming language) translated to an AST in C++, represent-
ing the structure of the specification, and stored in the file contract.cpp. The
backend compiles with the contract.cpp file, as well as with a main program
in the main.cpp file, also written by a user. This main program is responsible
for obtaining events E1, E2, . . . from the System Under Observation, referred to
as SUO, and forwarding them to the backend, which then monitors them using
the contract in contract.cpp.

For each monitor in contract.cpp is maintained an internal memory, called
the frontier, which is a set of active states S1, S2, ..., Sk. States in LogScope
are similar to those of state machines, however, in contrast to traditional state
machines the frontier can contain more than one state, each parameterized with
its own data. As we shall see, a state can have transitions out of the state, which
can delete states, create new states, and/or issue error messages to a report. For
each incoming event Ei, a monitor conceptually applies the event to each state
S1, S2, . . . , Sk in the frontier2, causing states to be removed, states to be added,
and/or error messages to be issued.

2 Optimizations similar to slicing can avoid examining all states.
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Fig. 1: The LogScope architecture.

In online monitoring, where the monitor continuously monitors the SUO
as it executes, there is conceptually no end to the monitoring, it theoretically
continues “forever”. However, in offline monitoring, analyzing e.g. a log file,
monitoring terminates after the last event in the log file has been processed. The
specification language contains language constructs, which only have meaning
when/if end of monitoring occurs. Specifically it is checked that there are no
remaining unfulfilled obligations: events that should occur but did not.

In the following we first present the Scope specification language, and sub-
sequently the tool itself in terms of the frontend and backend.

4 The Specification Language

A specification consists of one or more files, each containing zero or more moni-
tor specifications. From each monitor specification is generated a monitor AST
(in C++). When there is no confusion possible, we shall use the term monitor
instead of monitor specification. Each monitor specification represents a prop-
erty that must hold on an event sequence. We shall illustrate the LogScope
specification language through a sequence of examples, that combined cover the
different aspects of the language. All the examples concern the commanding of
a planetary rover. We start with examples where events do not carry data, and
then move on to the more interesting case where events carry data.



4.1 Events

Conceptually, an event is a named record, with a name and a mapping from
fields to values, where both fields and values are strings. We can think of an
event to have the following form:

name(field1 : value1, . . . , fieldn : valuen)

In case the map is empty we just refer to the name. Some examples are:

– reboot
– command(name : “TURN”, kind : “FSW”, sol : “125”)

This description suffices to understand the specification language. Later, in Sec-
tion 5, we shall see how such events are concretely created with the backend
C++ API.

4.2 A Simple State Machine

Let us assume that the SUO repeatedly emits two events:

− command : command being issued to, and received by, rover
− succeed : successful termination of command execution on rover

Note that for this first example we do not care about the fact that there are
different kinds of commands. We also do not care about the data that events
carry. We want to monitor the following property:

Property P1:
After submission of a command, a success of the command must follow,
and no other command can be submitted in between.

The monitor for this property is shown in Figure 2. The monitor, named M1,
first declares which events it will monitor, namely command and succeed. Declaring
such events has the main purpose of reducing the risk of making specification
mistakes by e.g. misspelling event names when defining the states. Then two
states are defined: Command and Succeed. The state Command is the initial state
of the state machine, indicated by the state modifier init . The state contains one
transition: command ⇒ Succeed, expressing that if a command event is observed,
then we leave (remove from the frontier) the Command state and enter (add to the
frontier) the Succeed state. The Succeed state is annotated with a hot modifier,
with the meaning that this state must be left (removed) before end of monitoring
occurs (if it occurs). Leaving the Succeed state can happen in one of two ways.
Either a succeed event occurs, in which case we return to the Command state, or
another command event occurs, in which case we report an error.

Textual monitors are visualized by LogScope usingGraphViz’s dot-format,
see Appendix A. This can help in convincing the specification writer that the
specification expresses the intended property.



monitor M1 {
event command , succeed

i n i t Command {
command ⇒ Succeed

}

hot Succeed {
succeed ⇒ Command
command ⇒ error

}
}

Fig. 2: Monitor M1 for property P1.

