
Modeling with Scala?

Klaus Havelund and Rajeev Joshi

Jet Propulsion Laboratory, California Inst. of Technology, USA
{klaus.havelund,rajeev.joshi}@jpl.nasa.gov

Abstract. The activities and the associated formalisms for modeling
and programming have many commonalities. In this paper we empha-
size this point of view by modeling two examples in the programming
language Scala, which have previously been modeled in the VDM specifi-
cation language, and the Promela modeling language of the SPIN model
checker respectively. The latter Scala model uses an internal DSL for
hierarchical state machines, and a simple randomized testing framework
exposing the same errors as found with SPIN. We believe, as the ex-
amples illustrate, that this use of a modern programming language for
modeling is promising, especially if utilizing internal DSLs.

1 Introduction

Numerous formalisms exist for modeling systems before their development (pre-
scriptive modeling) or as they exist (descriptive modeling). These formalisms
have either a textual form or a graphical form, or both. Graphical formalisms can
sometimes be grounded in a corresponding user friendly textual formalism, but
not always, as is the case for example for UML and SysML in their standardized
versions (Xml cannot be considered user friendly). Meanwhile, modern high-
level programming languages have evolved in recent years with several features
that make them suitable for modeling, especially if supported by visualization,
as we argue in this paper, and illustrate with two examples. Similar arguments
were presented in [4, 5]. One such high-level programming language is Scala
[19], which combines object-oriented and functional programming. We present
two formal modeling activities performed twenty years apart: one in 1979 using
the Vdm specification language [3, 6], and the other in 1997 using the Promela
modeling language of the Spin model checker [14]. We show how these models
can be formalized in Scala with little impact on size or readability.

The Vdm specification is for a relational database model, formalized in [2] in
a functional subset of Vdm. The modeling in Scala is almost one-to-one. For a
more detailed comparison between Vdm and Scala we refer the reader to [8]. It
is interesting to note that Vdm was originally used just for describing systems
on paper, with no support for execution or even parsing and type checking.

? The research performed was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

The Promela model is that of the Remote Agent spacecraft controller, first
formalized in Promela in [13]. This latter example is interesting in two respects.
First, several errors were detected in the original Promela model, one of which
later caused an actual deadlock in flight, and which also was detected in the
Scala model using a simple testing approach. Second, the Scala model uses a
Domain-Specific Language (DSL) - an internal Scala DSL - for modeling with
Hierarchical State Machines (HSMs), as a larger effort to explore how such an
HSM DSL can be used for modeling flight software for modern spacecraft.

The paper is organized as follows. Section 2 presents the relational database
model in Vdm and Scala. Section 3 presents the Remote Agent model in
Promela and Scala, and describes its testing. Finally, Section 4 concludes
the paper.

2 Relational Databases

The example presented here is the concept of relational databases, as modeled
in Vdm by Bjørner in [2], and reproduced here. We shall not illustrate how a
database is updated, but will, as in [2], focus on how they are queried. This is not
a description of how a database is implemented, but rather the definition from
a user’s abstract point of view. It is a conceptual model as argued by Bjørner in
[2], meant to convey the concept of a relational database to a reader.

2.1 An Informal Description

A relational data base consists of an unordered collection of distinctly named
relations. Each relation consists of an unordered collection of unnamed tuples. A
tuple is a sequence of fields, the data of the database, identified by their position
in the tuple1. All tuples of a particular relation are of the same length, and for a
particular position, the fields in that position in all tuples of a relation are of the
same type. The fields in tuples are of primitive type, such as integers, floating
point numbers, Booleans, and strings.

The query language offers a collection of commands, all of which from the
database will produce an unnamed relation, which is stored in a particular work-
ing space, which also can be referred to in the commands. Relations are referred
to by their name, or if no name is provided, the reference is to the relation in
the working space. The following four commands must be supported2. Selection:
operates on a single relation (the origin relation) and delivers the relation con-
taining all those tuples from the origin relation, whose field in a given position
stands in a given relation to a given value. Projection: operates on a single re-
lation, and delivers the relation of tuples each of which is a sub-tuple of a tuple
in the origin relation, containing only selected fields. Join: operates on two rela-
tions. It forms the concatenation of those tuples from the two relations which in

1 The paper [2] also presents a model where fields of a tuple are named by character
strings, probably a more correct model.

2 We have for space considerations omitted the division command from [2].

2

respective positions have fields which stand in a certain relation to each other.
Store: stores the unnamed relation in the working space as a named relation. A
session is a sequence of commands.

2.2 Relational Database Model in VDM

In the following, Vdm specifications, Figures 1, 2, and 3, are shown in boxes with
rounded corners, whereas Scala programs, Figures 4, 5, and 6, are shown in
boxes with square corners. The first set of Vdm definitions are shown in Figure
1. These are the essential types of the specification3. The type RDB is that of a
relational database, consisting (a cartesian product) of a set of relations RELS
and a working space WS. The RDB type is defined as a constructed type using
the :: symbol. The elements of this type are constructed by calls of an implicitly
defined constructor mk−RDB(rels,ws), which in turn can be referred to in pattern
matching. The type RELS represents the named relations as a mapping (function
with finite domain) from relation names (type Rid) to relations of type REL. A
workspace WS is a relation REL, which itself is a set of tuples TPL. A tuple is
a finite non-empty list of fields of type Field . The type Field is the union of
various primitive types, such as integers.

