
Discussing the Future Role of Documentation in
the Context of Modern Software Engineering

(ISoLA 2022 Track Introduction)

Klaus Havelund1⋆, Tim Tegeler2, Steven Smyth2, and Bernhard Steffen2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 TU Dortmund University, Dortmund, Germany
firstname.lastname@cs.tu-dortmund.de

Abstract. The article provides an introduction to the track: Program-
ming - What is Next?: The Role of Documentation, organized by Klaus
Havelund and Bernhard Steffen as part of ISoLA 2022: the 11th Inter-
national Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. Software has to run on machines, but it also
has to be understood by humans. The latter requires some form of docu-
mentation of the software, which explains what it does if the human is a
user of the software, and how it does it if the user is a programmer who
wants to modify the software. Documentation is usually the neglected
artifact. This track attempts to focus attention on documentation as a
first-class citizen of the software development process.

Keywords: Documentation · Domain-specific Languages · Modeling ·
Programming

1 Motivation and Background

In 1973, Hoare made the following statement in his famous hints on programming
language design:

“The purpose of program documentation is to explain to a human reader
the way in which a program works, so that it can be successfully adapted
after it goes into service, either to meet the changing requirements of its
users, to improve it in the light of increased knowledge, or just to remove
latent errors and oversights. The view that documentation is something
that is added to a program after it has been commissioned seems to be
wrong in principle and counterproductive in practice. Instead, documen-
tation must be regarded as an integral part of the process of design and
coding.” [10]

⋆ The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



2 Klaus Havelund, Tim Tegeler, Steven Smyth, and Bernhard Steffen

20201980 20101990 2000

Hints on
Programming 
Language
Design

Unified
Modeling
Language 

OpenAPI
Specification

Literate
Programming 

1970
1973 1984 1997 2016

GitHub 
Copilot

2022

Java 
Modeling 
Language

1998

Fig. 1. Selected milestones in the historical evolution of software documentation

Despite the maturity of this statement, it is our observation that software docu-
mentation is often still considered a burden and merely realized as plain source
code comments or concluded in a post-development fashion [4] as standalone
documents. We believe this results from a love–hate relationship that we as soft-
ware engineers have with software documentation. On the one hand we cherish
well documented software and on the other hand we don’t enjoy creating and
maintaining the documentation of our own projects.

Almost 50 years after Hoare’s statement, software documentation has gone
beyond helping programmers to orient themselves during the programming and
has many facets today. Not only gained it importance with the increasing col-
laboration of highly distributed teams, but it became a structured means that
is more than human-readable text:

– Classic approaches such as Javadoc [11] are legitimate successors of Knuth’s
literate programming [14]. They were instrumental in enhancing comments
by the adoption of structured tags that carry processable metadata of com-
mented source code and the automatic generation of documentation in a
browsable output format (e.g. HTML).

– JML [15, 12] goes beyond Javadoc. In particular, it supports design by con-
tract by allowing pre and post-conditions to be written as annotations.

– Standardized modeling with UML introduced graphical notations to support
documentation and understanding of object-oriented software [17, 7].

– Projects like the OpenAPI initiative [18] support a documentation-first ap-
proach to describe (RESTful) APIs in a human and machine readable format
that allows automatic service discovery.

– Web-based documentations, e.g. [1], have evolved to software products them-
selves, making use of version control software and distinct build processes.
This trend lead to the need for frameworks and libraries to generalise the
creation of documentation, e.g. [2].

– GitHub Copilot [3] generates complete source code from comments, with the
result of blurring the lines between documenting and programming.

We think this evolution (cf. Figure 1) has the potential to overcome our
prejudices against documenting and finally position documentation in the center
of software development. The aim of the track is to review current pragmatics
and discuss the future role of documentation in the context of modern software
engineering.



ISoLA 2022 PWN Track Introduction 3

2 Contributions

In this section we present the contributions of the PWN track in the order of their
presentation at ISoLA in three sessions which, incrementally, consider enhanced
roles of documentation from mere additions to the code, via code/documentation
conglomerates to various forms of executable documentation.

2.1 Session 1: Duality between Documentation and Code

This session addresses the duality between documentation and code. A seamless
interplay of both entities is vital for the success of software projects; in particular
for projects relying on the continuous collaboration of various stakeholders. The
following papers lay the foundation for this track by discussing how abstraction
in form of models can be used to represent software properties and reducing the
need for additional documentation.

Coherent Description of Software System Properties. Broy [5] intro-
duces his paper by discussing the term software documentation from different
points of view and underscores that the development of software systems involves
a wide-ranging set of challenging tasks, including the understanding of techni-
cal entities, maintaining the source code and operating the overall system. He
argues that documentation is not only useful for each of these tasks but badly
needed for software system development and evolution, especially in the context
of DevOps-driven projects. Therefore continuously improving documentation,
while verifying its consistency, is a key issue. One practical way of enriching
documentation for this purpose is the use of models to abstractly describe im-
portant properties (e.g. functionality and architecture) of the considered software
systems.