4.3 Some Alternative Monitors

Figure 3 shows some alternative monitors for property P1, illustrating different
aspects of the language. In the monitor M1a, instead of alternating between
the states Command and Succeed, whenever a command event is observed in the
Command state, in addition to creating a Succeed state, we immediately re-create
the Command state. This is done by listing the Command state on the right-
hand side of the transition arrow ⇒ , in addition to the Succeed state, separated
by a comma. In the Succeed state itself, instead of creating a Command state on
observing a succeed event, the ok state is entered, which effectively means that we
are leaving the Succeed state successfully. This approach is, however, semantically
slightly different in the sense that this monitor will keep looking for successes
of commands, even after a failure due to a command being issued while waiting
for a success. In the monitor M1, such an extra command will cause the frontier
to become empty. Note that we have not annotated the Command state with
the modifier init . In case no states are annotated with init , the first state is
by default initial (unless the monitor contains anonymous states as shown in
monitor M1c).

Monitor M1b shows how we can annotate a state with the modifier always to
obtain the same effect as the transition in the Command state in the M1a monitor.
The always modifier causes the state to always persist, even when transitions out
of the state are taken. It is common for such always states to be anonymous, by
not giving them a name. This is shown in the monitor M1c, which is the recom-
mended (most convenient) way to write this monitor. If there are anonymous
states in a monitor they become initial states in addition to states explicitly
annotated with the modifier init . Only if there are no states annotated with init

and there are no anonymous states, the first state becomes the initial state.

4.4 Monitoring Events that Carry Data

We shall now monitor events that carry data, represented as maps from fields
to string values. This is where LogScope distinguishes itself from traditional



monitor M1a {
event command , succeed

Command {
command ⇒

Succeed , Command
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(a) Monitor M1a.

monitor M1b {
event command , succeed

always Command {
command ⇒

Succeed
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(b) Monitor M1b.

monitor M1c {
event command , succeed

always {
command ⇒

Succeed
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(c) Monitor M1c.

Fig. 3: Alternative monitors M1a, M1b, and M1c for property P1.

state machines. In our next example along the same theme, we shall specifically
distinguish between different commands identified by name and kind. That is,
our events have the form:

− command(name : c , k i nd : k ) : command being issued
− succeed (name : c) : successful termination

The kind k can for example be the string ”FSW” (Flight Software, in contrast to
Flight Hardware). We shall now modify the property P1 slightly. The property
stated that “After submission of a command, a success of the command must
follow, and no other command can be submitted in between”. We shall now dis-
tinguish between different commands, identified by their names, and relax the
property to:

Property P2:
After submission of a flight software command with a name x, a success
of the command named x must follow (with the same name), and that
command x cannot be re-submitted in between.

Note that x is a variable representing any command name observed. This means
that in between a command named x and its success, another command named y
can be submitted as long as x ̸= y. A monitor for this property is shown in Figure
4. Now the events are declared to carry maps (data). The event command carries
a map defining two fields, name, a string denoting the name of the command,
and kind, the kind of the command. The succeed command carries its name. Note
that all data are strings3. The anonymous initial always state contains a single
transition, which on the left-hand side of the arrow ⇒ matches any command

event where the kind field is the string ”FSW”. On such a match the command

3 An extension of the language can allow different types of values.



name itself is bound to the variable x. This x is then referred to on the right-hand
side state, where it is bound to the c field of the created Succeed state. So, e.g.
if the command command(name : “TURN”, kind : “FSW”) is observed, then
a Succeed(c : “TURN”) state is created.

The Succeed state itself is parameterized with a map with a single field c.
This field is referred to in the transitions. For example, the first transition states
that if a succeed event is observed with a map, which maps the field name to the
value of c that was passed as parameter, then we successfully leave the Succeed

state by creating an ok state. On the other hand, if a command event is observed
where the name is c, it is an error.

The general rule for when a variable name in a transition is bound versus
matched against is the following. A variable, such as x in the always state, is
bound to an incoming value of an event if x is not occurring as parameter to the
state. A variable, such as c in the Succeed state, is matched against if occurs as
parameter to the state.

Note that we do not refer to the kind field of the command event in the
second transition of the Succeed state (even though all commands monitored by
this monitor defines a kind field in their associated maps). The intent is that we
do not want any command of any kind with the name c to occur while waiting
for a success. We could alternatively have narrowed it down to flight software
commands by adding a kind : ”FSW”. Note that the order of arguments are not
important since we are dealing with maps. The format of monitor M2 is typical,
many properties will have this form.

monitor M2 {
event command(cmd , kind ) , succeed (cmd)

always {
command(cmd : x , kind : ”FSW”) ⇒ Succeed ( c : x )

}

hot Succeed ( c ) {
succeed (cmd : c ) ⇒ ok
command(cmd : c ) ⇒ error

}
}

Fig. 4: Monitor M2 for property P2.

