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Abstract

We describe how the PVS verification system has been used to verify
a safety property of a garbage collection algorithm. The safety property
basically says that “nothing but garbage is ever collected”. The proof is
based on refinement mappings as suggested by Lamport. Although the al-
gorithm is relatively simple, its parallel composition with a “user” program
that (nearly) arbitrarily modifies the memory makes the verification quite
challenging. The garbage collection algorithm and its composition with the
user program is regarded as a concurrent system with two processes working
on a shared memory. Such concurrent systems can be encoded in PVS as
state transition systems, very similar to the model of, for example, TLA.
The safety proof is formulated as a refinement, where the safety specification
itself is formulated as state transition system and where the final algorithm
is shown to be a refinement thereof. The algorithm is an excellent test-case
for formal methods, be they based on theorem proving or model checking.
Various hand-written proofs of the algorithm have been developed, some of
which are wrong. David Russinoff has verified the algorithm in the Boyer-
Moore prover, but his proof is not based on refinement, implying that his
safety property cannot be appreciated without a glass box view of the al-
gorithm, considering it’s internal structure. Using refinement, however, the
algorithm can be regarded as a black box.
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Chapter 1

Introduction

1.1 The Problem

In [12], Russinoff uses the Boyer-Moore theorem prover to verify a safety
property of a garbage collection algorithm, originally suggested by Ben-
Ari [2]. The safety property is formulated as a predicate P over the state
space, and it is verified that this predicate is true in all reachable states.
We will describe how the same algorithm can be formulated in the PVS
verification system [10], and we demonstrate how the safety property can
be verified. However, we shall use a refinement approach, where the safety
property itself is formulated as an abstract algorithm, and where the proof is
based on refinement mappings as suggested by Lamport. This approach has
the advantage that the safety property can be formulated more abstractly
without considering the internal structure of the final implementation; the
latter being necessary in [12]. Furthermore, as we formalize and mechanize
refinement mappings for the general case, this yields a further contribution.

In [7] a proof in PVS is described of the same algorithm and in the
invariant-style applied in [12]; the purpose being to directly compare the
effort required in PVS compared to the effort required in the Boyer-Moore
prover. The conclusion was that the efforts were comparable, which means
that PVS can be tuned towards a high degree of automatization due to it’s
decision procedures.

In [8] we verified a distributed communication protocol using the same
techniques for representing state transition systems. Hence, the here pre-
sented work shall be seen in the context of a series of PVS verifications of



parallel/distributed algorithms, where we try to establish a stabile frame-
work for such verifications, and where we try to identify the main difficulties
in carrying out such proofs. The superior goal being to improve the applica-
bility of PVS to this kind of problems. A key conclusion is that techniques
for strengthening invariants are of major importance, also in refinement
proofs.

The garbage collection algorithm, the collector, and its composition with
a user program, the mutator, is regarded as a concurrent system with (these)
two processes working on a shared memory. The memory is basically a
structure of nodes, each pointing to other nodes. Some of the nodes are
defined as roots, which are always accessible to the mutator. Any node that
can be reached from a root, chasing pointers, is defined as accessible to the
mutator. The mutator changes pointers nearly arbitrarily, while the collector
continuously collects garbage (not accessible) nodes, and puts them into a
free list. The collector uses a colouring technique for bookkeeping purposes:
each node has a colour field associated with it, which is either coloured black
if the node is accessible or white if not. In order to make the two processes
cooperate correctly, the mutator colours the target node of the redirection
black after the redirection. The safety property basically says that nothing
but garbage is ever collected. Although the collector algorithm is relatively
simple, its parallel composition with the mutator makes the verification quite
challenging.

In [12], the algorithm is formulated as a state transition system, where
the garbage collector at any time is in one of 9 different locations. In one of
the locations, say [, an append operation is applied to a node n if this node
is white, meaning that this node is collected by the collector, assuming it is
garbage. The safety property is hence (in principle) formulated as follows:

Whenever in location [, and n is accessible, then n is black

This formulation of the safety property is, however, unfortunate, since
it does not really tell us whether the program is correct. We namely in
addition have to ensure, that the append operation is only called in location
[, and only on white nodes. Hence, we need a glass boz view of the algorithm
in order to appreciate the safety property. This observation motivated us
to carry out yet an experiment, this time reformulating the safety proof as
a refinement, where the safety specification itself is formulated as a state
transition system and where the final algorithm is shown to be a refinement
thereof. Here a black boz view of the algorithm is sufficient.



The garbage collector has also been specified and verified in the UNITY
framework [4] using a notion of refinement called superposition. This re-
finement notion differs from ours in the sense that the initial algorithm
(specification) is not regarded as a specification of lower levels. Rather it
is supposed to be an initial algorithm, which is then enriched with more
details, until the final enrichment satisfies some (different) property. Each
level inherits the properties proved about the previous level, such that the
final level inherits all the properties proven for all levels, and this combined
collection of properties can the be used to prove, that the final level satisfies
some property. In section 8 we shall shortly mention how the UNITY proof
differs from ours.

1.2 The History of the Proof

An initial version of the algorithm was first proposed by Dijkstra, Lam-
port, et al. [6] as an exercise in organizing and verifying the cooperation of
concurrent processes. They described their experience as follows:

Our exercise has not only been very instructive, but at times
even humiliating, as we have fallen into nearly every logical trap
possible ...It was only too easy to design what looked — some-
times even for weeks and to many people — like a perfectly valid
solution, until the effort to prove it correct revealed a (sometimes
deep) bug.

Their solution involves three colours. Ben-Ari’s later solution is based on
the same algorithm, but it only uses two colours, and the proof is therefore
simpler. Alternative proofs of Ben-Ari’s algorithm were then later published
by Van de Snepscheut [5] and Pixley [11]. All of these proofs were informal
pencil and paper proofs. Ben-Ari defends this as follows:

So as not to obscure the main ideas, the exposition is limited to
the critical facets of the proof. A mechanically verifiable proof
would need all sorts of trivial invariants . ..and elementary trans-
formations of our invariants (... with appropriate adjustments of
the indices).



These four pieces of work, however, indeed show the problem with hand-
written proofs, as pointed out by Russinoff [12]; the story goes as follows.
Dijkstra, Lamport et al. [6] explained how they (as an example of a “logical
trap”) originally proposed a modification to the algorithm where the mu-
tator instructions were executed in reverse order (colouring before pointer
redirection). This claim was, however, wrong, but was discovered by the
authors before the proof reached publication. Ben-Ari then later again pro-
posed this modification and argued for its correctness without discovering
its flaw. Counter examples were later given in [11] and [5].

Furthermore, although Ben-Ari’s algorithm (which is the one we verify
in PVS) is correct, his proof of the safety property was flawed. This flaw was
essentially repeated in [11] where it yet again survived the review process,
and was only discovered 10 years after when Russinoff detected the flaw
during his mechanical proof [12]. As if the story was not illustrative enough,
Ben-Ari also gave a proof of a liveness property (every garbage node will
eventually be collected), and again: this was flawed as later observed in [5].
To put this story of flawed proofs into a context, we shall cite [12]:

Our summary of the story of this problem is not intended as a
negative commentary on the capability of those who have con-
tributed to its solution, all of whom are distinguished scientists.
Rather, we present this example as an illustration of the in-
evitability of human error in the analysis of detailed arguments
and as an opportunity to demonstrate the viability of mechanical
program verification as an alternative to informal proof.

1.3 Structure of Report

In [13], Shankar demonstrates how concurrent systems can easily be spec-
ified in PVS as state transition systems, very similar to the models of, for
example, UNITY [4] and TLA [9]. We extend this modeling technique with
our own modification of Abadi’s and Lamport’s refinement mappings [1];
where after we formulate the correctness problem within this refinement
framework.

In chapter 2, a formalization of state transition systems and refinement
mappings is provided in a loose mathematical style, which is later formal-
ized in PVS. In chapter 3, the garbage collection algorithm is informally



described. In chapters 4 and 5, we present the refinements of the algorithm,
starting from an initial specification, and ending after three refinement steps
with the final algorithm. This presentation is based on an informal notation
for writing transition systems. Chapters 6 and 7 formalize in PVS the con-
cepts introduced in earlier chapters 2, 4 and 5. Finally chapter 8 provides
some observations on the whole exercise.



Chapter 2

Transition Systems and
Refinement Mappings

In this chapter we establish the formal theory for using an abstract non-
deterministic program as a safety specification, such that any behaviour is
safe if it is generated by the program. An implementation is then defined
as a refinement of this program. The basic concepts are those of transition
systems, traces, invariants, observed transition systems, refinements, and
refinement mappings. The theory presented is a minor modification of the
theory developed by Abadi and Lamport, for example as described in [1],
and we shall at the end of this chapter outline in which sense we differ. One
simplification that we make, and shall mention already here, is to ignore
liveness properties and only focus on safety properties. First, we introduce
the basic concept of a transition system. Specifications as well as their
refinements are written as transition systems.

Definition 2.1 (transition systems) A transition system is a triple
(3,1,N), where

e Y 15 a state space

e [ C X is the set of initial states.

e N C X x X is the next-state relation. Elements of N are denoted by
pairs of the form (s,t), meaning that there is a transition from the
state s to the state t.



We shall next define what is an execution trace of a transition system.
Informally, an execution trace is an infinite enumeration of states, where the
first one satisfies the initiallity predicate and where every two pairs of states
are related by the next-state relation. For that purpose we need the notion of
a sequence: a sequence o is an infinite enumeration of states (s, 1, 2, . . .).
We let 0; denote the i’th element s; of the sequence. Hence, the traces of a
transition system can be defined as follows.

Definition 2.2 (traces) The traces of a transition system are defined as
follows:

@(E,I,N):{UEE*|UO EIAViEO'N(Ui,Ui+1)}

We shall need the notion of a transition system invariant, which is a
state predicate true in all states reachable from an initial state by following
the transition relation.

Definition 2.3 (invariants) Given a transition system S = (3,I,N),
then a predicate I : ¥ — B 4s an S invariant iff.

Vo € O(S)-Vi>0-1(o;)

Since we want to compare transition systems, and decide whether one
transition system refines another, we need a notion of observability. For that
purpose, we extend transition systems with an observation function, which
when applied to a state returns an observation in some domain.

Definition 2.4 (observed transition system) An observed transition
system is a five-tuple (X, %,, I, N, ) where

e (3,1I,N) is a transition system

e Y, is a state space, the observed one

e m: Y — Y, 1s an observation function that extracts the observed part
of a state.



Typically (at least in our case) a state s € ¥ consists of an observable
part sqps € 3, and an internal part s;ns, hence s = (Spps, Sint) and m is just
the projection function: 7(Seps, Sint) = Sobs- We adopt the convention that a
projection function 7 applied to a trace (s, S2,...) results in the projected
trace (m;(s1), mi(s2),...).