Models as Documents, Documents as Models. Stevens [20] reflects on
similarities and differences between both terms. Documentation and models are
broad concepts and overlap in software engineering. Models can serve to doc-
ument certain parts of a software project and, in the context of model-driven
engineering documents can be viewed as models as well. The paper approaches
the questions “What counts as a model?” and “What counts as a document?”.

Using Supplementary Properties to Reduce the Need for Documenta-
tion. Programming languages serve two purposes in general. Firstly to instruct
computers by being executed and secondly to describe the intended computa-
tional processes to humans. However, practice has shown that source code can be
difficult to understand, even for experts. Thus, source code requires to be doc-
umented by supplementary documentation using natural language, diagrams,
specifications and models. Madsen and Møller-Pedersen [16] dedicate this paper
to the challenge of extending the expressive power of programming languages



4 Klaus Havelund, Tim Tegeler, Steven Smyth, and Bernhard Steffen

in order to reduce the need for such supplementary documentation on the one
hand, and to reduce the need for additional (documentational) languages on the
other hand.

2.2 Session 2: Synergies between Documentation and Code

We often think of documentation as text written in natural language, explain-
ing how code works or how it is used. However, documentation can also be
understood more formally. This session focuses on such more formal forms of
documentation, including visualization of code, assurance arguments, and mod-
els. Visualization of code can be viewed as visual documentation. An assurance
argument is a semi-formal argument about the correctness of a system, and can
be viewed as a structured form of documentation. Similarly, a design model is a
form of documentation. The papers in this session discuss the tight integration
of these forms of documentation and code, either by concretely linking artifacts
with tooling, or by providing precise semantics of the documentation that sup-
ports correct code development and generation from a model.

Pragmatics Twelve Years Later. In 2010, Fuhrmann et al. introduced mod-
eling pragmatics as a term for tools that combine the best of the textual and
graphical worlds. A key enabler for this combination in practice was the ability
to automatically synthesize customized (graphical) views from (possibly textual)
models. Now, von Hanxleden et al. [8] reflect on their proposal twelve years later
with the example of the recently developed coordination language Lingua Franca
and discuss the obstacles, opportunities, and the outlook for modeling pragmat-
ics in general.

Assurance Provenance. Modern society relies heavily on high-assurance sys-
tems software for transportation, medicine, finance, defense, and other areas.
However, the rigorous requirements and processes for such safety-critical systems
do not mesh well with modern agile software development practices, which fo-
cuses on ‘good enough’ software ‘fast enough’. Karsai and Balasubramanian [13]
argue that current CI/CD pipelines should be extended by Continues Assur-
ance (CA) high-assurance software systems enabling rapid re-analysis and re-
evaluation. For this, integrated tooling is essential: Developers need assistance
for managing and maintaining complex systems.

Formalization of the AADL Run-Time Services. Hatcliff et al. [9] note
that documentation is not only needed for a specific program or model but on the
meta-level for the definition of modeling languages, e.g., for the Architecture and
Analysis Definition Language (AADL). AADL is a modeling language focussing
on strong semantics for real-time embedded systems. The definition of modeling
languages require expressive documentation in order to allow all stakeholders to
reason about the modeled system. However, in case of the AADL standard, the



ISoLA 2022 PWN Track Introduction 5

documentation of run-time services is semi-formal. This allows divergent inter-
pretations of the definition which renders the implementation of analysis or code
generation functionality difficult. The authors show how rule-based formalization
of key aspects of the AADL semantic can be documented to enable functions for
realistic, interoperable, and assurable implementations.

2.3 Session 3: Executable Documentation

Executable Documentation is an umbrella term which includes all parts of a
documentation that can be executed directly, create executable components (e.g.,
higher-level models or even running products), or components that manually or
automatically generate parts of the documentation.

Test-First in Action. Smyth et al. [19] present two test-first scenarios. At
first, a test-driven development approach tailored to the needs of programming
beginners is illustrated. A focus is set on a test-guided, auto-didactic exploration
through appropriate automatic diagram syntheses for runtime visualization for
an immediate, tangible feedback. The test-based guidance can be automated,
e.g., via randomized testing, or used to foster student-tutor interaction. In the
second scenario, a similar test-first approach can be leveraged to improve modern
web development. Instead of relying on static templates, concrete test instances
are used to instantaneously visualize the final product in a WYSIWYG style.
This radically reduces the time for tedious development cycles.

Runtime Verification as Documentation. In contrast to a runtime veri-
fication monitor that returns a Boolean verdict, Dams et al. [6] present three
monitor examples that document system behaviour. For this, they combine run-
time verification with techniques from data science. The three examples cover
state reconstruction from traces, a data analysis of operations on a distributed
database, and timed debugging. While the considered notion of dynamic doc-
umentation is rooted in runtime verification, such systems produce rich data,
which require analysis that goes beyond Boolean verdicts. The authors argue
that monitors written in a high-level programming language allow for arbitrarily
complex data processing, which is often needed in industrial contexts.