4.5 Referring to the Past

The properties we have seen so far are what we call a future time properties.
They have the general form: “if some event occurs, then some other events have
to occur in the future and/or other events should not occur in the future”. It is,



however, also useful sometimes to refer to things that happened in the past, and
specifically to things that did not happen. Let us add a constraint to property
P2, namely that a command is only allowed to succeed, if it has been commanded
in the past and not yet succeeded. The added constraint refers to the past. That
is, our property now becomes:

Property P3:
After submission of a flight software command with a name x, a success
of the command named x must follow (with the same name), and that
command x cannot be re-submitted in between. Furthermore, a command
is only allowed to succeed if it has been commanded in the past and not
yet succeeded.

The monitor M3 in Figure 5 monitors this property. The monitor is the same
as in Figure 4 except that in the initial always state we have added an extra
transition:

succeed (name : x ) @ ! Succeed ( c : x ) ⇒ e r r o r

In addition to the event pattern succeed(name : x), after the symbol @ follows a
condition !Succeed(c : x) stating that there does not (! is negation) exist a state
in the frontier with a map that maps the field c to the value x bound in the
event on the left-hand side of the @ symbol. If there is no such state, hence the
command x is not expected to succeed, then an error is reported. In general, after
the @ symbol, a comma separated list of conditions can occur (negated or not),
which each have to be true for the transition to be taken. The conditions can
bind variables, exactly as does our event here. Bindings can be seen in patterns
occurring to the right of the bindings.

monitor M3 {
event command(cmd , kind ) , succeed (cmd)

always {
command(cmd : x , kind : ”FSW”) ⇒ Succeed ( c : x )
succeed (cmd : x ) @ ! Succeed ( c : x ) ⇒ error

}

hot Succeed ( c ) {
succeed (cmd : c ) ⇒ ok
command(cmd : c ) ⇒ error

}
}

Fig. 5: Monitor M3 for property P3.



4.6 A Complex Property

The following final example does not introduce essential new language features
(except a less essential one), but illustrates how a more complex monitor can
look like. We expand the scenario with additional events. We here assume that
when a command is received on the rover, it is not immediately executed, but
rather it is stored in a queue. While in the queue the command can be cancelled.
If not cancelled it is then eventually dispatched for execution. The execution
can fail or it can succeed. After successful execution, the command has to be
closed (e.g. cleaning up). Each command, in addition to having a name, is now
also associated with a command number, increased by 1 for each submitted
command. We consider the following events:

− command(name : c , n r : n , k i nd : k )
− c a n c e l ( name : c , n r : n)
− d i s p a t c h (name : c , n r : n)
− f a i l ( name : c , n r : n)
− succeed (name : c , n r : n)
− c l o s e (name : c , n r : n)

We shall refer to the combination of a command name and its number as a
command instance. Our new property is as follows.

P4:
After submission of a flight software command instance, a dispatch of
the command instance must follow, unless it is cancelled first. Once dis-
patched, it must succeed, without any failure occurring before. In between
the dispatch and the success of a command instance, we should observe
no re-submission of that command (any command instance with that
name). A command instance is not allowed to succeed unless it has been
dispatched. Once a command instance has succeeded, it must be closed,
and it is not allowed to succeed again.

The monitor for property P4 is shown in Figure 6. The second transition in
the initial always state uses a condition to catch command successes that are
not expected. The first transition in the Succeed state creates two new states,
a NoMoreSuccess state and a Close state. The second transition in the Succeed

state uses a wildcard symbol to indicate that any flight software command
instance with the name sc will cause an error in this state, we don’t care what
the command number is. In this monitor, the transition has the same meaning
as the following transition where we do not mention the nr field at all:

command(cmd : sc , k i nd : ”FSW” ) ⇒ e r r o r



Whether we use a don’t care symbol or not does, however, have an effect in
case we do not declare our events at the beginning of the monitor: using a don’t
care symbol, as in nr : , does require that there is an nr field in the command’s
data map. If not an error is issued.

monitor M4 {
event command(cmd , nr , kind ) , cance l (cmd , nr ) , d i spatch (cmd , nr ) ,

f a i l (cmd , nr ) , succeed (cmd , nr ) , c l o s e (cmd , nr )

always {
command(cmd : c , nr : n , kind : ”FSW”) ⇒ Dispatch ( dc : c , dn : n)
succeed (cmd : c , nr : n) @ ! Succeed ( sc : c , sn : n) ⇒ error