� �
1 RDB :: RELS WS

2 RELS = Rid
→
m REL

3 WS = REL
4 REL = TPL-set
5 TPL = Field+

6 Field = INTG | . . .� �
Fig. 1: Domains in VDM.

� �
1 Cmd = Sel | Proj | Join | Sto
2 Sel :: [Rid] N1 ROp Field
3 Proj :: [Rid] N1

+

4 Join :: ([Rid] N1) ROp ([Rid] N1)
5 Sto :: Rid
6 ROp = EQ | NEQ
7

8 Sess = Cmd∗� �
Fig. 2: Commands in VDM.

The next set of Vdm definitions are shown in Figure 2, and model the com-
mands that can be issued against a relational database. The Cmd type is defined
as the union of a collection of constructed types, each representing a kind of com-
mand: selection, projection, join, and storing the workspace as a named relation.
Each of these commands carry arguments.

The Sel command carries an optional relation identifier ([Rid] = Rid ∪ {nil
}), a positive (non-zero) natural number, comparison operator of type ROp, and a
field value. The semantics is: select those tuples from the relation where the field
identified by the positive number is related to the field argument as indicated
by the relational operator. When the relational identifier is nil the relation

3 It is very common in Vdm to approach a problem by starting defining such type
definitions.

3

� �
1 E−Sess(cl)(mk−RDB(rs,ws)) =
2 if cl = 〈 〉
3 then mk−RDB(rs,ws)
4 else
5 (let (rs ’, ws’) =
6 cases hd cl :
7 mk−Sel(r,i,o, f) →
8 (rs , {t | t ∈ ((r=nil) → ws, T → rs(r)) ∧ t [i] = f}),
9 mk−Pro(r,il) →

10 (rs , { 〈 t [il [i]] | 1 ≤ i ≤ len il 〉 |
11 t ∈ ((r=nil) → ws, T → rs(r))}),
12 mk−Join((r1,i1),o,(r2 , i2)) →
13 (rs , { t1 _ t2 |
14 t1 ∈ ((r1=nil) → ws, T → rs(r1)) ∧
15 t2 ∈ ((r2=nil) → ws, T → rs(r2)) ∧
16 cases o : (EQ → t1[i1] = t2[i2],
17 NEQ→ t1[i1] 6= t2 [i2])}),
18 mk−Sto(r) →
19 (rs + [r 7→ ws], ws)
20 in
21 E−Sess(tl cl)(mk−RDB(rs’,ws’)))
22

23 type: Cmd∗
∼→ (RDB

∼→ RDB)� �
Fig. 3: Evaluation function in VDM.

referred to is that in the unnamed working space. The relational operator type
is the union of two singleton types containing the constants respectively EQ (for
equal) and NEQ (for not equal). The format of the other commands should now
be clear: projection maps a set of tuples in a relation to a set of tuples only
containing a certain subset of columns indicated by a list of column numbers. A
join combines tuples from two relations where one column value in one relation
is related to another column value in the other relation in a certain way. Storing
stores the working space as a named relation. Finally, a session Sess is a (possibly
empty) list of commands.

Finally, the recursively defined function E−Sess in Figure 3 interprets a ses-
sion on a relational database, resulting in a new relational database, as indicated
by the type of the function at the bottom of the figure (A

∼→ B is the set of
partial functions from A to B). We shall not go into much details of this function
definition, except for some notation explanation: line 8 contains a set compre-
hension of tuples t which belong to either the working space if the relation id
is nil or to the relation denoted by the relation id: rs (r), and which satisfy the
equation4: t [i] = f. The set comprehension in lines 10-11 is the set of tuples,
each of which itself is generated by a tuple comprehension expression projecting

4 This is actually wrong as will be discussed later.

4

to only those tuple elements identified by column ids in the list il . The term
. . .+ [. . . 7→ . . .] in line 19 is a finite map update. This definition is written
in a functional style. However, Vdm also supports an imperative style where
expressions can have side effects.

2.3 Relational Database Model in Scala

The Scala model (a program) of the relational database concept is shown in
Figures 4 (types), 5 (commands), and 6 (applicative evaluation function). We
have written the functions as closely as reasonable to the Vdm version, except
that we introduced a couple of auxiliary functions for looking up a relation id and
for comparing fields. Commands in Figure 5 are defined using class inheritance,
and using so-called case classes that allows for pattern matching over objects
of the classes. We see in Figure 6 the for−yield construct, the general form of
which is:

for (x1 ← exp1; . . .; xn← expn if p(x1, . . . ,xn) yield f(x1, . . . ,xn)

This construct is used to model the set and list comprehensions in the Vdm
specification. It denotes a collection of values. The expressions exp1, . . . , expn
must themselves denote collections (lists, sets, maps, ...). For each x1 ∈ exp1,
x2 ∈ exp2, etc, where the Boolean expression p(x1, . . . ,xn) is true, the value
denoted by the expression f(x1, . . . ,xn) is added to the resulting collection. The
type of the resulting collection is that of the first expression exp1. So if it is a
list, the result will be a list, if a set, the result will be a set. For example, if exp1

is a set, it corresponds to Vdm’s set comprehension:

{ f(x1, . . . ,xn) | x1 ∈ exp1 ∧ . . . ∧ xn ∈ expn ∧ p(x1, . . . ,xn) }

1 type Rid
2 type RDB = (RELS, WS)
3 type RELS = Map[Rid, REL]
4 type WS = REL
5 type REL = Set[TPL]
6 type TPL = List[Field]
7 type Field = Any

Fig. 4: Domains in Scala.

It should be clear that the Vdm model and the Scala program are very similar.
One might prefer the more mathematical notation of the Vdm specification. The
topic of displaying programs with a mathematical appearance was addressed ele-
gantly in the Fortress programming language [7]. The Vdm specification in [2]
was written before the appearance of syntax and type checkers for Vdm. We did
indeed find six errors, including two syntax errors, and four type checking/static

5

1 trait Cmd
2 case class Sel(rid : Option[Rid], fieldNr : N1, o: ROp, field : Field) extends Cmd
3 case class Proj(rid : Option[Rid], fieldNrs : List1 [N1]) extends Cmd
4 case class Join(l : (Option[Rid], N1), o: ROp, r: (Option[Rid], N1)) extends Cmd
5 case class Sto(rid : Rid) extends Cmd
6

7 trait ROp
8 case object EQ extends ROp
9 case object NEQ extends ROp

Fig. 5: Commands in Scala.

