
Programming - What is Next?

Klaus Havelund1? and Bernhard Steffen2

1 Jet Propulsion Laboratory, California Institute of Technology, USA
2 TU Dortmund University, Germany.

Abstract. The paper provides an introduction to the track: “Program-
ming - What is Next?”, organized by the authors as part of ISoLA 2021:
the 9th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. A total of 14 papers were pre-
sented in the track, with responses to the question: what are the trends
in current more recent programming languages, and what can be expected
of future languages?. The track covers such topics as general-purpose
programming languages, domain-specific languages, formal methods and
modeling languages, textual versus graphical languages, and application
programming versus embedded programming.

Keywords: Programming, general-purpose languages, domain-specific languages,
formal methods, modeling, textual languages, graphical languages, application
programming, embedded programming.

1 Introduction

High-level main-stream programming languages (high-level wrt. to assembler
languages and machine code) have evolved dramatically since the emergence of
the Fortran language well over half a century ago, with hundreds of languages
being developed since then. In the last couple of decades we have seen several lan-
guages appearing, most of which are oriented towards application programming,
and a few of which are oriented towards systems and embedded close-to-the-
metal programming. More experimental programming languages focusing e.g.
on program correctness, supporting proof systems have appeared as well.

In addition, we see developments in the area of Domain-Specific Languages
(DSLs), including visual as well as textual languages, easy to learn for ex-
perts in dedicated fields. Combined with approaches like generative and meta-
programming this may lead to very different styles of system development. Re-
lated to these developments, we can also observe developments in modeling lan-
guages meant to support abstraction, verification, and productivity.

This paper provides an introduction to the track: “Programming - What is
Next?”, organized by the authors as part of ISoLA 2021: the 9th International

? The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



Symposium On Leveraging Applications of Formal Methods, Verification and
Validation. 14 papers were presented in the track, with responses to the question:
what are the trends in current more recent programming languages, and what can
be expected of future languages?.

The papers presented cover various topics. There is a core of papers focus-
ing on different ways of programming applications, and in particular embedded
systems, using general purpose programming languages. Here classical program-
ming languages such as C and C++ have been dominating for decades. However,
these are low-level and unsafe, and better abstractions are needed. This includes
formal specification and proof support. Related to this topic is the question how
modeling and programming interacts, and it is emphasized that modeling and
programming ought to be tightly integrated. Several papers discuss program-
ming language concepts and constructs. New concepts are proposed, such as
time as a core concept, an alternative to object-orientation, advanced type sys-
tems, and a suggestion to focus on non-linear dynamic systems. The alternative
to general-purpose programming languages is domain-specific languages. Sev-
eral papers advocate for their use, both textual and graphical. General-purpose
as well as domain-specific languages are typically used/developed in IDEs. A
browser-based approach is advocated in one paper.

The track can be seen as a followup of the tracks named “A Unified View of
Modeling and Programming”, organized at ISoLA 2016 [2] and 2018 [3]. These
tracks focused on the similarities and differences between programming lan-
guages and modeling languages. Whereas those tracks considered programming
and modeling of equal interest, the “Programming - What is Next?” track is
more focused on the programming activity.

2 Contributions

The papers presented in the track are introduced below. They are divided into
subsections according to the track sessions, covering approaches to program de-
velopment, programming language concepts, and domain-specific languages.

2.1 Program Development

Lethbridge [8] (Low-code is often high-code, so we must design low-code platforms
to enable proper software engineering), argues that software written on low code
platforms often accumulates large volumes of complex code, which can be worse
to maintain than in traditional languages, because the low-code platforms tend
not to properly support good engineering practices such as version control, sep-
aration of concerns, automated testing and literate programming. Based on his
experience with low code platforms he claims that such technical debt can only
be avoided by providing low-code platforms with just as deep a capability to
support modern software engineering practices as traditional languages. As a
side result he see this as a sign that traditional programming will maintain its
value also in the (long) future.



Lee and Lohstroh [7] (Time for all programs, not just real-time programs),
argue that the utility of time as a semantic property of software is not limited
to the domain of real-time systems. This paper outlines four concurrent design
patterns: alignment, precedence, simultaneity, and consistency, all of which are
relevant to general-purpose software applications. It is shown that a semantics
of logical time provides a natural framework for reasoning about concurrency,
makes some difficult problems easy, and offers a quantified interpretation of the
CAP theorem, enabling quantified evaluation of the trade-off between consis-
tency and availability.

Havelund and Bocchino [6] (Integrated modeling and development of component-
based embedded software in Scala), explore the use of Scala for modeling and
programming of embedded systems represented as connected components. Four
internal Scala DSLs are presented, inspired by an actual C++ framework, for
programming space missions. The DSLs support programming of software com-
ponents, hierarchical state machines, temporal logic monitors, and rule-based
test generators. The effort required to develop these DSLs has been small com-
pared to the similar C++ effort. It is argued that although Scala today is not
suitable for this domain, several current efforts aim to develop Scala-like embed-
ded languages, including the works [11, 5] reported on in this volume.