}

hot Dispatch ( dc , dn) {
cance l (cmd : dc , nr : dn) ⇒ ok
dispatch (cmd : dc , nr : dn) ⇒ Succeed ( sc : dc , sn : dn)

}

hot Succeed ( sc , sn ) {
succeed (cmd : sc , nr : sn ) ⇒

NoMoreSuccess ( nc : sc , nn : sn ) ,
Close ( cc : sc , cn : sn )

command(cmd : sc , nr : , kind : ”FSW”) ⇒ error
f a i l (cmd : sc , nr : sn ) ⇒ error

}

NoMoreSuccess ( nc , nn) {
succeed (cmd : nc , nr : nn) ⇒ error

}

hot Close ( cc , cn ) {
c l o s e (cmd : cc , nr : cn ) ⇒ ok

}
}

Fig. 6: Monitor M4 for property P4.

4.7 The Complete Grammar

The complete grammar for the Scope language is defined in Figure 7. In addi-
tion to traditional grammar notation we also use A,∗ denoting A zero or more
times, separated by commas, and likewise for A,+ denoting A one or more times,
separated by commas.

Note that one does not need to define events. In that case the events are
inferred from the state transitions. Providing event definitions, however, serves
two purposes: (1) to offer an additional well-formedness check on the state tran-
sitions, that they refer to events declared, and (2) if no events are declared, then
only events used in the state transitions are submitted to the monitor, otherwise
all declared events are submitted. This can make a difference when using step

and next modifiers explained below.
The non-terminal ‘Modifier’ introduces two modifiers we have not explained

before. A step state will be deleted from the frontier at the next event if none of



its transitions fire. A next state will cause an error at the next event if none of
its transitions fire. In the definition of the non-terminal ‘Trans’ (transition), if
a pattern on the right-hand side of ⇒ is negated, the corresponding state is re-
moved. Such patterns must be grounded with no undefined identifiers. Note that
when taking a transition, the source state containing the transition is removed
from the frontier, unless the state is annotated with the always modifier.

Specification ::= Monitor*

Monitor ::= monitor Id ‘{’ EventDef* State* ‘}’
EventDef ::= event Event,+

Event ::= Id [ ‘(’ Id,+ ‘)’ ]

State ::= Modifier+ ‘{’ Trans+ ‘}’ | Modifier* Id [ ‘(’ Id,* ‘)’ ] [ ‘{’ Trans+ ‘}’ ]

Modifier ::= init | always | hot | step | next

Trans ::= Pat [ ‘@’ Pat,+ ] ‘⇒’ Pat,*

Pat ::= [ ‘!’ ] Id [ ‘(’ Constraint,* ‘)’ ]

Constraint ::= Id ‘:’ Range

Range ::= Value | Id | ‘_’

Value ::= String | Number

Id ::= Letter (Letter | Digit | ‘_’)*

Letter ::= ‘a’ - ‘z’ | ‘A’ - ‘Z’

Digit ::= ‘0’ - ‘9’

Number ::= Digit Digit*

String ::= text between double quotes

Fig. 7: Grammar for the LogScope language.

5 Usage

The front-end is delivered as a jar-file and a script referring to the jar-file. The
logscope script is applied as follows to n files (for n ≥ 1) containing monitor
specifications in the Scope language:

logscope ⟨file1⟩ .... ⟨filen⟩

LogScope will merge the monitor specifications in the different files into one
specification and translate it to C++. It does not matter in which order the
files are provided, or how monitors are distributed over the files. In case the
input specification passes the parsing and type checking, LogScope will gen-
erate a directory tool-generated, containing the file contract.cpp with the
generated C++ AST (which will be used to monitor the specified monitors) and
visualizations of monitors in .png format, one for each monitor.

The user writes a program, say main.cpp, which is compiled with the gener-
ated contract.cpp file, and which instantiates the specification in contract.cpp
and feeds it events. Figure 8 shows a program, main.cpp, using the contract.cpp
file (by importing contract.h) that is generated by the frontend from the mon-
itor specification in Figure 5.