The central concept in all this is the notion of refinement: that one
observed transition system S, refines another observed transition system
S1. By this we intuitively mean that every observation we can make on So,
we can also make on S;. Hence, if S; behaves safely so will S;. This is
sufficient when we only want to prove safety properties, as is our case. Put
more precisely, it means that every projected trace of Ss is a projected trace
of Sj. This is formulated in the following definition.

Definition 2.5 (refinement) An observed transition system

Sy = (29,3, I2, Ny, my) refines an observed transition system S; =
(31,20, I1, N1, m1) iff (note that they have the same observed state space
¥o):

Vty € @(52) -3t € @(Sl) . 7T(t1) = 7T(t2)

So far, we have established what is an observed transition system, and
what it means for one such to refine another such. Hence, the conceptual
framework for showing refinement is there. What is missing, is a practical
way of showing refinement. Note that refinement is defined in terms of
traces. Reasoning about traces is unpractical. What is needed is a way of
reasoning about states and pairs of states. Refinement mappings is the tool
for obtaining this: a refinement mapping from a lower level transition system
So to a higher-level one S; is a mapping from Sy’s state space to S1’s state
space, that when applied to (the individual states in) traces, maps traces of
So to traces of S7. This is formally stated as follows.

Definition 2.6 (refinement mapping) A refinement mapping from an
observed transition system Sy = (X9, X,, Iz, No,m3) to an observed transition
system S1 = (21,%0, I1, N1, m1) 18 a mapping f : Xo — Xy such that there
exists an So invariant I, where:

1. Vs € 3y -mi(f(s)) = mas)



2. Vs € Xy - IQ(S) = Il(f(s))
9. Vs,t € So-I(s)AI()ANy (s, ) = Ny (F(s), F(1))

We can now state the main theorem (which is stated in [1], and which
we have proved in PVS for our slightly modified version):

Theorem 2.1 (Existence of Refinement Mappings) If there exists a
refinement mapping from an observed transition system So to an observed
transition system Si, then Sy refines Si.

We shall show how we demonstrate the existence of refinement mappings
in PVS, by providing a witness, that is: defining a particular one. Defining
the refinement mapping turns out typically to be easy, whereas showing that
it is indeed a refinement mapping (the properties in definition 2.6) is where
the major effort goes. Especially finding the invariant I and prove it, is the
bulk of the proof.

We differ from Abadi and Lamport [1] in mainly two ways. First of all,
we allow general observation functions, and not just projection functions
being the identity on a subsection of the state. In fact, we introduce the
notion of observed transition systems, which are five-tuples. This is not
explicit in [1]. Second, in definition 2.6 of refinement mappings, we assume
that states s and ¢ satisfy an implementation invariant /, which is not the
case in [1]. Hence, we have weakened the conditions to prove. Whereas
the introduction of observation functions is just a nice (but not strictly
necessary) generalization, invariants are of real importance for any practical
proofs.



Chapter 3

The Algorithm

In this chapter we informally describe the garbage collection algorithm. As
illustrated in figure 3.1, the system consists of two processes, the mutator
and the collector, working on a shared memory.

ROCTS

1]
N

NODES

1
(¢)]

SONS = 4

Figure 3.1: The Mutator, Collector and Shared Memory

The Memory

The memory is a fixed size array of nodes. In the figure there are 5 nodes
(rows) numbered 0 — 4. Associated with each node is an array of uniform

10



length of cells. In the figure there are 4 cells per node, numbered 0 — 3. A
cell is hence identified by a pair of integers (n,i) where n is a node number
and where ¢ is called the index. Each cell contains a pointer to a node, called
the son. In the case of a LISP system, there are for example two cells per
node. In the figure we assume that all empty cells contain the NIL value 0,
hence points to node 0. In addition, node 0 points to node 3 (because cell
(0,0) does s0), which in turn points to nodes 1 and 4. Hence the memory can
be thought of as a two-dimensional array, the size of which is determined by
the positive integer constants NODES and SONS. To each node is associated a
colour, black or white, which is used by the collector in identifying garbage
nodes.

A pre-determined number of nodes, defined by the positive integer con-
stant ROOTS, is defined as the roots, and these are kept in the initial part
of the array (they may be thought of as static program variables). In the
figure there are two such roots, separated from the rest with a dotted line.
A node is accessible if it can be reached from a root by following pointers,
and a node is garbage if it is not accessible. In the figure nodes 0, 1, 3 and
4 are therefore accessible, and 2 is garbage.

There are only three operations by which the memory structure can be
modified:

e Redirect a pointer towards an accessible node.
e Change the colour of a node.

e Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed
about the colours.

The Mutator

The mutator corresponds to the user program and performs the main com-
putation. From an abstract point of view, it continuously changes pointers
in the memory; the changes being arbitrary except for the fact that a cell
can only be set to point to an already accessible node. In changing a pointer
the “previously pointed-to” node may become garbage, if it is not accessible
from the roots in some alternative way. In the figure, any cell can hence be

11



modified by the mutator to point to anything else than 2. One should think
that only accessible cells could be modified, but the algorithm can in fact
be proved safe without that restriction. Hence the less restricted context as
possible is chosen. The algorithm is as follows:

1. Select a node n, an index 4, and an accessible node k, and assign k to
cell (n,i).

2. Colour node k black. Return to step 1.

Each of the two steps are regarded as atomic instructions.

The Collector

The collector’s purpose is purely to collect garbage nodes, and put them
into a free list, from which the mutator may then remove them as they are
needed during dynamic storage allocation. Associated with each node is a
colour field, that is used by the collector during it’s identification of garbage
nodes. Basically it colours accessible nodes black, and at a certain point it
collects all white nodes, which are then garbage, and puts them into the free
list. Figure 3.1 illustrates a situation at such a point: only node 2 is white
since only this one is garbage. The collector algorithm is as follows:

1. Colour each root black.

2. Examine each pointer in succession. If the source is black and the
target is white, colour the target black.

3. Count the black nodes. If the result exceeds the previous count (or if
there was no previous count), return to step 2.

4. Examine each node in succession. If a node is white, append it to the
free list; if it is black, colour it white. Then return to step 1.

Steps 1-3 constitute the marking phase and their purpose is to blacken
all accessible nodes. Each iteration within each step is regarded as an atomic
instruction. Hence, for example, step 3 consists of several atomic instruc-
tions, each counting (or not) a single node.

12



The Correctness Criteria

The safety property we want to verify is the following: No accessible node
is ever appended to the free list. In [12], the following liveness property is
also verified: Every garbage node is eventually collected. As in our previous
work with a protocol verification in PVS and Murphi [8], we have focused
only on safety, since already this requires an effort worth reducing.

13



Chapter 4

The Specification

In this chapter we give the initial specification of the garbage collector. It’s
presented as a transition system using an informal notation for describing a
such. In chapter 6 it is described how we encode transition systems in PVS.

We shall assume a data structure representing the memory. The number
of nodes in the memory is defined by the constant NODES. The type Node
defines the numbers from 0 to NODES — 1. The constant SONS defines the
number of cells per node. The type Index defines the numbers from 0 to
SONS — 1. Hence, the memory can be thought of a two-dimensional array.
Figure 4.1 shows the shared state of the specification.

var
M : array[Node,Index] of Node;

Figure 4.1: Specification State

The memory will be the observed part of the state (X_o — see defini-
tion 2.6) throughout all refinements (hence will be the returned value of
projection functions). For example, the node colouring structure and other
auxiliary variables that we later add will be internal.

Recall, that an initial section of the nodes are roots, the number being
defined by the constant ROOTS. A number of functions (reading the state) and
procedures (modifying the state) are assumed, all of which are mentioned
in figure 4.2:

14



function accessible(n:Node) :bool;
function son(n:Node,i:Index):Node;
procedure set_son(n:Node,i:Index,k:Node);
procedure append_to_free(n:Node);

Figure 4.2: Auxiliary Functions used in the Specification

The function accessible returns true if it’s argument node is accessible
from one of the roots by following pointers. The function son returns the
contents of cell (n,1). The procedure set_son assigns k to the cell identified
by (n,i). Hence after the procedure has been called, this cell now points
to k. The function append_to_free appends it’s argument node to the list
of free nodes, assuming that it is a garbage node.

The specification consists of the parallel composition of the mutator and
the collector. The mutator is described i figure 4.3.

MODIFY :
choose n,k:Node; i:Index where accessible(k) ->
set_son(n,i,k);
goto MODIFY
end

Figure 4.3: Specification of Mutator

A program is at any time during its execution considered as being in
one of a finite collection of locations, identified by program labels. The
above mutator has one such location, named MODIFY. Associated with each
location is a set of rules, in the basic case each on the form p -> s where
p is a pre-condition on the state and s is an effect on the state. When
in this location, all rules where the condition p is true are enabled, and a
non-deterministic choice is made between them, resulting in the next state
being obtained by applying the s effect of the chosen rule to the current
state. The “choose x:T where p -> s end” construct represents a set of
such rules, one for each choice of x within its type T. Hence, the mutator
repeatedly chooses two arbitrary nodes n,k:Node and an arbitrary index
i:Index such that k is accessible. The cell (n,1) is then set to point to k.

15



The collector is described in figure 4.4. The collector repeatedly chooses
an arbitrary not accessible node. This node is then appended to the free list
of nodes. Since the node is not accessible it is a garbage node, hence only
garbage nodes are collected (appended), and this is the proper specification
of the garbage collector.

COLLECT :
choose n:Node where not accessible(n) ->
append_to_free(n);
goto COLLECT
end

Figure 4.4: Specification of Collector

16



Chapter 5

The Refinement Steps

In this chapter we outline how the refinement is carried out in three steps,
resulting in the garbage collection algorithm described informally in chapter
3. Each refinement is given an individual section, which again is divided into
a program section, presenting the new program, and a proof section, outlining
the refinement proof performed. According to theorem 2.1 a refinement can
be proven by identifying a refinement mapping from the concrete state space
to the abstract state space, see definition 2.6. Hence, each proof section will
consist of a definition of such a mapping together with a proof that it’s a
refinement mapping, focusing on the simulation relation required in item (3)
of definition 2.6.

The PVS encoding of the programs is described in chapter 6, while the
PVS encoding of the refinement proofs is described in section 7.

5.1 First Refinement : Introducing Colours

5.1.1 The Program

In the first step, the collector is refined to base it’s search for garbage nodes
on a colouring technique. The type Colour is assumed to contain the two
colours black and white. The global state must be extended with a colouring
of each node in the memory (not each cell), and a couple of extra auxiliary
variables Q and L used for other purposes. The extended state is shown in
figure 5.1.