Robby and Hatcliff [11] (Slang: The Sireum programming language), present
the programming language Slang, syntactically is a subset of the Scala program-
ming language, for programming high assurance safety/security-critical systems.
The language supports specification and proof of properties, and omits features
that make formal verification difficult. A subset, Slang Embedded, can be com-
piled to e.g. C. Slang can be used for prototyping on a JVM, and later re-deployed
to an embedded platform for actual use. Slang is used as programming language
in HAMR, see [5] in this volume, a High Assurance Model-based Rapid engineer-
ing framework for embedded systems. Developers here specify component-based
system architectures using the AADL architecture description language.

Hatcliff, Belt, Robby, and Carpenter [5] (HAMR: An AADL multi-platform
code generation toolset), present HAMR, a tool-kit for High-Assurance Model-
based Rapid engineering for embedded cyber-physical systems. Architectures
are modeled using AADL. HAMR is based on an abstract execution model that
can be instantiated by back-end translations for different platforms. Elements
of models can be programmed in the Slang programming language, translatable
to C, also reported on in this volume [11]. The framework supports automated
formal verification of models and code written in Slang. Since the infrastructure
code and code generators are written in Slang, HAMR provides the convenience
of a single verification framework to establish the correctness of code generation.

2.2 Program Language Concepts

Mosses [10] (Fundamental constructs in programming languages), presents a
framework for defining the semantics of programming constructs at a high level
of abstraction. A programming language construct is defined by translating it
to fundamental constructs, referred to as funcons, in a compositional manner.



The use of funcons is meant as a precise and complete alternative to informal
explanations of languages found in reference manuals. Furthermore, specifying
languages by translation to funcons appears to be significantly less effort than
with other frameworks. Funcons abstract from details related to implementation
efficiency, and are defined using a modular variant of structural operational se-
mantics. A library of funcons has been developed, available online, along with
tools for generating funcon interpreters from them.

Harel and Marron [4] (Introducing dynamical systems and chaos early in
computer science and software engineering education can help advance theory
and practice of software development and computing), argue that the concept
of nonlinear dynamic systems, their theory, and the mathematical and comput-
erized tools for dealing with them, should be taught early in the education of
computer scientists. These systems are found in diverse fields, such as fluid dy-
namics, biological population analysis, and economic and financial operations.
Such systems are complex and embody the notion of chaotic behavior. Focus on
dynamic systems can lead to enrichment of e.g. programming languages, tools
and methodologies in computer science.

Wadler [15] (GATE: Gradual effect types), highlights the value of advanced
type systems, including effect types, and discusses how they can become main-
stream. Traditional type systems are concerned with the types of data. Effect
types are concerned with the effects that a program may invoke, such as input,
output, raising an exception, reading or assigning to state, receiving or sending
a message, and executing concurrently. It is argued that in order to make such
advanced type systems main stream, a gradual approach is needed (the “gate” to
types), where types can be gradually added, and which allow untyped languages
to interoperate with strongly typed languages. The paper provides a survey of
some of the work on these different advanced type systems.

Selić and Pierantonio [12] (Fixing classification: a viewpoint-based approach),
argue that the classification scheme realized in traditional object-oriented com-
puter languages is insufficient for modern software development, which is becom-
ing increasingly more integrated with the highly dynamic physical world. The
limitations of the traditional binary classification approach makes it difficult to
model dynamic reclassification of objects, classification of objects from different
perspectives, and representing in-between cases, where an entity may be catego-
rized as belonging in more than one class. The paper outlines a new approach to
classification based on viewpoints, overcoming these limitations. The proposed
approach replaces the static multiple-inheritance hierarchy approach with mul-
tiple dynamic class hierarchies, including overlapping class membership.

2.3 Domain-Specific Languages

Stevens [13] (The future of programming and modelling: a Vision), argues that,
despite impressive achievements, software development now suffers from a ca-
pacity crisis which cannot be alleviated by programming as currently conceived.
Rather, it is necessary to democratise the development of software: stakeholders
who are not software specialists must, somehow, be empowered to take more



of the decisions about how the software they use shall behave. She proposes to
describe this behaviour via a collection of models, each expressed in a (domain-
specific) language appropriate to its intended users. Bi-directional transforma-
tions are then meant to serve for the corresponding global semantics. The paper
also discussed required advances to guarantee the required progress.

Balasubramanian, Coglio, Dubey, and Karsai [1] (Towards model-based intent-
driven adaptive software), argue that a model-based workflow for adaptive soft-
ware may reduce the burden caused by system evolution like requirement changes
and platform updates. In their vision, a modeling paradigm centered around the
concepts of objectives, intents, and constraints, may uniformly comprise required
functionalities as well as all managerial aspects. These concepts define, respec-
tively, (1) what the system must do in terms of domain-specific abstractions,
(2) the concretization choices made to refine a model into implementation, and
(3) the system requirements not already expressed in terms of domain-specific
abstractions.