In line 4 we create a SpecObject object via a call of the makeContract

function, that the generated file contract.cpp defines. The SpecObject contains
the AST of the specification as a C++ object tree. We then create a trace, a list
of four events, in lines 5-10. In our case, the specification in Figure 5 processes
the events: command(cmd,kind) and succeed(cmd). Here command and succeed are
the names, and cmd and kind are the fields. If we look at the first event in line
6, it represents a command at time 10, with the ”cmd” field having the value
”TURN” and the ”kind” field having the value ”FSW”. The for-loop in lines 11-
13 iterates through each event e in the trace, and feeds it to the contract via
a call of the eval method. Finally, in line 14, we end the monitoring. This can
cause additional error messages to be produced in case any hot states remain
in the frontier of monitor. Note that during online monitoring this method may
never be called. As shown in this example, the monitor must be fed events e via
calls of the form contract . eval (e). For the purpose of a simple presentation we
created an explicit trace. When monitoring an application in online mode (as
it executes) it is up to the implementer of the application to invoke these calls.
When monitoring an application in offline mode, it us up to the implementer of
the application to write events to a file, which can then later be processed.

1 #include ” cont rac t . h”
2
3 int main ( ) {
4 SpecObject cont rac t = makeContract ( ) ;
5 l i s t <Event> events = {
6 Event (10 , ”command” ,{{”cmd” , ”TURN”} ,{”kind” , ”FSW”}}) ,
7 Event (20 , ”command” ,{{”cmd” , ”TRACK”} ,{”kind” , ”FSW”}}) ,
8 Event (30 , ” succeed ” ,{{”cmd” , ”TURN”}}) ,
9 Event (40 , ” succeed ” ,{{”cmd” , ”SEND”}}) ,

10 } ;
11 for ( Event &e : events ) {
12 cont rac t . eva l ( e ) ;
13 } ;
14 cont rac t . end ( ) ;
15 }

Fig. 8: The main program in main.cpp.

Monitoring the above trace causes two errors to be detected, the first due to
the 4th event (line 9 in Figure 8), which is a success of a command that has not
been issued. At the end of monitoring (at the call contract.end() in line 14),
an additional error is detected, indicating that the monitor M3 ends in the hot

Succeed state, since the TRACK command has not succeeded.

6 Implementation

The front-end, implemented in Scala, parses the Scope specification using
Scala’s parser combinator library and produces an AST in Scala. The AST is



type checked, and then written out as an AST in C++ to the file contract.cpp.
Monitors are visualized with GraphViz [14]. The backend is implemented in
C++14 (the 2014 version).

The monitoring engine can be conceived as operating with objects of three
main classes. An object of the SpecObject class represents the specification,
which is a collection of monitors, each of which is represented by an object of
the MonitorObject class. Each such monitor, at any moment in time during
monitoring, contains a set of active states, each represented by an object of
the StateObject class. Each of these three classes defines an eval(Event &e)

method, evaluating a single event, as shown in Figure 9.

void SpecObject : : eva l ( Event &e ) {
for ( MonitorObject ∗m : monitors ) m−>eva l ( e ) ;

}

void MonitorObject : : eva l ( Event e ) {
i f ( i sRe l evant ( e ) ) {

event = e ;
s tatesToDelete . c l e a r ( ) ;
statesToAdd . c l e a r ( ) ;
for (auto s t a t e : s t a t e s ) s t a t e . eva l ( ) ;
for (auto &sta t e : s tatesToDelete ) s t a t e s . e ra s e ( s t a t e ) ;
for (auto &sta t e : statesToAdd ) s t a t e s . i n s e r t ( s t a t e ) ;

}
}

void StateObject : : eva l ( ) {
bool f i r e d = f a l s e ;
for ( as t : : Trans i t i on ∗ t rans : stateAST−>t r a n s i t i o n s ) {

Trans i t i onResu l t r e s u l t = eva lTrans i t i on ( t rans ) ;
i f ( r e s u l t == Trans i t i onResu l t : : FAILED) e r r o r ( ) ;
f i r e d = f i r e d | | ( r e s u l t != Trans i t i onResu l t : : SILENT ) ;

} ;
i f ( stateAST−>i sNext && ! f i r e d ) e r r o r ( ) ;
i f ( ! stateAST−>i sAlways &&

( stateAST−>i sNext | | stateAST−>i s S t ep | | f i r e d ) ) {
monitor−>recordStateToDelete ( ∗ this ) ;

}
}

Fig. 9: Evaluation methods.

The SpecObject::eval method calls the eval method on each of its mon-
itors. The method MonitorObject::eval only handles events relevant to the
monitor (either declared, or if no event declarations: used). It calls the eval

method on each of its states. It operates on two variables storing states to be
deleted and states to be added due to the effect of the transitions in the monitor.
Finally, the StateObject::eval method walks through the transitions. Next-
states must fire. The state is removed if it is not an always state, and it is a next
or step state, or a transition fired.