17



var

M : array[Node,Index] of Node;
C : array[Node]l of Colour;

Q : Node;

L : nat;

Figure 5.1: First Refinement State

procedure set_colour(n:Node,c:Colour):void;
function colour(n:Node):Colour;
function blackened():bool;

Figure 5.2: Additional Auxiliary Functions used in First Refinement

Three extra operations on this new data structure are needed, as indi-
cated in figure 5.2.

The procedure set_colour colours a node either white or black. The
function colour returns the colour of a node. Finally, the function
blackened returns true if all accessible nodes are black.

The mutator is now refined into the program which was informally de-
scribed in chapter 3, see figure 5.3.

MUTATE :
choose n,k:Nodes; i:Index where accessible(k) ->
set_son(n,i,k);

Q :=k;
goto COLOUR;
end
COLOUR :

true -> set_colour(Q,black); goto MUTATE;

Figure 5.3: Refinement of Mutator

There are two locations, MUTATE and COLOUR. In the MUTATE location,
where the mutator starts, in addition to the mutation, the target node k is
assigned to the global auxiliary variable Q. Then in the COLOUR location, Q

18



is coloured black. Note that the mutator will not be further refined, it will
now stay unchanged during the remaining refinements of the collector.

The collector is described in figure 5.4. It consists of two phases. While
in the COLOUR location, nodes are coloured arbitrarily until all accessible
nodes are black (blackened()). The style in which colouring is expressed
may seem surprising, but it is a way of defining a post condition: colour
at least all accessible nodes '. In the second phase, locations TEST_L and
APPEND, all white nodes are regarded as garbage nodes, and are hence col-
lected (appended to the free list). The auxiliary variable L is used to control
the loop: it runs through all the nodes. After having appended all garbage
nodes, the colouring is restarted.

COLOUR :
choose n:Nodes ->
set_colour(n,black);
goto COLOUR;
end
blackened() -> L := 0; goto TEST_L;
TEST_L :
L = NODES -> goto COLOUR;
L < NODES -> goto APPEND;
APPEND :
not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
colour(L) -> set_colour(L,white); L := L + 1; goto TEST_L;

Figure 5.4: First Refinement of Collector

5.1.2 The Refinement Proof

The refinement mapping, call it abs, from the concrete state space to the
abstract state space maps M to M. Note that such a mapping only needs to
be defined for each component of the abstract state, showing how it is gen-
erated from components in the concrete state. Hence, the concrete variables
C, Q and L are not used for this purpose. This is generally the case for the
refinement mappings to follow: they are the identity on the variables occur-
ring in the abstract state. Also program locations have to be mapped. In

!By formulating this colouring as an iteration, we can avoid to introduce a history
variable at a lower refinement level.
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fact, each program (mutator, collector) can be regarded as having a program
counter variable, and we have to show how the abstract program counter is
obtained (mapped) from the concrete. Whenever the concrete program is in
a particular location [, then the abstract will be in the location abs(l). In the
current case, the concrete mutator locations MUTATE and COLOUR are both
mapped to MODIFY, while the concrete collector locations COLOUR, TEST_L
and APPEND all are mapped to COLLECT. This completes the definition of the
refinement mapping.

In order to prove property (3) in definition 2.6, we associate each transi-
tion in the concrete program with a transition in the abstract program, and
prove that: “if the concrete transition brings a state s; to a state sg, then
the abstract transition brings the state abs(s1) to the state abs(s2)”. We say
that the concrete transition, say t., simulates the abstract transition, say ¢4,
and write this as t, < t,. Putting all these sub-proofs together will yield a
proof of (3). Some of the concrete transitions just simulate a stuttering step
(no state change) in the abstract system. This will typically be some of the
new transitions associated with new location names, by convention, added
to the concrete program. Other concrete transitions have exact counter-
parts in the abstract program. These are transitions associated with same
location names, by convention, as in the abstract program. In the following,
we will only mention cases that deviate from the above two cases; that is:
where we add new location names, and where the corresponding transitions
do not simulate a stuttering step in the abstract program.

Hence in our case, MUTATE < MODIFY, and APPEND; < COLLECT (APPEND,y
simulates stuttering). In the proof of APPEND; < COLLECT, an invariant is
needed about the concrete program:

collectorQAPPEN D A accessible(L) = colour(L) (5.1)

It says that whenever the concrete collector is at the APPEND location,
and node L is accessible, then L is also black. From this we can conclude
that the append_to_free operation is only applied to garbage nodes, since
it’s only applied to white nodes. Hence, we need to prove an invariant about
the concrete program in order to prove the refinement. In general, the proof
of these invariants is what really makes the refinement proof non-trivial. To
prove the above invariant, we do in fact need to prove a stronger invariant,
namely that in locations TEST_L and APPEND, accessible(n) == colour(n)
for all nodes n > L. This invariant strengthening is typical in our proofs.
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5.2 Second Refinement : Colouring by Propaga-
tion

5.2.1 The Program

In this step, accessible nodes are coloured through a propagation strategy,
where first all roots are coloured, end next all white nodes which have a black
father are coloured. The state is extended with an extra auxiliary variable
K used for controlling the iteration through the roots. The extended state
is shown in figure 5.5.

var

M : array[Node,Index] of Node;
C : array[Node] of Colour;

Q : Node;

K : nat;

L : nat;

Figure 5.5: Second Refinement State

Two additional functions are needed, as indicated in figure 5.6:

function bw(n:Node,i:Index) :bool;
function exists_bw() :bool;

Figure 5.6: Additional Auxiliary Functions used in Second Refinement

The function bw returns true if n is black and son(n, i) is white. The
function exists_bw returns true if there exists a black node, say n, that via
one of it’s cells, say i, points to a white node. That is: bw(n,i).

The collector is described in figure 5.7. The COLOUR location from
the previous level has been replaced by the two locations COLOUR_ROOTS
and PROPAGATE (while the append phase is mostly unchanged). In the
COLOUR_ROOTS location all roots are coloured black, the loop being con-
trolled by the variable K. In the PROPAGATE location, either there exists no
black node with a white son (i.e. not exists_bw()), in which case we start
collecting (going to location TEST_L), or such a node exists, in which case
it’s son is coloured black, and we continue colouring.
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COLOUR_RDOTS :
K = ROOTS -> goto PROPAGATE;
K < ROOTS -> set_colour(K,black); K := K+1; goto COLOUR_ROOTS;
PROPAGATE :
choose n:Node; i:Index where bw(n,i) ->
set_colour(son(n,i) ,black);
goto PROPAGATE;
end
not exists_bw() -> L := 0; goto TEST_L;
TEST_L :
L = NODES -> K := 0; goto COLOUR_ROOTS;
L < NODES -> goto APPEND;
APPEND :
not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
colour(L) -> set_colour(L,white); L := L + 1; goto TEST_L;

Figure 5.7: Second Refinement of Collector

5.2.2 The Refinement Proof

The refinement mapping, besides being the identity on identically named
entities (variables as well as locations), maps the collector locations
COLOUR_ROOTS and PROPAGATE to COLOUR. Hence concrete root colouring as
well as concrete propagation are just particular kinds of abstract colourings.

Concerning the transitions, COLOUR_RO0TS, < COLOUR;, PROPAGATE; <
COLOUR;, and PROPAGATE, < COLOUR.

In the proof of PROPAGATE, < COLOUR,, an invariant is needed about the
concrete program:

collectorQPROPAGATE = Vr : Root - colour(r) (5.2)

It states that in location PROPAGATE all roots must be coloured. This fact
combined with the propagation termination condition not exists_bw():
“there does not exist a pointer from a black node to a white node”, will im-
ply the propagation termination condition in COLOURs of the abstract speci-
fication: blackened(), which says that “all accessible nodes are coloured”.
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5.3 Third Refinement : Propagation by Scans

5.3.1 The Program

In the last refinement, the propagation, represented by the location
PROPAGATE above, is refined into an algorithm, where all nodes are repeat-
edly scanned in sequential order, and if black, their sons coloured; until a
whole scan does not result in a colouring. The collector is described in fig-
ure 5.9, where transitions have been divided into 4 steps corresponding to
the informal description of the algorithm on page 12. The state is extended
with auxiliary variables BC (black count) and 0BC (old black count), used for
counting black nodes; and the variables H, I, and J for controlling loops; the
state declaration is shown in figure 5.8.

var
: array[Node,Index] of Node;
: array[Nodel of Colour;

: Node;

: nat;

: nat;

: nat;

: nat;

: nat;

: nat;

OBC : nat;

PR cHDODDO QR

Q

Figure 5.8: Third Refinement State

Two loops interact (steps 2 and 3). In the first loop, TEST_I,
TEST_COLOUR and COLOUR_SONS, all nodes are scanned, and every black node
has all it’s sons coloured. The variables I and J are used to “walk” through
the cells. In the second loop, TEST_H, COUNT and COMPARE, it is counted
how many nodes are black. This amount is stored in the variable BC, and
if this amount exceeds the old black count, stored in the variable 0BC, then
yet another scan is started, and 0BC is updated. The variable H is used to
control this loop.
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5.3.2 The Refinement Proof

The refinement mapping is the identity, except for six of the locations
of the collector. That is, the collector locations TEST_I, TEST_COLOUR,
COLOUR_SONS, TEST_H, COUNT, and COMPARE are all mapped to PROPAGATE.

Concerning the transitions, COLOUR_SONSs; <« PROPAGATE; whereas
COMPARE; <« PROPAGATE;. In the proof of COLOUR_SONS; < PROPAGATEq,
the following invariant is needed:

collector@QCOLOUR_SON S = colour(I) (5.3)

This property implies that the abstract PROPAGATE; transition’s pre-
condition bw(I,J) will be true (in case the son is white) or otherwise (if the
son is also black), the concrete transition corresponds to a stuttering step
(colouring an already black son is the identity function). Correspondingly,
in the proof of COMPARE; <« PROPAGATE,, the following invariant is needed:

collectorQCOMPARE N BC = OBC = —exists_bw() (5.4)

It states that when the collector is in location COMPARE, after a counting
scan where the number of black nodes have been counted and stored in
BC, if the number counted equals the previous (old) count 0BC then there
does not exist a pointer from a black node to a white node. Note that BC
= 0BC is the propagation termination condition, and this then corresponds
to the termination condition not exists_bw() of the abstract transition
PROPAGATE.