1 def E Sess(cl : List [Cmd])(rdb: RDB): RDB = {
2 val (rs , ws) = rdb
3 if (cl == Nil) rdb
4 else {
5 val (rs , ws) =
6 cl .head match {
7 case Sel(r , i , o, f) ⇒
8 (rs , for (t ← getRel(r , rdb) if comp(o)(t(i), f)) yield t)
9 case Proj(r , il) ⇒

10 (rs , for (t ← getRel(r , rdb)) yield (for (i ← il) yield t(i)))
11 case Join((r1 , i1), o, (r2 , i2)) ⇒
12 (rs ,
13 for (t1 ← getRel(r1 , rdb); t2 ← getRel(r2 , rdb)
14 if comp(o)(t1(i1),t2(i2))) yield (t1 ++ t2)
15)
16 case Sto(rid) ⇒
17 (rs + (rid → ws), ws)
18 }
19 E Sess(cl . tail)(rs , ws)
20 }
21 }

Fig. 6: Evaluation function in Scala.

analysis errors. All of these were fixed in our presentation of the Vdm model,
except for line 8 in Figure 3, where the test t [i] = f ignores the operation o in
the pattern mk−Sel(r,i,o, f). This is changed in the Scala version.

One interesting observation, however, would not be highlighted by a syntax
or type checker, static analyzer, or theorem prover. This concerns the Join com-
mand, which simply concatenates the tuples from each relation, see line 13 in
Figure 3 and line 14 in Figure 6. This means that common columns are dupli-
cated, which is not the standard “natural join” operator5, where such columns

5 https://en.wikipedia.org/wiki/Relational algebra.

6

are merged into one. We noticed this discrepancy only upon executing the model.
It may be a minor issue, but it illustrates how executable models can reveal oth-
erwise undiscovered properties.

3 The Remote Agent

In this section we shall demonstrate a Scala model of a space software mod-
ule previously (in 1997) modeled in the Promela language of the Spin model
checker [14]. Spin supports verification of finite state asynchronous process sys-
tems communicating via message passing and/or shared variables. Models are
formulated in the Promela language, which has similarities to a simple pro-
gramming language, although without much support for regular programming
with data structures. Efficient verification has been given priority over conve-
nient modeling language features in some cases. Properties to be verified are
stated as assertions in the model, or in the linear temporal logic Ltl. The Spin
model checker automatically determines whether a model satisfies a property,
and generates a counter example in the form of an error trace if this is not true.

The particular system being modeled is the multi–threaded plan execution
module of the Remote Agent (RA) [16], which itself was programmed in Lisp.
The Remote Agent was an artificial intelligence based spacecraft control system
architecture. In addition to the plan execution module modeled in this section, it
also contained a planning module, which generated plans based on goals received
from Earth, sending these plans to the plan execution module for execution. A
third module, the mode identification and recovery module, constantly monitored
the state of the spacecraft and would attempt to recover in case of anomalies.
The Remote Agent was one of 12 technologies tested on the Deep-Space 1
(DS-1) spacecraft, launched October 1998. The Remote Agent itself was initiated
during May 1999, demonstrating the complete control of a spacecraft by artificial
intelligence based software for the first time in NASA’s history.

The plan execution module is a classic multi-threaded application vulner-
able to classic concurrency errors such as data races and deadlocks. The Spin
effort, described in [13], consisted of hand translating parts of the plan execution
Lisp code into a model in the Promela language of Spin, and then verifying
two properties formulated by the Remote Agent programmers. Both properties
turned out to be broken in the model, revealing a total of 4 errors. The effort
was at the time considered very successful before flight. It, however, further
gained reputation since one of the errors, after having been fixed in the code,
was later re-introduced in a different part of the plan execution module by a
different programmer through a copy-and-paste operation, but without copying
the fix (a critical section). This caused a data race that lead to a deadlock during
flight. Because of the deadlock, thrusting did not turn off when required, and the
spacecraft was unable to recover by itself. The craft was put in stand-by mode
by the ground crew until a repair was made.

7

3.1 The Remote Agent in Promela

In this section we shall present the Remote Agent plan execution module in
more (although not full) detail, as well as its modeling in Promela. The full
description of the Remote Agent can be found in [13]. The Remote Agent Ex-
ecutive, Figure 7, supports execution of tasks. A task may be, for example, to
operate a camera. A task often requires that specific properties hold during its
execution. For example, the camera-operating task may require the camera to
be turned on throughout task execution. When a task is started, it first tries to
achieve the properties on which it depends, whereafter it starts performing its
main function. E.g. the camera-operating task may try to turn on the camera
before running the camera. Properties may, however, be unexpectedly broken
(e.g., the camera may turn off) and tasks depending on such broken properties
must then be informed about this (aborted).

Fig. 7: The Remote Agent executive.

The Database The state of the spacecraft at any particular point can be
considered as an assignment of values to a set of variables, each corresponding
to a component sensor on board the spacecraft. As an example, the variable
Camera may have one of the values On or Off. A particular assignment of a
value to a variable is called a property, where the variable is called the property
name and the value is called the property value. The actual state of the spacecraft
is constantly monitored, and stored in a database.

8

The Lock Table When a task requires a certain property to hold, e.g. (Radio,
On), it adds the property in a lock table. During this locking, other tasks with
incompatible properties, e.g. (Radio, Off), cannot execute. Two properties are
incompatible if they require different observed values of the same variable. The
lock table in addition for each locked property stores which tasks rely on it (there
can be multiple), and in addition contains a flag achieved, which is set to true
when the property has been achieved to hold in the database.