7 Experiment

7.1 Setting Up the Experiment

In order to evaluate LogScope’s performance, we compared it to two other
monitoring systems:Daut [17, 10] and PyContract [8, 27]. As previously men-
tioned, while the LogScope specification language is an external DSL – a stand-
alone language, where a monitor specification is translated to an AST (in C++)
and then interpreted; both Daut and PyContract are internal DSLs, in re-
spectively Scala and Python, implementing automata concepts very similar
to the one of LogScope. An internal DSL is effectively a library in the host
language. A user is therefore not limited to the expressiveness of the DSL, but
can use the entire host language for writing monitors if needed. This can e.g.
be useful for performing computations on the data appearing in events. Gener-
ally, high-level languages such as Python, and especially Scala, are well suited
for defining internal DSLs. Both internal DSLs use the host language’s pattern
matching to match events against transition left hand sides. This turns out to be
a crucial difference from the C++ implementation of LogScope, where this pat-
tern matching had to be implemented. The aging earlier version of LogScope
[4, 23], implemented in Python, and executing in Python, was not performing
well, and has for this reason been eliminated from the numeric comparison.

We monitored a slight modification of property M4 in Figure 6, shown in Fig-
ure 10, which requires less memory, avoiding the accumulating memory needed
by the NoMoreSuccess state for example. The Daut version of this property is
shown in Figure 11 and the PyContract version is shown in Figure 12. We
applied each monitor to 8 logs (traces) with varying length and shape. Table
1 shows the execution times in seconds and milliseconds. Each log is generated
by an artificial log generator developed specifically for the experiment, param-
eterized with a shape S = (P,R) of positive integers, where P denotes how
many commands are active in parallel, from issuing the command, dispatching,
succeeding, and closing (four events), and R indicates how many times such a
parallel execution is repeated.

7.2 Result and Interpretation

The surprise here is that LogScope, with a backend implemented in C++,
is slower than the other two systems implemented in Scala and Python. The
Scala version has the best performance, which in part likely can be contributed
to the JVM’s just-in-time compilation. We believe the reason for LogScope’s
weaker performance to be the following. LogScope supports an external DSL,
where a monitor specification is translated (by the Scala frontend) into an
AST (in C++). This AST is subsequently during monitoring interpreted on the
stream of input events. The interpreter includes our own implementation of pat-
tern matching of events against transition left-hand sides. In contrast, bothDaut
and PyContract are internal shallow DSLs, where monitors are written di-
rectly in the host language, and specifically using the pattern matching provided



by the host languages, yielding an advantage wrt. performance. Note that this
performance advantage of internal shallow DSLs also holds when compared to
interpretation of internal deep DSLs, which are similar to external DSLs, in that
a program/specification in the DSL is represented as a data structure (AST).
Note finally that the C++ implementation uses dynamic memory allocation (as
do Daut and PyContract). This should in a revised version for embedded
software monitoring be replaced by a static memory pool, potentially providing
efficiency improvements wrt. time and memory.

The presented C++ version of LogScope, however, performs better than
the earlier version described in [4, 23]. This is perhaps not so surprising since
they both use fundamentally the same technique of interpreting the monitor
specification AST over the trace, and C++ is a high performance programming
language compared to Python.

monitor M4 modified {
event command(cmd , nr , kind ) , cance l (cmd , nr ) , d i spatch (cmd , nr ) ,

f a i l (cmd , nr ) , succeed (cmd , nr ) , c l o s e (cmd , nr )

always {
command(cmd : c , nr : n , kind : ”FSW”) ⇒ Dispatch ( dc : c , dn : n)

}

hot Dispatch ( dc , dn) {
cance l (cmd : dc , nr : dn) ⇒ ok
dispatch (cmd : dc , nr : dn) ⇒ Succeed ( sc : dc , sn : dn)

}

hot Succeed ( sc , sn ) {
succeed (cmd : sc , nr : sn ) ⇒ Close ( cc : sc , cn : sn )
command(cmd : sc , nr : , kind : ”FSW”) ⇒ error
f a i l (cmd : sc , nr : sn ) ⇒ error

}

hot Close ( cc , cn ) {
succeed (cmd : cc , nr : cn ) ⇒ error
c l o s e (cmd : cc , nr : cn ) ⇒ ok

}
}

Fig. 10: Monitor M4 modified, used in experiment.