Margaria, Chaudhary, Guevara, Ryan, and Schieweck [9] (The interoperability
challenge: building a model-driven digital thread platform for CPS), argue that
the traditional approach to achieve interoperability is inadequate and requires
a model-driven platform approach supporting low-code application development
on the basis of dedicated domain-specific languages. The paper illustrates the
impact of such a platform by examples about robotics, Internet of Things, data
analytics, and Web applications. In particular, it is shown how REST services
can generically be extended, external data bases can be integrated, and new data
analytics capabilities can be provided.

Voelter [14] (Programming vs. that thing subject matter experts do), argues
that allowing subject matter experts to directly contribute their domain knowl-
edge and expertise to software through DSLs and automation does not neces-
sarily require them to become programmers. In his opinion, the requirement
to provide precise information to unambiguously instruct a computer can be
achieved more easily, of course requiring the basics of computational thinking.
Völter believes that it is possible and economically important to provide accord-
ingly ‘CAD programs for knowledge workers’.

Zweihoff, Tegeler, Schürmann, Bainczyk, and Steffen [16] (Aligned, Purpose-
driven cooperation: the future way of system development), argue that the future
of software and systems development is collaborative, and will be supported
globally in a cloud-based fashion. This way individual contributors do not need
to worry about the infrastructural aspects which are all taken care of globally
in the Web. This eases also the use of so-called purpose-specific languages that
aim at directly involving application experts in the development process. The
presentation of the vision is supported by details about the realization which, in
particular, explain a simplicity-oriented way of language integration which can
happen in a deep and shallow fashion.



3 Conclusion

The contributions of this track clearly indicate the expanse of what can be con-
sidered programming. It is therefore not surprising that the visions of where
the evolution of programming will lead to, or should aim at, are very diverse.
This diversity, however, does not imply that the visions are contradictory. Hope-
fully on the contrary. The embedded systems perspective, e.g., is envisaged to
even deal with phenomena like chaos, application programming to successively
comprise more computational paradigms and constructs to enable experts to
elegantly solve dedicated tasks, and the future of user-level programming seems
dominated by increasing ease and collaboration. Tools play a major role in all
scenarios, which seem to have in common that programming and modelling will
increasingly converge.

References

1. Balasubramanian, D., Coglio, A., Dubey, A., Karsai, G.: Towards model-based
intent-driven adaptive software. In: Proc. of the 9th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2021). LNCS,
Springer (2021), in this volume

2. Broy, M., Havelund, K., Kumar, R., Steffen, B.: Towards a unified view of mod-
eling and programming (track summary). In: Margaria, T., Steffen, B. (eds.) 7th
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation, ISoLA 2016, Part 2, Corfu, Greece, October 10-14. LNCS,
vol. 9953, pp. 3–10. Springer (2016)

3. Broy, M., Havelund, K., Kumar, R., Steffen, B.: Towards a unified view of mod-
eling and programming (track summary). In: Margaria, T., Steffen, B. (eds.) 8th
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation, ISoLA 2018, Limasol, Cyprus, November 5-9. LNCS, vol.
11244, pp. 3–21. Springer (2018)

4. Harel, D., Marron, A.: Introducing dynamical systems and chaos early in computer
science and software engineering education can help advance theory and practice of
software development and computing. In: Proc. of the 9th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2021). LNCS,
Springer (2021), in this volume

5. Hatcliff, J., Belt, J., Robby, Carpenter, T.: HAMR: An AADL multi-platform code
generation toolset. In: Proc. of the 9th Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2021). LNCS, Springer
(2021), in this volume

6. Havelund, K., Bocchino, R.: Integrated modeling and development of component-
based embedded software in Scala. In: Proc. of the 9th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2021). LNCS,
Springer (2021), in this volume

7. Lee, E.A., Lohstroh, M.: Time for all programs, not just real-time programs. In:
Proc. of the 9th Int. Symp. on Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

8. Lethbridge, T.C.: Low-code is often high-code, so we must design low-code plat-
forms to enable proper software engineering. In: Proc. of the 9th Int. Symp. on



Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2021). LNCS, Springer (2021), in this volume

9. Margaria, T., Chaudhary, H.A.A., Guevara, I., Ryan, S., Schieweck, A.: The in-
teroperability challenge: Building a model-driven digital thread platform for CPS.
In: Proc. of the 9th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

10. Mosses, P.D.: Fundamental constructs in programming languages. In: Proc. of the
9th Int. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

11. Robby, Hatcliff, J.: Slang: The Sireum programming language. In: Proc. of the
9th Int. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

12. Selić, B., Pierantonio, A.: Fixing classification: A viewpoint-based approach. In:
Proc. of the 9th Int. Symp. on Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

13. Stevens, P.: The future of programming and modelling: a vision. In: Proc. of the
9th Int. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

14. Voelter, M.: Programming vs. that thing subject matter experts do. In: Proc. of
the 9th Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2021). LNCS, Springer (2021), in this volume

15. Wadler, P.: GATE: Gradual effect types. In: Proc. of the 9th Int. Symp. on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA 2021).
LNCS, Springer (2021), in this volume

16. Zweihoff, P., Tegeler, T., Schürmann, J., Bainczyk, A., Steffen, B.: Aligned,
purpose-driven cooperation: The future way of system development. In: Proc. of
the 9th Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2021). LNCS, Springer (2021), in this volume