The proof of these two invariants is quite elaborate, and does in fact
compare in size and “look” to the complete proofs in [7] as well as in [12].
Hence, the refinement proof can be said as “containing” these proofs.
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-- Step 1 : Colour roots

COLOUR_RDOTS
K = ROOTS -> I := 0; goto TEST_I;
K < ROOTS -> set_colour(K,true); K := K + 1; goto COLOUR_ROOTS;

-- Step 2 : Propagate once

TEST_I :
I = NODES -> BC := 0; H := 0; goto TEST_H;
I < NODES -> goto TEST_COLOUR;
TEST_COLOUR :
not colour(I) -> I := 1 + 1; goto TEST_I;
colour(I) -> J := 0; goto COLOUR_SONS;
COLOUR_SONS :
J =80NS -> I :=1+ 1; goto TEST_I;
J < SONS -> set_colour(son(I,J),black); J := J+1; goto COLOUR_SONS;

-- Step 3 : Count black nodes

TEST_H :

H = NODES -> goto COMPARE;

H < NODES -> goto COUNT;
COUNT :

not colour(H) -> H := H +1; goto TEST_H;

colour(H) -> BC := BC + 1; H := H +1; goto TEST_H;
COMPARE :

BC = 0BC -> L := 0; goto TEST_L;

BC /= 0BC -> 0BC := BD; I := 0; goto TEST_I;

-- Step 4 : Append garbage nodes

TEST_L :
L = NODES -> BC := 0; OBC := 0; K := 0; goto TEST_I;
L < NODES -> goto APPEND;
APPEND :
not colour(L) -> append_to_free(L); L := L + 1; goto TEST_L;
colour(L) -> set_colour(L,white); L := L + 1; goto TEST_L;

Figure 5.9: Third Refinement of Collector

25




Chapter 6

Formalization in PVS

This chapter describes how in general transition systems and refinement
mappings are encoded in PVS, and in particular how the garbage collector
refinement is encoded. The full set of PVS theories is included in appendix
A.

6.1 Transition Systems and their Refinement

Recall from chapter 2 that an observed transition system is a five-tuple of
the form: (X, %,, I, N, ) (definition 2.4). In PVS we model this as a theory
with two type definitions, and three function definitions, see figure 6.1.

The correspondence with the five-tuple is as follows: ¥ = State, X,
= 0_State, m = proj, I = init and N = next. The init function is a
predicate on states, while the next function is a predicate on pairs of states.
We shall formulate the specification of the garbage collector as well as all
its refinements in this way. It will become clear below how in particular the
function next is defined.

Now we can define what is a trace (definition 2.2) and what is an invariant
(definition 2.3). This is done in the theory Traces in figure 6.2.

The theory is parameterized with the State type of the observed tran-
sition system. The VAR declarations are just associations of types to names,
such that in later definitions and axioms, these names are assumed to have
the corresponding types. In addition, axioms are assumed to be universally
quantified with these names over the types. Note that pred[T] in PVS is
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ots : THEORY

BEGIN

State : TYPE
0_State : TYPE

proj : [State -> D_State] = ...
init : [State -> bool] = ...
next : [State,State -> bool] = ...

END ots

Figure 6.1: Observed Transition Systems

Traces[State : TYPE] : THEORY
BEGIN
init : VAR pred[Statel
next : VAR pred[[State,State]]
sq : VAR sequence[Statel
n : VAR nat
trace(init,next) (sq) :bool =
init(sq(0)) AND
FORALL n: next(sq(n),sq(n+1))
p : VAR pred[Statel

invariant (init,next) (p) :bool =
FORALL (tr:(trace(init,next))): FORALL n: p(tr(n))

END Traces

Figure 6.2: Traces and Invariants
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short for the function space [T -> bool]l. The type sequence[T] is short
for [nat -> TIJ; that is: the set of functions from natural numbers to T. A
sequence of State’s is hence an infinite enumeration of states. Given a tran-
sition system with initiality predicate init and next-state relation next, a
sequence sq is a trace of this transition system if trace(init,next) (sq)
holds. A predicate p is an invariant if invariant(init,next) (p) holds.
That is: if for any trace tr, p holds in all positions n of that trace. Note how
the predicate trace(init,next) (it’s a predicate on sequences) is turned
into a type in PVS by surrounding it with brackets — the type containing
all the elements for which the predicate holds, which are all the traces.

The next notion we introduce in PVS is that of a refinement between
two observed transition systems (definition 2.5). Figure 6.3 shows the theory
defining the function refines, which is a predicate on a pair of observed
transition systems: a low level implementation system as the first parameter,
and a high level specification system as as the second parameter. The theory
is parameterized with the state space S_State of the high level specification
theory, the state space I_State of the low level implementation theory, and
the observed state space 0_State, which we remember is common for the
two observed transition systems.

Refinement is defined as follows: for all traces i_tr of the implementa-
tion system, there exists a trace s_tr of the specification system, such that
when mapping the respective projection functions to the traces, they become
equal. The function map has the type map : [[D->R] -> [sequence[D]
-> sequence[R]]] and simply applies a function to all the elements of a
sequence.

Finally, we introduce in the theory Refinement, figure 6.4, the notion
of a refinement mapping (definition 2.6) and it’s use for proving refinement
(theorem 2.1). The theory is parameterized with a specification observed
transition system (prefixes S), an implementation observed transition sys-
tem (prefixes I), an abstraction function abs, and an invariant I_inv over
the implementation system. The theory contains a number of assumptions
on the parameters and a theorem, which has been proven using the assump-
tions. Hence, the way to use this parameterized theory is to apply it to
arguments that satisfy the assumptions, prove these, and then get “as a
consequence” the theorem, which states that the implementation refines the
specification (corresponding to theorem 2.1). This theorem has been proved
once and for all. The assumptions are as stated in definition 2.6.
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Refine_Predicate[
0_State : TYPE,
S_State : TYPE,
I_State : TYPE] : THEORY

BEGIN
IMPORTING Traces

s_init : VAR pred[S_State]
s_next : VAR pred[[S_State,S_State]]
s_proj : VAR [S_State -> D_Statel

i_init : VAR pred[I_Statel
i_next : VAR pred[[I_State,I_State]]
i_proj : VAR [I_State -> 0O_Statel

refines(i_init,i_next,i_proj) (s_init,s_next,s_proj):bool =
FORALL (i_tr:(trace(i_init,i_next))):
EXISTS (s_tr:(trace(s_init,s_next))):
map (i_proj,i_tr) = map(s_proj,s_tr)

END Refine_Predicate

Figure 6.3: Refinement
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Refinement [
0_State : TYPE,

S_State : TYPE,

S_init : pred[S_State],

S_next : pred[[S_State,S_Statel],
S_proj : [S_State -> 0_Statel,

I_State : TYPE,

I_init : pred[I_State],

I_next : pred[[I_State,I_Statell,
I_proj : [I_State -> 0_Statel,

abs : [I_State -> S_State],

I_inv : [I_State -> booll] : THEORY
BEGIN

ASSUMING

IMPORTING Traces

s : VAR I_State
ri,r2 : VAR (I_inv)

proj_id :
FORALL s: S_proj(abs(s)) = I_proj(s)

init_h :
FORALL s: I_init(s) IMPLIES S_init(abs(s))

next_h :

ASSUMPTION

ASSUMPTION

ASSUMPTION

I_next(rl,r2) IMPLIES S_next(abs(rl),abs(r2))

invar : ASSUMPTION
invariant (I_init,I_next) (I_inv)

ENDASSUMING
IMPORTING Refine_Predicate[0_State,S_State,I_State]

ref : THEOREM refines(I_init,I_next,I_proj)
(S_init,S_next,S_proj)

END Refinement

Figure 6.4: Refinement Mappings
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Refine_Predicate_Transitivel[
0_State : TYPE,
Statel : TYPE,
State2 : TYPE,
State3 : TYPE] : THEORY

BEGIN
IMPORTING Refine_Predicate

initl : VAR pred[Statel]
nextl : VAR pred[[Statel,Statell]
projl : VAR [Statel -> 0_Statel

init2 : VAR pred[State2]
next2 : VAR pred[[State2,State2]]
proj2 : VAR [State2 -> O_Statel

init3 : VAR pred[State3]
next3 : VAR pred[[State3,State3]]
proj3 : VAR [State3 -> O_Statel

transitive : LEMMA

refines[0_State,State2,State3]
(init3,next3,proj3) (init2,next2,proj2) AND

refines[0_State,Statel,State2]
(init2,next2,proj2) (initl,nextl,projl)
IMPLIES

refines[0_State,Statel,State3]
(init3,next3,proj3) (initl,nextl,projil)

END Refine_Predicate_Transitive

Figure 6.5: Refinement is Transitive

We shall further need to assume transitivity of the refinement relation,
and this is formulated (and proved) in figure 6.5.

6.2 The Specification

In this chapter we outline how the initial specification from chapter 4 of the
garbage collector is modelled in PVS. We start with the specification of the

31




memory structure, and then continue with the two processes that work on
this shared structure.

6.2.1 The Memory

The memory type is introduced in a theory, parameterized with the memory
boundaries, see figure 6.6. That is, NODES, SONS, and ROOTS define respec-
tively the number of nodes (rows), the number of sons (columns/cells) per
node, and the number of nodes that are roots. They must all be positive
natural numbers (different from 0). There is also an obvious assumption
that ROOTS is not bigger than NODES. These parameters occur in all our
theories.

The Memory type is defined as an abstract (non-empty) type upon which
a constant and collection of functions are defined!. First, however, types of
nodes, indexes and roots are defined.

The constant null_array represents the initial memory containing 0 in
all memory cells (axiom mem_ax1). The function son returns the pointer
contained in a particular cell. That is, the expression son(n,i) (m) returns
the pointer contained in the cell identified by node n and index i. Finally,
the function set_son assigns a pointer to a cell. That is, the expression
set_son(n,i,k) (m) returns the memory m updated in cell (n,1i) to contain
(a pointer to node) k.

In order to define what is an accessible node, we introduce the func-
tion points_to, which defines what it means for one node, nl, to point to
another, n2, in the memory m. The function accessible is then defined
inductively, yielding the least predicate on nodes n (true on the smallest
set of nodes) where either n is a root, or n is pointed to from an already
reachable node k.