8 Conclusion

We have presented a framework in C++ for monitoring event streams, with
a frontend written in Scala supporting an external DSL. We compared the
implementation with two other monitoring systems implemented in respectively
Scala and Python. It turns out that those systems perform better, likely due to
the fact that they are internal DSLs benefiting from the host language’s pattern
matching constructs.



c lass M4 modified extends Monitor [ Event ] {
always {

case Com( c , n , ”FSW”) ⇒ Dispatch ( c , n)
}

case c lass Dispatch (cmd : Str ing , nr : S t r ing ) extends s t a t e {
hot {

case Can( ‘cmd ‘ , ‘ nr ‘ ) ⇒ ok
case Dis ( ‘ cmd ‘ , ‘ nr ‘ ) ⇒ Succeed (cmd , nr )

}
}

case c lass Succeed (cmd : Str ing , nr : S t r ing ) extends s t a t e {
hot {

case Suc ( ‘ cmd ‘ , ‘ nr ‘ ) ⇒ Close (cmd , nr )
case Com( ‘cmd ‘ , , ”FSW”) ⇒ e r r o r ( )
case Fai ( ‘ cmd ‘ , ‘ nr ‘ ) ⇒ e r r o r ( )

}
}

case c lass Close (cmd : Str ing , nr : S t r ing ) extends s t a t e {
hot {

case Suc ( ‘ cmd ‘ , ‘ nr ‘ ) ⇒ e r r o r ( )
case Clo ( ‘ cmd ‘ , ‘ nr ‘ ) ⇒ ok

}
}

}

Fig. 11: Monitor M4 modified, in the Scala DSL Daut.

Table 1: Result of experiment. For each log is shown shape S of the log: a pair
(P,R) of constants, where P denotes how many commands are active in parallel,
from issuing the command, dispatching, succeeding, and closing (four events),
and R indicates how many times such a parallel execution is repeated. The
number of events in a log is 4 ∗ P ∗R.

.

log nr. 1 2 3 4 5 6 7 8
S=(P,R) (1,12500) (50,250) (1,50000) (5,10000) (10,5000) (20,2500) (1,125000) (5,25000)
nr. of events 50,000 50,000 200,000 200,000 200,000 200,000 500,000 500,000

LogScope 5.172 s 42.974 s 20.571 s 14.884 s 21.857 s 35.537 s 23.471 s 37.256
PyContract 0.373 s 4.600 s 1.567 s 3.425 s 5.120 s 8.811 s 4.511 s 9.483 s
Daut 0.595 s 0.733 s 0.927 s 0.938 s 1.000 s 1.221 s 1.482 s 1.431 s

The current version of the tool is a prototype. A continuation of this work
would include the following activities. There is a need to obtain a better under-
standing of the performance differences. In general, there is a need to modify the
backend C++ code to match embedded programming practices. This includes
most importantly to avoid dynamic memory allocation, using instead statically
sized object pools. The backend monitoring engine can be further optimized.
One can e.g. use indexing to quickly identify what states an event is relevant for.
Various extensions to the specification language can be considered, such as e.g.
allowing the use of C++ code as part of specifications. Currently arguments to a
state are passed by referring to the formal parameter names. Allowing positional
arguments without referring to the formal parameter names might be desirable.
Finally, a more optimal way to translate a monitoring specification is to translate



c lass M4 modified ( Monitor ) :
def t r a n s i t i o n ( s e l f , event ) :

match event :
case { ’name ’ : ’command ’ , ’cmd ’ : c , ’ nr ’ : n , ’ kind ’ : ”FSW” } :

return s e l f . Dispatch ( c , n)

@data
c lass Dispatch ( HotState ) :

cmd : str
nr : str

def t r a n s i t i o n ( s e l f , event ) :
match event :

case { ’name ’ : ’ cance l ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return ok

case { ’name ’ : ’ d i spatch ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return s e l f . Succeed ( s e l f . cmd , s e l f . nr )

@data
c lass Succeed ( HotState ) :

cmd : str
nr : str

def t r a n s i t i o n ( s e l f , event ) :
match event :

case { ’name ’ : ’ succeed ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return s e l f . Close ( s e l f . cmd , s e l f . nr )

case { ’name ’ : ’command ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : , ’ kind ’ : ”FSW” } :
return e r r o r ( )

case { ’name ’ : ’ f a i l ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return e r r o r ( )

@data
c lass Close ( HotState ) :

cmd : str
nr : str

def t r a n s i t i o n ( s e l f , event ) :
match event :

case { ’name ’ : ’ succeed ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return e r r o r ( )

case { ’name ’ : ’ c l o s e ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return ok

Fig. 12: Monitor M4 modified, in the Python DSL PyContract.

it to a C++ program that is specialized for the monitor (rather than translating
it to an AST in C++). Partial evaluation could be considered as an approach to
achieve this, partially evaluating the interpreter given a specification, yielding a
program that now only takes the event trace as input.