The Daemon Executing concurrently with the tasks is a property maintenance
daemon that monitors the lock table and the database. If there is an inconsis-
tency between the database and the locks – meaning that a locked property no
longer holds in the database while the achieved flag is true – the daemon aborts
all tasks subscribing to the property, and subsequently it tries to re-achieve the
property (if a task has not already done so). The daemon remains inactive un-
less certain events occur, such as a change of the database (a DB Event) or
lock table (a Lock Event). Once awakened, the daemon examines all locks in
the property lock table. For each lock where the achieved field is true, it checks
whether the property holds in the database. If this is not the case, all tasks in
the lock’s subscribers list are aborted and a recovery procedure is initiated to
re-achieve the property. After examining all locks, the daemon goes into sleep
mode again by waiting for another DB Event or Lock Event event.

The Tasks Before a task executes its main job, it will try to achieve the prop-
erties that the execution depends on. The first step is to lock the properties in
the lock table. Locking a property will only succeed if it is compatible with the
existing locks; otherwise, the task aborts. If there are no conflicting locks and
the lock does not already exist, the task will create it. Note that some other
task may have already locked the same property, which is not defined as a con-
flict. If it succeeds, the task also puts itself into the subscribers list of the lock,
indicating that the task depends on this property.

The creator task of a lock is called the owner, in contrast to tasks that
subscribe later to the same property. The owner is responsible for achieving the
property, resulting in the database being updated. Upon successful achievement,
the achieved-field in the lock is set to true by the task. If the achievement fails,
the task aborts. Other tasks that subscribe later than the owner must wait for the
owner to achieve the property. This is done by simply waiting for a DB Event,
and the indication that the property was successfully achieved.

Once a task has first locked and then achieved its required properties, it
executes its main job, relying on the properties to be maintained throughout
job execution. Before a task terminates, it releases its locks. That is, it removes
itself from the subscribers list, and if the list then becomes empty (no other
subscribers), it removes the lock completely. In case there are other subscribers,
the lock must of course be maintained.

9

Modeling in Promela The modeling in Promela required some ingenuity due
to the lack of modern programming language concepts. E.g. Promela’s concept
of asynchronous communication channels (introduced with keyword chan) was
used to model lists, the basic data structure of Lisp. All communication between
processes in this model takes place via shared variables, reflecting the Lisp imple-
mentation. Figure 8 shows the top level task process and Figure 9 shows the top
level daemon process. Each of these in turn call functions that perform further
operations. The Promela code in total is 332 uncommented lines of code. The
Lisp module it was modeled after was 3000 lines of code. The model only deals
with a limited number of tasks and properties in order to limit the search space
the Spin model checker has to explore. Abstractions were made in an informal
manner.

A task (Figure 8) will want to achieve a property p before executing its main
task, here named closure . Before that, it locks the property in the lock table.
During execution of the closure , it may get aborted in case the daemon discovers
an inconsistency between the lock and the database. The task is thrown to the
program point in line 10, whereafter it will release its lock.

� �
1 proctype Achieving Task(TaskId this)
2 { Property p;
3 . . .
4 bool err = 0;
5 {
6 lock property (this ,p, err);
7 achieve lock property (this ,p, err);
8 closure ()
9 } unless {err || active tasks [this]. state == ABORTED};

10 active tasks [this]. state = TERMINATED;
11 { release lock (this ,p)} unless { active tasks [this]. state == ABORTED}
12 }� �

Fig. 8: Promela model of tasks.

The daemon (Figure 9) will initially (first time == true) check all locks
and then (line 17) wait for the database or lock table to be updated. Upon being
awakened, it will first check all locks and interrupt tasks subscribing to violated
locks (line 6). The daemon maintains a counter event count holding the value
of the sums of two counters being increased when respectively the database is
updated and the lock table is updated. It will execute a conditional statement
(lines 11-18) which will repeat the procedure if these counters have changed,
otherwise the daemon will wait for new changes.

The Properties to be Verified The Promela model was verified against the
following two properties (delivered to us after the model had been created):

10

� �
1 proctype Daemon(TaskId this) {
2 bit lock violation ;
3 byte event count = 0;
4 bit first time = true;
5 do
6 :: check locks(lock violation);
7 if
8 :: lock violation → do automatic recovery()
9 :: else

10 fi ;
11 if
12 :: (! first time &&
13 Ev[DB EVENT].count + Ev[LOCK EVENT].count 6=event count) →
14 event count = Ev[DB EVENT].count + Ev[LOCK EVENT].count
15 :: else →
16 first time = false ;
17 wait for events (this , DB EVENT,LOCK EVENT)
18 fi
19 od
20 };� �

Fig. 9: Promela model of the daemon.

Release property: A task releases all of its locks before it terminates.

Abort property: If an inconsistency occurs between the database and an entry
in the lock table, then all tasks that rely on the lock will be terminated, either by
themselves or by the daemon.

The Release property was stated as an assertion after line 11 in Figure 8.
The Abort property was stated as the Linear Temporal Logic (LTL) formula,
focusing on just one of the tasks (task 1):

[](task1_property_broken -> <>task1_terminated).

The definitions of the terms task1_property_broken and task1_terminated

are not shown here, see [13] for details. The property states that it is always
([]) the case that if task 1’s property is broken, then eventually (<>) task 1 is
terminated.

The model, consisting of two tasks, each attempting to lock the same vari-
able but with different conflicting values, a daemon, and an environment that
randomly can damage a database entry, was verified exhaustively by Spin. It
turned out that both properties were violated in the model as well as in the
Lisp code according to the programmer. The error numbering below follows the
numbering in [13].