Finally we define the operation for appending a garbage node to the
list of free nodes, that can be allocated by the mutator. This operation is
defined abstractly, assuming as little as possible about it’s behaviour. Note
that, since the free list is supposed to be part of the memory, we could easily
have defined this operation in terms of the functions son and set_son, but
this would have required that we took some design decisions as to how the

!Note that we do not model the memory as a two dimensional array as in chapter 5,
since we try to be as abstract as possible during the requirement specification. The reason
we used an array earlier was for purely pedagogical reasons.
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Memory [NODES : posnat, SONS : posnat, ROOTS : posnat] : THEODRY
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING
IMPORTING List_Functions

Memory : TYPE+

Node : TYPE = {n : nat | n < NODES}
Index : TYPE = {i : nat | i < SONS}
Root : TYPE = {r : nat | r < ROOTS}
m : VAR Memory

n,nl,n2,k : VAR Node

i,i1,i2 : VAR Index

null_array : Memory
son : [Node,Index -> [Memory -> Nodel]
set_son : [Node,Index,Node -> [Memory -> Memory]]

mem_ax1l : AXIOM son(n,i) (null_array) = 0

mem_ax2 : AXIOM son(nl,il) (set_son(n2,i2,k) (m)) =
IF n1=n2 AND il1=i2 THEN k ELSE son(nl1,il1) (m) ENDIF

points_to(n1,n2) (m) :bool = EXISTS (i:Index): son(nl,i) (m)=n2

accessible(n) (m) : INDUCTIVE bool =
n < ROOTS OR
EXISTS k: accessible(k) (m) AND points_to(k,n) (m)

append_to_free : [Node -> [Memory -> Memory]]
append_ax: AXIOM
(NOT accessible(k) (m))
IMPLIES
(accessible(n) (append_to_free (k) (m))
IFF
(n = k OR accessible(n) (m)))
END Memory

Figure 6.6: The Memory
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list was represented (for example where the head of the list should be and
whether new elements should be added first or last). The axiom append_ax
defining the append operation says that in appending a garbage node, only
that node becomes accessible, and the accessibility of all other nodes stay
unchanged.

6.2.2 The Mutator and the Collector

The complete PVS formalization of the garbage collector top level specifi-
cation presented in chapter 4 is given in figure 6.7.

The state is simply the memory, and so is the observable state. Hence,
there are no hidden variables, and the projection function proj is the iden-
tity. The next-state relation next is defined as a disjunction between three
disjuncts, each representing a possible single transition of the total system.
The first two disjuncts represent a move of the mutator and the collector,
respectively, each move defined through a function. The third possibility
just represents stuttering: the fact that a process does not change the state
(needed for technical reasons).

Since each process (mutator, collector) only has one location (see fig-
ures 4.3 and 4.4) we don’t model these locations explicitly. The function
Rule mutate represents a move by the mutator, which is non-deterministic
in the choice of the nodes n,k and index i. The function, when applied
to an old state, yields a new state, where (if k is accessible) a pointer has
been changed. Non-deterministic choices are modelled via existential quan-
tifications. Each transition function is defined in terms of an IF-THEN-ELSE
expression, where the condition represents the guard of the transition (the
situation where the transition may meaningfully be applied), and where the
ELSE part returns the unchanged state, in case the guard is false?. The func-
tion Rule_append represents a move by the collector. In each step, either
the mutator makes a move, or the collector does. This corresponds to an
interleaving semantics of concurrency. Note how the repeated execution is
guaranteed by our interpretation of what is a trace in terms of the next-state
relation.

2This allows for stuttering where rules are applied without changing the state. If done
infinitely often our system would never progress. One way to avoid such behaviour is to
impose certain fairness constraints on execution traces. We shall, however, not do this
since we are only interested in verifying safety properties, where such problems play no
role. In general, transitions have been modelled as functions, instead of as relations, in
order to speed up PVS proofs, using PVS’s rewriting engine.
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Garbage_Collector [NODES : posnat, SONS : posnat, ROOTS : posnat]
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING
IMPORTING Memory [NODES,SONS,RO0TS]

State : TYPE = Memory
0_State : TYPE Memory

s,sl,s2 : VAR State
n,k : VAR Node
i : VAR Index

proj(s):0_State = s
init(s):bool = (s = null_array)

Rule_mutate(n,i,k)(s):State =
IF accessible(k) (s) THEN
set_son(n,i,k) (s)
ELSE s ENDIF

Rule_append(n) (s) :State =
IF NOT accessible(n) (s) THEN
append_to_free (n) (s)
ELSE s ENDIF

next(s1,s2) :bool =
(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(sl1)) OR
(EXISTS n: s2 = Rule_append(n)(s1)) OR
s2 = s1
END Garbage_Collector

: THEORY

Figure 6.7: Specification
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Coloured_Memory[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING
IMPORTING Memory [NODES,SONS,RO0TS]

Colour : TYPE
Colours : TYPE

bool
[Node -> Colour]

: VAR Node
: VAR Index
: VAR Colour
cs : VAR Colours
m : VAR Memory
colour(n) (cs) :Colour = cs(n)
set_colour(n,c) (cs):Colours = cs WITH [n := c]
blackened(cs,m) :bool = FORALL n: accessible(n) (m) IMPLIES colour(n) (cs)

bw(n,i) (cs,m) :bool = colour(n)(cs) AND NOT colour(son(n,i) (m)) (cs)

exists_bw(cs,m) :bool = EXISTS n,i: bw(n,i) (cs,m)
END Coloured_Memory

Figure 6.8: Coloured Memory

6.3 The First Refinement

In this section we outline how the first refinement from section 5.1 of the
garbage collector is modelled in PVS. In order to keep the presentation
reasonably sized, we only illustrate this first refinement. The remaining
refinements follow the same pattern and are given in the appendix. First,
we describe a collection of colouring functions.

6.3.1 The Coloured Memory

The theory Coloured Memory in figure 6.8 introduces the primitives needed
for colouring memory nodes.

The type Colour represents the colours black (true) and white (false).
The type Colours contain possible colourings of the memory, each being a
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mapping from nodes to their colours. The functions colour, set_colour
and blackened are formalizations of those presented in figure 5.2. The
functions bw and exists_bw are formalizations of those presented in figure
5.6 and are used in the second refinement.

6.3.2 The Refined Mutator and Collector

We here show how the first refinement is formulated in PVS. The entire
theory called Garbage_Collectorl is presented in figures 6.9 and 6.10. First
of all, the state type is a record type with a field for each program variable.
In addition to the ordinary program variables, there is a program counter
“variable” for each process: MU for the mutator, and CHI for the collector.
Each program counter ranges over a type that contains the possible labels
corresponding to those in figures 5.3 and 5.4. The observed state is still just
the memory, hence ignoring for example the colouring C. We see (figure 6.9)
that the mutator next-state relation MUTATOR is now defined as a disjunction
between a mutate transition and a colour @ transition. The collector next-
state relation COLLECTOR (figure 6.10) is defined as the disjunction between
six possible transitions.
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Garbage_Collector1[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN

ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

IMPORTING Coloured_Memory[NODES,SONS,R00TS]

MuPC : TYPE = {MUTATE,CDLDUR}
CoPC : TYPE = {COLOUR,TEST_L,APPEND}
State : TYPE = [# MU : MuPC, CHI : CoPC,

Q : nat, L : nat , C : Colours, M : Memory #]
0_State : TYPE = Memory

s,sl,s2 : VAR State
n,k : VAR Node
i : VAR Index

proj(s):0_State = M(s)
init(s):bool = MU(s) = MUTATE & CHI(s) = COLOUR & M(s) = null_array

Rule_mutate(n,i,k) (s):State =
IF MU(s) = MUTATE AND accessible(k) (M(s)) THEN
s WITH [M := set_son(n,i,k) (M(s)),
Q := k,
MU := COLOUR]
ELSE s ENDIF

Rule_colour_target(s):State =
IF MU(s) = COLOUR AND Q(s) < NODES THEN
s WITH [C := set_colour(Q(s),TRUE) (C(s)),
MU := MUTATE]
ELSE s ENDIF

MUTATOR (s1,s2) :bool =
(EXISTS n,i,k: s2 = Rule_mutate(n,i,k) (s1))
OR s2 = Rule_colour_target(s1)

Figure 6.9: First Refinement - the Mutator
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Rule_stop_colouring(s) :State =
IF CHI(s) = COLOUR AND blackened(C(s),M(s)) THEN
s WITH [L := 0, CHI := TEST_L]
ELSE s ENDIF

Rule_colour(n) (s) :State =
IF CHI(s) = COLOUR THEN
s WITH [C := set_colour(n,TRUE) (C(s))]
ELSE s ENDIF

Rule_stop_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) = NODES THEN
s WITH [CHI := COLOUR]
ELSE s ENDIF

Rule_continue_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) < NODES THEN
s WITH [CHI := APPEND]
ELSE s ENDIF

Rule_black_to_white(s):State =
IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s))(C(s)) THEN
s WITH [C := set_colour(L(s),FALSE) (C(s)),
L := L(s)+1,
CHI := TEST_L]
ELSE s ENDIF

Rule_append_white(s) :State =
IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)),
L :=L(s) + 1,
CHI := TEST_L]
ELSE s ENDIF

COLLECTOR(s1,s2) :bool =
s2 = Rule_stop_colouring(s1)
OR (EXISTS n: s2 = Rule_colour(n) (s1))
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(s1)
OR s2 Rule_append_white(s1)

next(s1,s2) :bool = MUTATOR(s1,s2) OR COLLECTOR(s1,s2) OR s2 = sl
END Garbage_Collectorl

Figure 6.10: First Refinement - the Collector
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Chapter 7

The Proof in PVS

The proof of a single refinement lemma (step) is divided into three activities:

1. Discovery and proof of function lemmas
2. Discovery and proof of invariant lemmas

3. Proof of the refinement lemma

A function lemma states a property of one or more auxiliary functions
involved, which in our case are for example properties about the functions
accessible and blackened. An invariant is a predicate on states, and an
wnvariant lemma states that an invariant holds in every reachable state of
the concrete implementation (Garbage _Collectorl in our case). Recall that
we needed such an invariant when applying the Refinement theory (figure
6.4). The function lemmas are used in proofs of invariant lemmas, which
again are used in proofs of refinement lemmas.

We shall show these lemmas for the first refinement, using a bottom-up
presentation for pedagogical reasons, starting with function lemmas, and
ending with the refinement lemma. In, reality, however, the proof was
“discovered” top down: the refinement lemma was stated (by applying the
Refinement theory to proper arguments), and during the proof of the corre-
sponding ASSUMPTION’s, the need for invariant lemmas were discovered, and
during their proofs, function lemmas were discovered.
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Memory_Observers
[NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Coloured_Memory[NODES,SONS,R00TS]

cs : VAR Colours
m : VAR Memory
n : VAR Node

N,N1,N2 : VAR nat

blackened (N) (cs,m) :bool =
FORALL (n | N <= n):
accessible(n) (m) IMPLIES colour(n) (cs)

END Memory_0Observers

Figure 7.1: Observer Functions

7.1 Function Lemmas

During the proof, we need a new set of auxiliary functions to “observe” (or
calculate) certain values based on the current state of the memory. These
observer functions occur i invariants. In the first refinement step, we shall
need the function blackened defined in the theory Memory_Observers, see
figure 7.1. This function is similar to the function which is part of the first
refinement, figure 6.8, except that it has a natural number argument. The
function returns true if all nodes above (and including) its argument are
black if accessible. The theory contains other functions, but these are first
needed in later refinements and will not be discussed here.