References

1. Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna
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A Visualization of Monitors

Textual monitors are automatically visualized using GraphViz’s dot-format
[14]. This appendix shows the visualization of the textual monitors presented in
Section 4.

Monitor M1 The monitor M1 in Figure 2 is visualized in Figure 13. Hot states
(annotated in text with the modifier hot) are visualized as orange arrow shaped
pentagons. Orange means danger: this state has to be left eventually. Non-hot
states are visualized as green rectangles, we can stay in those “forever” (termi-
nating monitoring in such a state is ok). The initial state Command is pointed to
by an arrow leaving a black point. Transitions are labelled with events (and ad-
ditional conditions as we shall see later). The color red in general indicates error.
For example a command issued in the Succeed state causes an error, symbolized
with a red cross on a horizontal line.

M1

Command

Succeed

commandsucceed

command

Fig. 13: Monitor M1 visualized.

Monitors M1a, M1b, and M1c The three monitors M1a, M1b, and M1c in
Figure 3 are visualized in Figure 14. Figure 14a, the visualization of M1a, shows
how multiple target states are visualized: the transition of the Command state
triggered by a command event creates a Succeed and a Command state. This is
visualized with a black triangle (symbolizing a Boolean ‘and’: ∧) with dashed
lines leading to the target states. Note how in the Succeed state, a succeed event



leads to ok which in the visualization is shown as a green dot. The visualization
of monitor M1b in Figure 14b illustrates how an always state is visualized: with
an unlabelled self loop. The difference between the visualization of this monitor
and of M1c in Figure 14c is only that the initial state in Figure 14c has no name.

M1a

Command

command

Succeed

succeed command

(a) Monitor M1a.

M1b

Command

Succeed

command

succeed command

(b) Monitor M1b.

M1c

Succeed

command

succeed command

(c) Monitor M1c.

Fig. 14: Monitors M1a, M1b, and M1c visualized.

Monitor M2 Monitor M2 in Figure 4 is visualized in Figure 15. The difference
from previous visualizations is that now events carry data maps, which is shown.
It is also shown how bindings to fields in target state maps are created. Specif-
ically, the transition ‘command(name : x, kind : ”FSW”) ⇒ Succeed(c : x)’ from the
initial always state is shown as an edge labelled with command(cmd : x, kind : ”FSW”),
and below it the binding of the c field of the Succeed state (see its definition) to
the x that was bound on the left of the ⇒ symbol.

Monitor M3 Monitor M3 in Figure 5 is visualized in Figure 16. The only new
visualization concept here is that the transition from the initial always state to
the error state is now labelled not only with the event pattern succeed(name : x)

but also with the condition pattern !Succeed(c : x) underneath.

Monitor M4 Monitor M4 in Figure 6 is visualized in Figure 17. Recall that
by observing the color scheme one can from the graph quickly understand the



M2

Succeed(c)

command(cmd : x,kind : "FSW")
c := x

succeed(cmd : c) command(cmd : c)

Fig. 15: Monitor M2 visualized.

M3

Succeed(c)

command(cmd : x,kind : "FSW")
c := x

succeed(cmd : x)
!Succeed(c : x)

succeed(cmd : c) command(cmd : c)

Fig. 16: Monitor M3 visualized.

violations being checked for: orange means terminating here is a violation, and
red means an occurred violation.



M4

Dispatch(dc,dn)

command(cmd : c,nr : n,kind : "FSW")
dc := c
dn := n

succeed(cmd : c,nr : n)
!Succeed(sc : c,sn : n)

cancel(cmd : dc,nr : dn)

Succeed(sc,sn)

dispatch(cmd : dc,nr : dn)
sc := dc
sn := dn

succeed(cmd : sc,nr : sn) command(cmd : sc,nr : _,kind : "FSW") fail(cmd : sc,nr : sn)

NoMoreSuccess(nc,nn)

nc := sc
nn := sn

Close(cc,cn)

cc := sc
cn := sn

succeed(cmd : nc,nr : nn) close(cmd : cc,nr : cn)

Fig. 17: Monitor M4 visualized.