– Error 1 : The Release property was violated since the task in Figure 8
may not only get aborted by the daemon during its main task, but also

11

during releasing the lock, which causes the lock releasing to be abandoned.
This error is somewhat obvious from the code, but was not detected by the
programmer, nor by us during modeling since we did not know the properties
at that point.

– Error 2 : The Abort property was violated since the daemon in Figure 9 in
line 15 makes the decision to wait for new events if the event counters have
not changed. However, if the environment corrupts the database in between
this decision has been taken and the actual wait in line 17, the daemon will
not wake up to detect the damage.

– Error 3 : The Abort property was violated since the daemon in Figure
9 in the function check locks contains two pieces of sequentially composed
code: one where tasks depending on violated properties are aborted, and one
where the daemon repairs the database. In case the environment damages
the database in between these two sections of code, the tasks will not get
aborted.

– Error 4 : The Abort property was violated since when a task achieves a
property and then subsequently sets the achieved flag to true, the environ-
ment may damage the database in between these two statements, and hence
the daemon may not detect the damage since the achieved flag his false (a
lock is only defined as violated if this flag is true).

All these errors were classical concurrency errors where the environment damages
the database in between two sections of code not protected by a critical section.
The pattern of Error number 2 was the one causing a deadlock during flight in
a sibling module to where the code was copied without copying the fix.

3.2 The Remote Agent in Scala

In this section, we show our model of the Remote Agent using a Scala DSL
for Hierarchical State Machines (HSMs), using the same naming conventions as
in [13]. HSMs [18] are an extension of traditional state machines: they allow
declaration of mutable state variables (which can be used in transition guards,
and updated in transition actions), hierarchical nesting of states (a child state
inherits all transitions from its parent, but can override any subset), entry and
exit actions (which are triggered when control enters or leaves a state), and
support for orthogonal regions (multiple child states executing in parallel - not
currently supported by the DSL). Figure 10 shows a graphical depiction of the
HSM for a Remote Agent task, automatically generated from the Scala program
using the ScalaMeta [20] and PlantUml [17] frameworks. Following standard
notation, the filled out black circles indicate the initial child substate that is
entered whenever a parent state is entered. Associated with each state are also
optional code fragments called the entry and exit actions, which are executed
whenever the HSM transitions into or out of a state respectively. A transition
between two states is shown using a labeled arrow, where the label is of the form
EVENT if guard / code, which indicates that the HSM reacts to the given EVENT
only if the given guard holds, and then it executes the given code and transitions

12

Fig. 10: Task HSM.

to the target state. The hierarchical nature of the state machine means that a
child state inherits transitions from its parent state, unless it explicitly overrides
the transition. For instance, all substates of the lock and execute state inherit
the transitions on ABORT and ERROR events that take the HSM into the state
release lock. Thus, when a remote agent task is first started, it starts in the
state enterCriticalSection, and executes the entry action send(STEP) which sends
the STEP event to itself6. In state enterCriticalSection, the HSM responds to a
STEP event only if the associated guard condition is true. When this condition

6 The idiom of an HSM sending an event to itself is commonly used in HSMs to
implement sequential behavior, and is used extensively in our modeling. Breaking

13

is true, and the HSM is scheduled for execution, it executes the enterCritical()
code block, and transitions to the state fail if incompatible property.

(a) Daemon

(b) Environment

Fig. 11: Daemon and environment HSMs.

Figure 11 shows the HSMs for the daemon and the environment (which can
inflict damage by corrupting the database). An attractive feature of modeling
HSMs in Scala is that transition guards and actions can be written using a full-
fledged programming language. For instance, in state check counter, the daemon
calls the Scala function newCount() to test if the sum of the counts of updates
to the database and the lock table differs from its own local count. If they are
different, it updates its event count and transitions to check locks; but if they
are the same, it transitions to event count unchanged, and subsequently waits in
the next step. As we describe later (see Section 3.3), this logic is flawed as the
daemon can miss a race condition that can lead to database corruption.

up a sequence of steps using this idiom allows us to check system executions where
task behaviors are interleaved with each other.

14

Figure 12 shows how the task state machine is expressed in our Scala HSM
DSL (in space saving format). Each HSM kind is implemented as a class, which
extends the RaHSM class, which itself extends the HSM trait defined in [12]. The
RaHSM class adds e.g. prioritized event queues. The Task class is parameterized
with a monitor, which checks properties of interest as the system is running.
Each state in the HSM is a Scala object that extends the underlying state
class, optionally passing it the name of its superstate (if any), and an optional
Boolean value true if it is the initial state of the superstate. Entry and exit
blocks are defined as shown, e.g. lines 11 and 8, as calls of functions that each
can take an arbitrary block of Scala code (call-by-name) that is executed on
entry or exit. HSM transitions are defined using the when construct, with each
event transition defined using Scala pattern matching. Each transition has the
form when E if grd ⇒ S exec code , which denotes a transition that executes on
receiving event E if condition grd is true, and then the given code is executed,
and the HSM changes to state S. For instance lines 18 and 19 show two HSM
transitions on the STEP event, depending on whether a guard condition is true
or not. The form ‘ if otherwise’, meaning negation of all other guards, makes
diagrams more readable. The use of pattern matching allows compact represen-
tation of many transitions where different events have the same target state and
the same behavior, see for instance line 5 where the ERROR and ABORT events
are handled in one statement.

The Scala model is 556 lines of uncommented code (assuming all definitions
are in one file as in the Promela case), compared to the 332 lines of uncom-
mented Promela model and the 3000 lines of original Lisp code. The additional
code compared to the Promela model reflects a more detailed and natural pro-
gramming of the data structures, such as the lock table, and the modeling of the
Remote Agent processes as HSMs is somewhat verbose.