The lemmas about auxiliary functions that we need for the first refine-
ment are given in the theory Memory Properties in figure 7.2. The theory
in its entirety contains other lemmas, needed for later refinements, which we
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shall however not present here. The lemma accessiblel is a key lemma',

and it says that the set_son operator cannot turn garbage nodes into ac-
cessible nodes.

7.2 Invariant Lemmas

Invariants are introduced as predicates over the state, and are formulated
as being invariants using a collection of special functions, which we have
presented in figure 7.3.

The functions IMPLIES and & are just the corresponding boolean oper-
ators lifted to work on state predicates. The function preserved allows us
to prove a predicate “p” as being inductive, assuming the predicate “inv”
as an induction hypothesis. Using this function, we will be able to split
our invariants into manageable sub-lemmas, which in turn can refer to each

other in a mutually recursive manner.

We can now state the invariant needed for the first refinement step.
This is given in the theory Garbage Collectorl_Inv in figure 7.4. The
invariant really needed for the refinement proof is invl, corresponding to
the invariant (5.1) page 20; but during the proof of that, invariant inv2 is
needed. Invariant invl is in fact the safety property originally formulated
for the garbage collector [12]. Its proof requires a generalization, which is
inv2. This shows an example, where we have to strengthen an invariant
(invl) to a stronger invariant (inv2), which is then proven instead.

For each new invariant, three declarations are introduced. As an exam-
ple, the invariant inv1 gives rise to (1) the definition of the predicate inv1,
(2) the i_invl lemma, and (3) the p_invl lemma. The latter states the
inductive property, while the i_invl lemma makes it possible to refer to
inv1 during the proof of other invariant lemmas.

7.3 The Refinement Lemma

The first refinement step is formulated as an application of the Refinement
theory which we defined in figure 6.4. This is done in the theory

'In appendix A.2 the accessiblel lemma is in fact introduced in a different special
theory Accessible_Memory Properties since it’s proof is slightly involved and requires
additional definitions and lemmas.
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Memory_Properties
[NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Observers[NODES,SONS,RO0TS]
IMPORTING List_Properties

cs : VAR Colours
c : VAR Colour
m : VAR Memory

n,nl,n2,k : VAR Node
i,i1,i2,j : VAR Index
N,N1,N2 : VAR nat

accessiblel : LEMMA
accessible(k) (m) AND accessible(nl) (set_son(n,i,k) (m))
IMPLIES accessible(n1) (m)

blackenedl : LEMMA
blackened(n) (cs,m) AND accessible(n) (m) IMPLIES colour(n) (cs)

blackened2 : LEMMA
accessible (k) (m) AND blackened(N) (cs,m)
IMPLIES blackened(N) (cs,set_son(n,i,k) (m))

blackened3 : LEMMA
blackened (N) (cs,m) IMPLIES blackened(N) (set_colour(n,TRUE) (cs) ,m)

blackened4 : LEMMA
blackened(n) (cs,m) IMPLIES blackened(n+1) (set_colour(n,FALSE) (cs) ,m)

blackened5 : LEMMA
NOT accessible(n) (m) AND blackened(n) (cs,m)
IMPLIES blackened(n+1) (cs,append_to_free(n) (m))

blackened6 : LEMMA
blackened (cs,m) IMPLIES blackened(0) (cs,m)

END Memory_Properties

Figure 7.2: Function Lemmas for the First Refinement
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Invariant_Predicates[State : TYPE] : THEORY
BEGIN
IMPORTING Traces[State]

pspl,p2 : VAR pred[Statel
s,sl,s2 : VAR State

init : VAR pred[State]
next : VAR pred[[State,Statell
inv : VAR pred[Statel

IMPLIES (p1,p2) :bool = FORALL s: pl(s) IMPLIES p2(s);
&(pl,p2) :pred[State] = LAMBDA s: pl(s) AND p2(s)
preserved(init,next) (inv) (p) :bool =
(init IMPLIES p) AND
FORALL s1,s2:
inv(s1) AND p(s1) AND next(sl1,s2) IMPLIES p(s2)

END Invariant_Predicates

Figure 7.3: Invariant Predicates
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Garbage_Collectorl_Inv[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Properties[NODES,SONS,R00TS]
IMPORTING Garbage_Collectorl[NODES,SONS,RO0TS]
IMPORTING Invariant_Predicates[State]

s : VAR State
inv1l(s) :bool =
CHI (s)=APPEND AND L(s) < NODES AND accessible(L(s)) (M(s))
IMPLIES
colour(L(s)) (C(s))

inv2(s) :bool =
CHI(s)=TEST_L OR CHI(s)=APPEND IMPLIES blackened(L(s))(C(s),M(s))

I : pred[State] = invl & inv2
pi : pred[pred[Statel] = preserved(init,next) (I)

i_invl : LEMMA I IMPLIES invl
i_inv2 : LEMMA I IMPLIES inv2

p-invl : LEMMA pi(inv1)
p-inv2 : LEMMA pi(inv2)

p_I : LEMMA pi(I)
inv : LEMMA invariant(init,next) (I)

END Garbage_Collectorl_Inv

Figure 7.4: Invariant Lemmas for the First Refinement
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Refinement1[ NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
S : THEORY = Garbage_Collector [NODES,SONS,R0O0TS]
I1 : THEORY = Garbage_Collectorl[NODES,SONS,R00TS]

IMPORTING Garbage_Collectorl_Inv[NODES,SONS,R00TS]

s : VAR Il.State
ri,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):S.State = M(s)

R1 : THEORY =
Refinement[S.0_State,
S.State,S.init,S.next,S.proj,
I1.State,Il1.init,Il.next,I1.proj,
abs,I]

END Refinementl

Figure 7.5: First Refinement Lemma

Refinementl shown in figure 7.5. The theory imports the specification
garbage collector Garbage_Collector, giving it the name S; the implemen-
tation Garbage Collectorl, named I1; and the implementation invariant I
defined in the theory Garbage Collectorl Inv. The theory further defines
the abstraction function abs, and finally applies the Refinement theory.
This application gives rise to four TCC’s (Type Checking Conditions) gen-
erated by PVS, which have to be proven in order for the PV'S specification to
be well formed (type check). Furthermore, the proof of these TCC’s yields
the correctness of the refinement. The TCC’s are shown in figure 7.6.
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% Assuming TCC generated (line 62) for
% Refinement[S.0_State, S.State, S.init, S.next,
% S.proj, Il.State, Il.init, Il.next, Il.proj, abs, I]
% proved - complete
R1_TCC1: OBLIGATION FORALL s: S.proj(abs(s)) = Il.proj(s);

% Assuming TCC generated (line 62) for
% Refinement[S.0_State, S.State, S.init, S.next,
% S.proj, I1l.State, Il.init, Il.next, Il.proj, abs, I]
% proved - complete
R1_TCC2: OBLIGATION FORALL s: I1.init(s) IMPLIES S.init(abs(s));

% Assuming TCC generated (line 62) for
% Refinement[S.0_State, S.State, S.init, S.next,
% S.proj, I1l.State, Il.init, Il.next, Il.proj, abs, I]
% proved - complete
R1_TCC3: OBLIGATION
(FORALL (ri1: (I), r2: (I)):
I1.next(rl, r2) IMPLIES S.next(abs(rl), abs(r2)));

% Assuming TCC generated (line 62) for
% Refinement[S.0_State, S.State, S.init, S.next,
% S.proj, Il.State, Il.init, Il.next, Il.proj, abs, I]
% proved - complete
R1_TCC4: OBLIGATION invariant(Il.init, Il.next) (I);

Figure 7.6: TCC’s Generated by Applying Refinement
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sim_append_white : LEMMA
r2 = Rule_append_white(rl) IMPLIES
(EXISTS n: abs(r2) = Rule_append(n) (abs(r1))) OR abs(r2) = abs(rl)

Figure 7.7: PVS Version of APPEND; < COLLECT

There is a TCC for each ASSUMPTION of the Refinement theory. In
particular R1_TCC3 states the simulation property, and R1_TCC4 states the
invariant property. As illustrated in section 5.1.2 page 20, we show for each
concrete transition which abstract transition it simulates, for example we
had that APPEND; < COLLECT, which in this PVS setting is formulated as
the lemma in figure 7.7.

7.4 Composing the Refinements

The technique illustrated above for the first refinement step is repeated for
the next two, yielding two further theories Refinement2 and Refinement3.
All 3 refinements can now be composed, and the bottom level implementa-
tion can be shown to refine the top level specification using transitivity of the
refinement relation. This is expressed in the theory Composed Refinement
in figure 7.8, where the theorem ref is our main correctness criteria.
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Composed_Refinement [
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Refinementl1 [NODES,SONS,R00TS]
IMPORTING Refinement2[NODES,SONS,RO0TS]
IMPORTING Refinement3[NODES,SONS,RO0TS]

IMPORTING Refine_Predicate
IMPORTING Refine_Predicate_Transitive

ref2 : LEMMA
refines[S.0_State,S.State,I2.State]
(I2.init,I2.next,I2.proj) (S.init,S.next,S.proj)

ref : THEOREM
refines[S.0_State,S.State,I3.State]
(I3.init,I3.next,I3.proj) (S.init,S.next,S.proj)

END Composed_Refinement

Figure 7.8: Composing the Refinements
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Chapter 8

Observations

In this chapter we relate the refinement proof to three other proofs of the
same algorithm, two of which are mechanized.

8.1 Comparison with Two Mechanized Proofs

It is possible to compare the present proof with two other mechanized proofs
of exactly the same algorithm: a proof in the Boyer-Moore prover [12],
from now on referred to as the BM;y,-proof; and a PVS proof [7], referred
to as the PVS;,,-proof. Instead of being based on refinement, these two
proofs are based on a statement of the correctness criteria as an invariant
to be proven about the implementation (the third refinement step). In
addition, a superposition proof has been done in UNITY [4], referred to as
the UNITY,s-proof. This proof is manual, hence no theorem prover has
been used.

The PVS;,,,-proof follows the BMj,,,,-proof closely. Basically the same in-
variants were used, but the PVS;,,-proof used 65 function lemmas, whereas
the BM;p,-proof used over 100. The BM-lemmas were not published, so we
have not been able to examine the reason for this difference. One reason
could be that our lemmas are more general.

The PVS,. s-proof has the advantage over the two other proofs, that the
correctness criteria can be appreciated without knowing the internal struc-
ture of the implementation. That is, we do not need to know for example
that the append operation is only applied in location APPEND to node L,
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and only if L is white. Hence, from this perspective, the refinement proof
represents an improvement.

The PVS,. s-proof has approximately the same size as the PVS;;,,-proof,
in that basically the same invariants and lemmas about auxiliary functions
need to be proven. Hence, one cannot argue that the proof has become any
simpler. On the contrary in fact: since we have many levels, we have to
prove some invariants several times.