From Documentation Languages to Purpose-Specific Languages. Do-
main-specific notation and documentation languages are usually used in the re-
quirements and design phases. Tegeler et al. [21] illustrate how to turn these lan-
guages into fully-fledged purpose-specific modeling languages. These languages
are designed to tightening the semantic gap between the what should be done
and the how is it implemented, while also reducing the need for handwritten why
specifications. The approach is illustrated within the DevOps scenario. Here,
typical graphical CI/CD workflows are turned into an integrated modeling en-
vironment, called Rig. At a larger scale, Rig specifications, that are themselves



6 Klaus Havelund, Tim Tegeler, Steven Smyth, and Bernhard Steffen

executable documentations, can be regarded as means to automatically pro-
vide corresponding running systems which can be considered the ‘ultimate’ (ex-
ecutable) documentations where the understanding of all stakeholders should
converge.

The PWN track closes with a panel discussion regarding the role of documenta-
tion in the context of modern software engineering.

References

1. Laravel - the PHP framework for web artisans. https://laravel.com/docs, [Online;
last accessed 31-August-2022]

2. VuePress. https://vuepress.vuejs.org, [Online; last accessed 31-August-2022]
3. Your AI pair programmer. https://github.com/features/copilot, [Online; last ac-

cessed 31-August-2022]
4. Aghajani, E.: Software documentation: automation and challenges. Ph.D. thesis,

Università della Svizzera italiana (2020)
5. Broy, M.: Software system documentation: Coherent description of software system

properties. vol. Proc. ISoLA 2022. Springer International Publishing (2022), [in this
volume]

6. Dams, D., Havelund, K., Kauffman, S.: Runtime verification as documentation.
vol. Proc. ISoLA 2022. Springer International Publishing (2022), [in this volume]

7. Fernández-Sáez, A.M., Caivano, D., Genero, M., Chaudron, M.R.: On the
use of UML documentation in software maintenance: Results from a sur-
vey in industry. In: 2015 ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS). pp. 292–301 (2015).
https://doi.org/10.1109/MODELS.2015.7338260

8. von Hanxleden, R., Lee, E.A., Fuhrmann, H., Schulz-Rosengarten, A., Domrös, S.,
Lohstroh, M., Bateni, S., Menard, C.: Pragmatics twelve years later: A report on
Lingua Franca. vol. Proc. ISoLA 2022. Springer International Publishing (2022),
[in this volume]

9. Hatcliff, J., Hugues, J., Stewart, D., Wrage, L.: Formalization of the AADL run-
time services. vol. Proc. ISoLA 2022. Springer International Publishing (2022), [in
this volume]

10. Hoare, C.A.: Hints on programming language design. Tech. rep., STANFORD
UNIV CA DEPT OF COMPUTER SCIENCE (1973)

11. Javadoc. https://docs.oracle.com/en/java/javase/13/javadoc/javadoc.html, [On-
line; last accessed 02-September-2022]

12. JML. http://www.eecs.ucf.edu/∼leavens/JML, [Online; last accessed 02-
September-2022]

13. Karsai, G., Balasubramanian, D.: Assurance provenance: The next challenge in
software documentation. vol. Proc. ISoLA 2022. Springer International Publishing
(2022), [in this volume]

14. Knuth, D.E.: Literate programming. The computer journal 27(2), 97–111 (1984)
15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral

interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006). https://doi.org/http://doi.acm.org/10.1145/1127878.1127884



ISoLA 2022 PWN Track Introduction 7

16. Madsen, O.L., Møller-Pedersen, B.: Using supplementary properties to reduce the
need for documentation. vol. Proc. ISoLA 2022. Springer International Publishing
(2022), [in this volume]

17. Object Management Group (OMG): Documents associated with Object Constraint
Language (OCL), Version 2.4. https://www.omg.org/spec/UML/2.5.1/ (dec 2017),
[Online; last accessed 08-February-2019]

18. OpenAPI Initiative: OpenAPI specification v3.1.0.
https://spec.openapis.org/oas/latest.html (Febraury 2021),
https://spec.openapis.org/oas/latest.html, Accessed 2022-03-25

19. Smyth, S., Petzold, J., Schürmann, J., Karbus, F., Margaria, T., von Hanxleden,
R., Steffen, B.: Executable documentation: The real power of test-first. vol. Proc.
ISoLA 2022. Springer International Publishing (2022), [in this volume]

20. Stevens, P.: Models as documents, documents as models. vol. Proc. ISoLA 2022.
Springer International Publishing (2022), [in this volume]

21. Tegeler, T., Boßelmann, S., Schürmann, J., Smyth, S., Teumert, S., Steffen, B.: Ex-
ecutable documentation: From documentation languages to purpose-specific lan-
guages. vol. Proc. ISoLA 2022. Springer International Publishing (2022), [in this
volume]