3.3 Monitoring and Randomized Scheduling

In this section we describe how the Scala model is tested.

Monitoring The properties to be monitored are formulated in the Daut Scala
DSL [9, 10], supporting a formalism combining temporal logic and programming.
Daut is a part of an effort defining monitoring DSLs in Scala, including also
the works described in [1, 11, 15]. A Daut monitor is a Scala class extending
the class Monitor[E], parameterized with the type of events E it can monitor. The
Monitor class offers a method verify (event: E), which updates the monitor for a
new event, issuing an error if the monitor is violated on a safety property, and a
method end() terminating the monitor, and issuing an error if a liveness property
is violated (some event did not occur that should have occurred). The events we
shall monitor here are called EVRs (EVent Reports), and are defined by the
type definitions in Figure 13. There are four kinds of EVRs, all subclassing the
EVR trait. There is an EVR reporting an HSM entering a state, exiting a state,
sending a message to another HSM, and finally an action reporting any other
kind of event.

15

1 class Task(. . .) extends RaHSM(monitor)
2 { initial (lock and execute)
3
4 object lock and execute extends state() {
5 when { case ERROR | ABORT ⇒ release lock } }
6
7 object snarf property lock extends state(lock and execute, true) {
8 exit { exitCritical () } }
9

10 object enterCriticalSection extends state(snarf property lock, true) {
11 entry { send(STEP) }
12 when {
13 case STEP if canEnterCritical() && Global.daemon ready ⇒
14 fail if incompatible property exec { enterCritical () } } }
15
16 object fail if incompatible property extends state(snarf property lock) {
17 entry { send(STEP) }
18 when {case STEP if incompatible(property) ⇒ release lock
19 case STEP if otherwise ⇒ initializeProperty } }
20
21 object initializeProperty extends state(snarf property lock) {
22 entry { send(STEP) }
23 when {case STEP ⇒ signal snarf event exec {initialize(self ,property)}}}
24
25 object signal snarf event extends state(snarf property lock) {
26 entry { send(STEP) }
27 when {case STEP ⇒ achieve lock property exec {signal event(LOCK EVENT)}}}
28
29 object achieve lock property extends state(lock and execute)
30
31 object find owner extends state(achieve lock property, true) {
32 entry { send(STEP) }
33 when {case STEP if self == findOwner(property.memory property) ⇒ achieve
34 case STEP if otherwise ⇒ SUSPENDED exec {waitfor event(DB EVENT,property)}}}
35
36 object achieve extends state(achieve lock property) {
37 entry { send(STEP) }
38 when {case STEP if !query(property) ⇒ setachieved true exec {
39 choice { update(property) } { send(ERROR) }}
40 case STEP if otherwise ⇒ setachieved true }}
41
42 object se t achieved true extends state(achieve lock property) {
43 entry { send(STEP) }
44 when {case STEP ⇒ closure exec {getLock(property).achieved = true}}}
45
46 object closure extends state(lock and execute) {
47 val Repeat = 2; var count: Int = 0
48 entry {send(STEP)}
49 when {case STEP if count < Repeat ⇒ closure exec {count += 1}
50 case STEP if otherwise ⇒ release lock}}
51
52 object release lock extends state() {
53 entry { send(STEP) }
54 when {case ABORT ⇒ ABORTED
55 case STEP ⇒ TERMINATED exec { releaseLock(self, property) }}}
56
57 object ABORTED extends state()
58
59 object TERMINATED extends state() {
60 when { case ABORT ⇒ ABORTED }}
61
62 object SUSPENDED extends state() {
63 when { case RUN ⇒ closure }}
64 }

Fig. 12: The task HSM in Scala.

16

1 trait EVR
2 case class EnterState(task : RaHSM, state: String) extends EVR
3 case class ExitState (task : RaHSM, state: String) extends EVR
4 case class Message(sen: RaHSM, event: EventId, rec: RaHSM) extends EVR
5 case class Action(name: Any∗) extends EVR

Fig. 13: The monitored event reports.

We define two monitors, shown in Figure 14. Class RaMonitor defines some
utility functions specific for the Remote Agent scenario. The ReleaseMonitor
implements the Release property from Section 3.1. It reads: “it is always the
case, that when an EnterState(task , state) is observed, i.e. the task enters state ,
and this state is either the TERMINATED state or the ABORTED state, then the
task has released the property it was locking (a function call on the task)”. As
can be seen, this is a temporal logic formula of the form �(e → p), where e is
an event and p is a state predicate.

The AbortMonitor implements the Abort property. A variable abortedTasks
is introduced to store all tasks that have received an ABORT message, and
is updated upon each observed ABORT message (the first case statement). The
property (the second case statement) then reads: “it is always the case, that when
an Action(DB EVENT) or an Action(LOCK EVENT) is observed, i.e. either the
database or the lock table is modified, then for each violated task (i.e. relying on a
property that has been broken in the database), for which we have not in the past
observed a Message(, ABORT, target), where target denotes that task, we must
observe such an abort message in the future”. This is effectively the equivalent
to a temporal logic formula of the form: �(e1 → ∀t ∈ S . (¬� e2(t) → ♦ e2(t))),
where e1 is an event and e2 is an event parameterized with a task t, universally
quantified over the finite set S (the violated tasks). Here � e2(t) means that e1(t)
occurred in the past, and ♦ e2(t) means that e2(t) will occur in the future. In
Daut a hot state must match a future event, otherwise the end() method will
issue an error. The Scala construct for (t ← S if P (t)) yield hot { . . .}
results in a list containing a hot state for each t in S for which P (t) holds. As
can be seen, Daut does not directly support past time logic, thus requiring the
auxiliary variable abortedTasks.