One can perhaps say, that some invariants were easier to discover when
using refinement, especially at the top levels. In particular nested loops may
be treated nicely with refinement, only introducing one loop at a time. In
general, loops in the algorithm to be verified are the reason why invariant
discovery is hard, and of course nested loops are no better.

The main lesson obtained from the PVS;,,-proof was that invariant dis-
covery was the key element to focus attention on. The experience with the
PVS,.f-proof is in fact the same: refinement does not relieve us from search-
ing invariants. We had to come up with exactly the same invariants, but
the discovery process was different, perhaps more structured.

Our lesson can be summarized in the following formula, where S is a
transition system, and where P and @ are state predicates, and OX (X
being P or Q) means always X, and where S - OX means that X is true in
all reachable states of S, hence: X is an S invariant.

SEFOP,P=Q
SHOQ

The formula says that if we want to prove S - O, we have to find a
stronger predicate P (which implies @), and prove S F OP. Now proving
S F OP, once we have P is normally not the problem, assuming a good
theorem prover like PVS. Here we believe that the decision procedures in
PVS helped us greatly.

The problem is to find P. This is no new knowledge, since it corresponds
to finding the loop-invariant in while programs, and this is known to be
unsolvable in general. However, heuristics for finding P in many practical
situations may be feasible. A second lesson is that even using refinement
does not relieve us from the invariant discovery process. Hence, it is central.
The problem has also been investigated in [3] by Saddek Bensalem, amongst
others.
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8.2 Comparison with the Manual UNITY Proof

In [4] a proof has been carried out of basically the same algorithm using
the technique of superposition. We describe that effort in the following,
comparing it to our proof.

8.2.1 The Superposition Technique

The UNITY,-proof is based on superposition. As mentioned earlier, this
notion of refinement differs from ours in the sense that the initial program
is not regarded as a specification of lower levels. Rather it is supposed to be
just a starting point, called the underlying program which is then enriched
with more details, in several steps, until the final enrichment, call it the
goal program satisfies some (different) property, which we shall call the goal
property. Hence, this kind of proof is in fact closer to the other invariant
proofs PVS;,, and PVS,;.; mentioned above, in that what we really end up
with is a goal program, which then must satisfy some goal property, which
could for example be an invariant. The stepwise manner in which this goal
program is developed does of course resemble refinement, but it’s rather a
horizontal refinement than a vertical one. Each level in the enrichment chain
inherits the properties proven about the previous level, and all the collected
properties can then be used to prove that the goal program satisfies the goal

property.

8.2.2 Overview of the Proof

The UNITY program to be developed is planned to consist in principle of
a mutator in parallel with a garbage collector. They both work on a graph
with a fixed set of vertices where edges are changed by the mutator. One of
the vertices is the root, and any vertice reachable from the root is accessible.
The mutator works very much the same way as ours. The garbage collector
moves garbage vertices into the free list. Each execution of the garbage
collector consists of an execution of a program called marker followed by an
execution of a program called collector. Program marker marks all accessi-
ble vertices; where after the collector places unmarked vertices on the free
list. The algorithm verified is in fact only the marker in parallel with the
mutator, leaving out the collector. Hence, a simplification compared to our
proof. Another simplification is, that the marker is only called once, and
not repeatedly as it is in our model.
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8.2.3 The Initial Program

The initial underlying program (to be enriched) in the UNITY,. s-proof just
consists of the mutator, adding and deleting edges between vertices. Hence,
already here the approach differs, since our initial program (section 4) is
in fact a complete specification of the final program, which includes this
mutator (figure 4.3), but also an abstract version of the garbage collector
(figure 4.4), that appends garbage vertices to the free list, without specifying
how garbage vertices are identified.

8.2.3.1 The First Superposition

This program is then enriched in two steps. In the first step, a program prop-
agator is obtained, which (in addition to the mutator’s activity) contains a
first development of the garbage collector, which repeatedly marks some
arbitrary vertice that is pointed to from an already marked vertice (prop-
agation of marked vertices). Prior to the execution, the root is marked.
Hence, this should sooner or later result in the marking of all accessible
vertices. In addition, when the mutator adds an arc, the target is marked,
just as in our own case.

The propagator should be compared to our second refinement (section
5.2), the mutator of which is presented in figure 5.3, and the collector pre-
sented in figure 5.7. There are three differences. First, the UNITY,.; muta-
tor marks the target simultaneously with the addition of the edge, while in
our case, the target is assigned to the variable Q, and then Q is marked in
the mutator’s next transition. Second, the UNITY,..; program operates with
one root while we operate with several. Third, our second refinement con-
tains a condition for terminating the propagation, namely not exists bw():
there does not exist a pointer from a black node to a white node. This con-
dition is not part of the second UNITY,,; refinement, which just continues
marking. In fact, the third UNITY,.; superposition, to be described below,
has as purpose to add this termination condition. As we, see, this again
illustrates the difference in approach: our refinement contains a complete
view of the system, while the UNITY . refinement only provides a partial
view (without a termination condition).
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8.2.3.2 The Second Superposition

The final program, the marker is obtained by adding a termination condi-
tion. This is done by adding four variables: two boolean flags, mu.flag and
ma.flag, one for the mutator and one for the garbage collector; a variable b,
containing a set of edges, and a boolean variable over, which will become
true eventually when all accessible vertices have been marked. The variable
b is initially the empty set, and over is false (the two flags have arbitrary
values). The final superposition is now done by modifying the mutator and
the garbage collector, and by adding three new, always enabled, transitions
which manipulate the four new variables.

The mutator and garbage collector are modified such that they set their
respective flags to false in case they mark a non-marked vertice. The three
new transitions are as follows. First, a transition simply adds an edge (u,v)
to b in case it holds that: “marked(u) implies marked(v)”. Second, a transi-
tion empties b and assigns true to the two flags in case any of them are false.
Finally, a third transition assigns true to the variable over in case both flags
are true and also the variable b contains all possible edges.

This program differs from our third and final refinement (section 5.3)
presented in figure 5.9 in basically two ways. First, we have refined the
propagation further such that nodes are scanned in a pre-defined lexico-
graphic order, and not arbitrarily as in the UNITY,.; program. Second,
we model the termination condition by another scan of all nodes, count-
ing the number of black nodes, and comparing this number to the previous
count, terminating the propagation only if these numbers are equal (no new
nodes have been coloured). If they are not equal, a lexicographically ordered
propagation is repeated.

8.2.4 The Proof

The property proven about the final marker is:

e The variable over eventually becomes true

e When over is true, all accessible nodes are marked.

This is a liveness property in contrast to ours, which is a safety property.
Our safety property is basically stated in figure 4.4, and states that only
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garbage nodes are appended to the free list. Since the UNITY,.; program
does not include this collecter phase, the correctness property must be stated
differently, hence as a liveness property.
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Appendix A

PVS Theories
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A.1 Transition Systems and their Refinement

bbb bbb bbb oo o to o loToToToToToTo To To To ToToTo ToTo To o o To o T o oo o o o o T o o o o oo oo o o o o o

% Traces : Y
%  Assuming a transition system (State,init,next) this theory /%
% defines what a trace is and what an invariant is. %

WRRRIIBBBI DD DDIIDI DI DDADK DI DDABI D DDDDIK DDA DD Kh DDA DDAS
Traces[State : TYPE] : THEORY
BEGIN
init : VAR pred[Statel
next : VAR pred[[State,Statell
sq : VAR sequence[Statel
n : VAR nat
trace(init,next) (sq) :bool =
init(sq(0)) AND
FORALL n: next(sq(n),sq(n+1))
p : VAR pred[Statel

invariant (init,next) (p) :bool =
FORALL (tr:(trace(init,next))): FORALL n: p(tr(n))

END Traces
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bbb to s o tololo o ToloTo o ToToToToToToToToToToTo o To o To oo T T oo oo o oo oo o o o o o

% Refine_Predicate : %
% Defines the predicate ‘‘refines’’ expressing when one %
%  transition system refines another. A

WRRRRRRRBIRIIIIIDDDTT T T To o ToToloToloToloTolo o To o Toto ToTo o To oo To o T o o o o To o o o o o o

Refine_Predicate[
0_State : TYPE,
S_State : TYPE,
I_State : TYPE] : THEORY

BEGIN
IMPORTING Traces
s_init : VAR pred[S_State]
s_next : VAR pred[[S_State,S_State]]
s_proj : VAR [S_State -> 0O_Statel
i_init : VAR pred[I_Statel
i_next : VAR pred[[I_State,I_State]ll
i_proj : VAR [I_State -> D_Statel
refines(i_init,i_next,i_proj) (s_init,s_next,s_proj):bool =
FORALL (i_tr:(trace(i_init,i_next))):
EXISTS (s_tr:(trace(s_init,s_next))):

map(i_proj,i_tr) = map(s_proj,s_tr)

END Refine_Predicate
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bbbl oo o toTotoToToToTo ToToTo o To o To T o o

% Refine_Predicate_Transitive

YAANA

% States as a lemma that refinement is transitive. %
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Refine_Predicate_Transitivel[
0_State : TYPE,
Statel : TYPE,
State2 : TYPE,
State3 : TYPE] : THEORY

BEGIN
IMPORTING Refine_Predicate

initl : VAR pred[Statel]
nextl : VAR pred[[Statel,Statel]l]
projl : VAR [Statel -> 0_Statel

init2 : VAR pred[State2]
next2 : VAR pred[[State2,State2]]
proj2 : VAR [State2 -> O_Statel

init3 : VAR pred[State3]
next3 : VAR pred[[State3,State3]]
proj3 : VAR [State3 -> O_Statel

transitive : LEMMA

refines[0_State,State2,State3]
(init3,next3,proj3) (init2,next2,proj2) AND

refines[0_State,Statel,State2]
(init2,next2,proj2) (initl,nextl,projl)
IMPLIES

refines[0_State,Statel,State3]
(init3,next3,proj3) (initl,next1,proj1)

END Refine_Predicate_Transitive
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% Refinement :

% The lemma ‘‘ref’’ states that the implementation refines
%  the specification conditioned the assumptions. %
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YAANA

Refinement [
0_State : TYPE,

S_State : TYPE,

S_init : pred[S_Statel],

S_next : pred[[S_State,S_Statell,
S_proj : [S_State -> 0_Statel,

I_State : TYPE,
I_init : pred[I_State],
I_next : pred[[I_State,I_Statell,

I_proj : [I_State -> 0_Statel,

abs : [I_State -> S_State],

I_inv : [I_State -> booll] : THEORY
BEGIN

ASSUMING

IMPORTING Traces

s : VAR I_State
ri,r2 : VAR (I_inv)

proj_id : ASSUMPTION
FORALL s: S_proj(abs(s)) = I_proj(s)

init_h : ASSUMPTION
FORALL s: I_init(s) IMPLIES S_init(abs(s))

next_h : ASSUMPTION
I_next(rl,r2) IMPLIES S_next(abs(rl),abs(r2))

invar : ASSUMPTION
invariant(I_init,I_next) (I_inv)