Randomized Scheduling The four HSMs (two tasks, the daemon, and the
environment) execute by sending each other messages, including the STEP mes-
sages to themselves. A scheduler will in each step have to pick a state machine
which is enabled (e.g. there are messages in its queue) and execute the state
machine on the first message in the queue. We shall use the Scala concept of
an iterator to select enabled machines to execute. The MachineSelector class in
Figure 15 extends Iterable [RemoteAgentHSM], which requires us to define an
iterator method, which in turn returns an Iterator [RemoteAgentHSM] object,

which itself defines the hasNext and next methods. Each call of next(), assum-

17

1 class RaMonitor extends Monitor[EVR] { . . .}
2

3 class ReleaseMonitor extends RaMonitor {
4 always {
5 case EnterState(task , state) if state == "TERMINATED" ||
6 state == "ABORTED" ⇒
7 task .asInstanceOf [Task].hasReleasedProperty()
8 }
9 }

10

11 class AbortMonitor extends RaMonitor {
12 var abortedTasks: Set[RaHSM] = Set()
13

14 always {
15 case Message(, ABORT, target) ⇒
16 abortedTasks += target
17 case Action(DB EVENT) | Action(LOCK EVENT) ⇒
18 for (task ← violatedTasks () if !abortedTasks.contains(task)) yield hot {
19 case Message(, ABORT, target) if target .hsmName == task.hsmName ⇒ ok
20 }
21 }
22 }

Fig. 14: Monitors for the Release and Abort properties.

ing that hasNext is true, returns an enabled machine that can execute one step.
Scala’s (effectively Java’s) random number generator is used to pick a machine
randomly. In addition, a user-defined function canRun parameterized with a ma-
chine and all the machines, can be used to select which machine to run. This
function is useful for steering the scheduler around errors already detected, in
order to detect different errors, as illustrated in the next subsection.

Given an instance of the MachineSelector, we can iterate over the machines it
generates, calling the run() method on each machine making it potentially per-
form one transition, as shown in the scheduler in Figure 16. This class resets and
re-executes the state machines from their initial state numerous times, defined
by the upper limit maxResets provided as parameter to the class. The second
class parameter is the function reset , which is user defined, and which generates
a new list of machines and a new instance of the monitor (so we can call the
method end() on it). The third parameter is the user defined canRun method
used to control the machine selection.

Test Results The monitors were executed with a flag causing them to terminate
on the first error encountered. For each error an error trace is produced. For
example for error number 2, the error trace in Figure 17 is produced after 1.1
seconds on reset number 2,453 of the HSMs to their initial state. It shows that

18

1 class MachineSelector(
2 machines: List [RemoteAgentHSM],
3 canRun: (RemoteAgentHSM, List[RemoteAgentHSM]) ⇒ Boolean)
4 extends Iterable [RemoteAgentHSM]
5 {
6 val random = new scala.util .Random
7

8 override def iterator : Iterator [RemoteAgentHSM] =
9 new Iterator [RemoteAgentHSM] {

10 def isEnabled(machine: RemoteAgentHSM): Boolean = {
11 machine.enabled() && canRun(machine, machines) && . . .
12 }
13

14 override def hasNext: Boolean = machines.exists(isEnabled())
15

16 override def next (): RemoteAgentHSM = {
17 val enabledMachines = machines. filter (isEnabled())
18 val nextMachine = random.nextInt(enabledMachines.size)
19 enabledMachines(nextMachine)
20 }
21 }
22 }

Fig. 15: The machine selector.

1 class Scheduler(
2 maxResets: Int ,
3 reset : () ⇒ (List [RemoteAgentHSM], Monitor[EVR]),
4 canRun: (RemoteAgentHSM, List[RemoteAgentHSM]) ⇒ Boolean)
5 {
6 def run (): Unit = {
7 for (i ← 0 until maxResets) {
8 val (machines, monitor) = reset()
9 val generator = new MachineSelector(machines, canRun)

10 for (machine ← generator) { machine.run() }
11 monitor.end()
12 }
13 }
14 }

Fig. 16: The scheduler.

task 1 first (step 12) locks the property and achieves it in the database. Then
the daemon (step 14) wakes up. The daemon later (steps 24 and 25) determines
that there are no new events, and it gets ready to wait for new events. The
environment (step 26) then destroys the database. Finally (step 29) the daemon

19

goes to sleep, as a result of the previous counter check, and therefore misses the
database corruption that happened in between.

...

12. Task1 : achieve -STEP-> set_achieved_true

...

14. Daemon : wait_for_events -RUN-> interrupt_violated_tasks

...

24. Daemon : perhaps_do_automatic_recovery -STEP-> check_counter

25. Daemon : check_counter -STEP-> event_count_unchanged

26. Env : do_some_damage -STEP-> do_some_damage

...

29. Daemon : event_count_unchanged -STEP-> wait_for_events

Fig. 17: Extract from counter example for error 2 containing 29 transitions, de-
tected after 1.1 seconds on reset number 2,453.

We ran the test harness with one property at a time. For each found error,
we had to route the scheduler around that error, in order to find the next one (as
an alternative to fixing the errors which we did not). This was done by defining
the canRun functions (see Figure 15). For example, the function avoidError2 in
Figure 18 defines a thread as scheduable if either it is not the environment, or if
it is, the daemon is not in state event count unchanged, where it has taken the
decision to wait but not waited yet. All four errors mentioned in Section 3.1 were

1 def avoidError2(machine: RaHSM, machines: List[RatHSM]): Boolean = {
2 !machine. isInstanceOf [Env] || {
3 val daemon = machines.find { case machine ⇒
4 machine. isInstanceOf [Daemon]
5 }.get .asInstanceOf [Daemon]
6 !daemon.inThisState("eventcoun tunchanged")
7 }
8 }

Fig. 18: User defined scheduler control method avoiding error 2.

detected using the monitors and the randomized scheduling. The approach was
also useful in getting the Scala model and monitors correct. Figure 19 shows
the data for the different verifications, comparing the verification performed
with Spin in [13] in 1997. The testing of the Scala model was performed on a
MacBook Pro 15 inch laptop running macOS Version 10.13.5, with a 2.8 GHz
Intel Core i7, and 16GB of memory. A Sun workstation was used for the Spin
verification.

20

For each of the four errors, we indicate the property violated, the number
of states explored by Spin, the memory consumption in Mb used by Spin, the
time spent by Spin (seconds), the number of resets of the Scala model (and
average over 10 runs in parentheses), and the time spent testing the Scala model
(and average over 10 runs in parentheses). The last two rows show data for a
“correct” model, i.e. after fixing errors and/or proper re-routing the scheduler
around errors 1-4. Here the Promela model was proved correct by Spin. For
the Scala model, no further errors were found during 1 million resets. This
does of course not exclude the possibility of further errors in the Scala model,
due to the randomness of the approach, in contrast to Spin, which performs an
exhaustive exploration of the given model’s state space. However, since both are
models, abstracting the real 3000 line Lisp program, both approaches may have
missed errors. Note finally, that Spin in its current form (year 2018), which has
evolved considerably since 1997, on a modern multi-core machine would be much
faster than indicated in Figure 19. The comparison is not intended to illustrate
any speed advantages of the Scala scheduler, only that one in a high-level
programming language quickly can write a relatively effective test engine.

Error Kind States Spin Memory Spin Time Iterations Time
nr. (Mb) Spin (sec) Scala Scala (sec)

1 Release 2,963 2.6 0.3 8,283 (26,682) 1.9 (2.88)
2 Abort 49,038 3.7 5.3 2,453 (122,338) 1.1 (8.44)
3 Abort 45,705 3.6 4.9 3,357 (63,264) 1.2 (5.08)
4 Abort 48,858 3.7 5.4 283,899 (329,039) 16.1 (20.31)√

Release 222,840 7.1 21.2 1,000,000 57.7√
Abort 107,479 5.0 11.6 1,000,000 54.5

Fig. 19: Verification data.

4 Conclusion

We have shown how a high-level programming language can be used for mod-
eling. The modeling of the Remote Agent used an internal DSL for modeling
HSMs, supported by automated visualization of these from their text represen-
tation. Such an approach should furthermore be supported by formal verification,
possibly through a refinement relation between levels of abstraction, with math-
ematical specifications over infinite domains at the top level. Note, that internal
DSLs, in providing the expressiveness of the host language, require the user to
be a programmer in the host language, in contrast to external DSLs. This con-
flict between expressiveness of internal DSLs, versus notational convenience of
external DSLs, can be a dilemma for DSL implementers. Note finally, that the
systems modeled here are discrete systems, in contrast to continuous systems
such as cyber-physical systems, which seem more challenging.

21

References

1. H. Barringer and K. Havelund. Tracecontract: a Scala DSL for trace analysis. In
Proc. of the 17th international conference on Formal methods, pages 57–72, Berlin,
Heidelberg, 2011.

2. D. Bjørner. Formalization of data base models. In D. Bjørner, editor, Abstract
Software Specifications, 1979 Copenhagen Winter School Proceedings, volume 86
of LNCS, pages 144–215. Springer, 1979.

3. D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

4. M. Broy, K. Havelund, and R. Kumar. Towards a unified view of modeling and pro-
gramming. In 7th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2016), volume 9953, pages 238–257,
2016.

5. M. Broy, K. Havelund, R. Kumar, and B. Steffen. Towards a unified view of
modeling and programming (track summary). In 7th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2016), volume 9953, pages 3–10, 2016.

6. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA,
USA, 2005.

7. Fortress. https://en.wikipedia.org/wiki/Fortress (programming language).
8. K. Havelund. Closing the gap between specification and programming: VDM++

and Scala. In M. Korovina and A. Voronkov, editors, HOWARD-60: Higher-Order
Workshop on Automated Runtime Verification and Debugging, volume 1 of Easy-
Chair Proceedings, December 2011. Manchester, UK.

9. K. Havelund. Data automata in Scala. In Proc. of the 8th International Symposium
on Theoretical Aspects of Software Engineering (TASE’14), 2014.

10. K. Havelund. Monitoring with data automata. In Proc. of the 6th International
Symposium on Leveraging Applications of Formal Methods, Verification and Vali-
dation (ISoLA’14), volume 8803, pages 254–273, 2014.

11. K. Havelund. Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT), 17:143–170, 2015.

12. K. Havelund and R. Joshi. Modeling and monitoring of hierarchical state machines
in Scala. In 9th International Workshop on Software Engineering for Resilient
Systems (SERENE 2017), volume 10479, pages 21–36. Springer, 2017.

13. K. Havelund, M. R. Lowry, and J. Penix. Formal analysis of a space-craft controller
using SPIN. IEEE Trans. Software Eng., 27(8):749–765, 2001.

14. G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.
15. S. Kauffman, K. Havelund, and R. Joshi. nfer - a notation and system for inferring

event stream abstractions. In Runtime Verification - 6th Int. Conference, RV’16,
volume 10012, pages 235–250. Springer, 2016.

16. B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith. Plan execution for
autonomous spacecrafts. In Proceedings of the International Joint Conference on
Artificial Intelligence, August 1997. Nagoya, Japan.

17. PlantUML. http://plantuml.com.
18. M. Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven

Programming for Embedded Systems. Newnes, MA, USA, 2 edition, 2009.
19. Scala. http://www.scala-lang.org.
20. Scalameta. https://scalameta.org.

22