ENDASSUMING

IMPORTING Refine_Predicate[0_State,S_State,I_State]
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ref : THEOREM refines(I_init,I_next,I_proj)
(S_init,S_next,S_proj)

END Refinement
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% Invariant_Predicates
%  Functions used for proving invariants. %
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Invariant_Predicates[State : TYPE] : THEORY
BEGIN
IMPORTING Traces[State]

pspl,p2 : VAR pred[Statel
s,sl,s2 : VAR State

init : VAR pred[Statel
next : VAR pred[[State,State]]
inv : VAR pred[State]

IMPLIES (p1,p2) :bool = FORALL s: pl(s) IMPLIES p2(s);
&(p1,p2) :pred[State] = LAMBDA s: p1(s) AND p2(s)

preserved(init,next) (inv) (p) :bool =
(init IMPLIES p) AND
FORALL s1,s2:
inv(s1) AND p(s1) AND next(sl,s2) IMPLIES p(s2)

preserved_and : LEMMA
preserved(init,next) (inv) (p1) AND
preserved(init,next) (inv) (p2)
IMPLIES
preserved(init,next) (inv) (p1 & p2)

preserved_inv : LEMMA
preserved(init,next) (inv) (inv) IMPLIES invariant(init,next) (inv)

END Invariant_Predicates
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A.2 The Memory
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% Memory : A
% Defines the memory type and the basic operations upon it. %
% Defines what it means for a node to be accessible in a h
%  memory. A
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Memory [
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

Memory : TYPE+

Node : TYPE = {n : nat | n < NODES}
Index : TYPE = {i : nat | i < SONS}
Root : TYPE = {r : nat | r < ROOTS}

m : VAR Memory
n,nl,n2,k : VAR Node
i,i1,i2 : VAR Index

null_array : Memory
son : [Node,Index -> [Memory -> Nodell]
set_son : [Node,Index,Node -> [Memory -> Memory]]

mem_ax1l : AXIOM son(n,i) (null_array) = 0

mem_ax2 : AXIOM son(nl,il) (set_son(n2,i2,k) (m))

IF nl=n2 AND il=i2 THEN k ELSE son(nl,il) (m) ENDIF

points_to(n1,n2) (m) :bool =
EXISTS (i:Index): son(nl,i) (m)=n2

accessible(n) (m) : INDUCTIVE bool =
n < ROOTS OR
EXISTS k: accessible(k)(m) AND points_to(k,n) (m)

append_to_free : [Node -> [Memory -> Memoryl]
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append_ax: AXIOM
(NOT accessible(k) (m))
IMPLIES
(accessible(n) (append_to_free(k) (m)) IFF (n = k OR accessible(n) (m)))

END Memory
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% Accessible_Memory_Properties
% States lemmas about the ‘‘accessible’’ function. %
% These lemmas are needed during invariant proofs. ¥
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Accessible_Memory_Properties[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory [NODES,SONS,RO0TS]

m : VAR Memory
n,nl,n2,k,k1 : VAR Node
i : VAR Index
1,11,12 : VAR list[Nodel

path(m) (n, n1)(1): RECURSIVE bool =
(CASES 1 OF
null: n = nl,
cons(k,1): (points_to(k, n1)(m) AND
path(m) (n, k) (1))
ENDCASES)
MEASURE length(1)

member_cdr(n, 1): RECURSIVE list[Node] =
(CASES 1 OF
null: null,
cons(k, 11): (IF k = n THEN 11
ELSE member_cdr(n, 11) ENDIF)
ENDCASES)
MEASURE length (1)

set_son_points_to_1: LEMMA
points_to(n, k) (set_son(n, i, k) (m))

set_son_points_to_2: LEMMA
n /= nl IMPLIES
points_to(nl, k1) (set_son(n, i, k)(m)) =
points_to(nl, k1) (m)
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set_son_points_to_3: LEMMA
k/=k1 AND
points_to(nl, k1) (set_son(n, i, k) (m))
IMPLIES points_to(nl, k1) (m)

path_append: LEMMA
path(m) (n, n1) (11) AND path(m) (k, k1) (12) AND points_to(kl, n) (m)
IMPLIES path(m) (k, nl) (append(1l1l, cons(kl, 12)))

accessible_path: LEMMA
accessible(n) (m)
= (EXISTS nl, 1: path(m)(nl, n)(1) AND nl < ROOTS)

path_member_cdr: LEMMA
path(m) (n, n1) (1) AND member(k, 1) IMPLIES
path(m) (n, k) (member_cdr(k, 1))

length_member_cdr: LEMMA
cons?(1) IMPLIES
length (member_cdr(n, 1)) < length(l)

path_without_duplicates: LEMMA
path(m) (n, n1) (1) IMPLIES
(EXISTS 11: path(m)(n, n1)(11) AND
NOT member(nil, 11))

path_set_son: LEMMA
path(m) (n, n1) (1) AND NOT member(k, 1) IMPLIES
path(set_son(k, i, k1) (m)) (n, nl) (1)

path_set_son_2: LEMMA
path(set_son(k, i, k1) (m)) (n, n1) (1) AND
NOT member(k, 1)
IMPLIES
path(m) (n, nl) (1)

path_set_son_3: LEMMA
path(set_son(k, i, k1) (m)) (n, n1) (1) AND
path(m) (n2, k1) (12)
IMPLIES
(EXISTS 11: path(m) (n, n1)(11) OR
path(m) (n2, n1)(11))

accessiblel : LEMMA

accessible(k) (m) AND accessible(nl) (set_son(n,i,k) (m))
IMPLIES
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accessible(nl) (m)

accessible2 : LEMMA
accessible(k) (m) IMPLIES accessible(k) (set_son(n,i,k) (m))

END Accessible_Memory_Properties
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% Coloured_Memory : %
% Defines functions to colour (and examine the colours of) ¥%
%  memory nodes. %
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Coloured_Memory [
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory [NODES,SONS,RO0TS]

Colour : TYPE
Colours : TYPE

bool
[Node -> Colour]

: VAR Node
i : VAR Index

: VAR Colour
cs : VAR Colours
m : VAR Memory

colour(n) (cs) :Colour =
cs(n)

set_colour(n,c) (cs) :Colours =
cs WITH [n := c]

blackened(cs,m) :bool =
FORALL n: accessible(n) (m) IMPLIES colour(n) (cs)

bw(n,i) (cs,m) :bool =
colour(n) (cs) AND NOT colour(son(n,i) (m)) (cs)

exists_bw(cs,m) :bool =
EXISTS n,i: bw(n,i) (cs,m)

END Coloured_Memory
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% Memory_Observers :
% Defines memory observers, being functions that extract ¥

% information from the memory. These functions are used }
%  when stating the invariants.
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Memory_Observers
[NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Coloured_Memory [NODES,SONS,RO0TS]

cs : VAR Colours
m : VAR Memory
n : VAR Node

i : VAR Index
r : VAR Root
N,N1,N2 : VAR nat
11,12 : VAR nat

cli,cl2 : VAR [nat,nat]
blackened (N) (cs,m) :bool =
FORALL (n | N <= n):
accessible(n) (m) IMPLIES colour(n) (cs)

black_roots(N) (cs) :bool =
FORALL (r | r < N): colour(r) (cs);

<(cl1,cl2):bool =

LET
nl = PROJ_1(cl1), il = PROJ_2(cl1),
n2 = PROJ_1(cl2), i2 = PR0OJ_2(cl2)
IN

nl < n2 OR (nl = n2 AND il < i2);

exists_bw(N1,I1,N2,I2) (cs,m):bool =
EXISTS n,i:
bw(n,i) (cs,m) AND
NOT (n,i) < (N1,I1) AND
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(n,i) < (N2,I2)

blacks(N1,N2) (cs) : RECURSIVE nat =
IF N1 < N2 AND N1 < NODES THEN
IF colour(N1) (cs) THEN 1 ELSE O ENDIF + blacks(N1i+1,N2) (cs)
ELSE
0
ENDIF
MEASURE abs (N2-N1)

END Memory_0Observers
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% Memory_Properties

A States lemmas about memory observers.
% These lemmas are needed during invariant proofs. ¥
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Memory_Properties[NODES: posnat, SONS: posnat, ROOTS: posnat]: THEORY
BEGIN

ASSUMING
roots_within: ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory_Observers[NODES, SONS, ROOTS]
IMPORTING Accessible_Memory_Properties[NODES, SONS, ROOTS]
abs((i: int)): nat = IF i < O THEN -i ELSE i ENDIF

cs : VAR Colours

c : VAR Colour

m : VAR Memory

n, nl, n2, k : VAR Node

i, i1, i2, j : VAR Index
N, N1, N2 : VAR nat

I, I1, I2 : VAR nat

x : VAR nat

1, 11, 12 : VAR list[Nodel

smallerl : LEMMA
NOT (mn, i) < (0, 0)

smaller2 : LEMMA
(NOT (n, i) < (k, 0) AND (n, i) < (k + 1, 0)) IMPLIES n = k

smaller3 : LEMMA
(n, i) < (k, SONS) IFF (n, i) < (k + 1, 0)

smaller4 : LEMMA
(NOT (n, i) < (k, j) AND (m, i) < (k, j + 1)) IMPLIES (n, i) = (k, j)

colourl : LEMMA
colour(n) (set_colour(nl, c)(cs)) = IF n = nl THEN c ELSE colour(n) (cs) ENDIF

colour2 : LEMMA
colour(n) (cs) IMPLIES set_colour(n, TRUE) (cs) = cs
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blackenedl : LEMMA
blackened(n) (cs, m) AND accessible(n) (m) IMPLIES colour(n) (cs)

blackened2 : LEMMA
accessible(k) (m) AND blackened(N) (cs, m) IMPLIES blackened(N) (cs, set_son(n, i, k) (m))

blackened3 : LEMMA
blackened (N) (cs, m) IMPLIES blackened(N) (set_colour(n, TRUE) (cs), m)

blackened4 : LEMMA
blackened(n) (cs, m) IMPLIES blackened(n + 1) (set_colour(n, FALSE) (cs), m)

blackened5: LEMMA
NOT accessible(n) (m) AND blackened(n) (cs, m) IMPLIES
blackened(n + 1) (cs, append_to_free(n) (m))

blackened6 : LEMMA
blackened(cs, m) IMPLIES blackened(0) (cs, m)

blackened7 : LEMMA
black_roots (ROOTS) (cs) AND NOT exists_bw(cs, m) IMPLIES blackened(cs, m)

blackened8 : LEMMA
blackened(cs, m) AND accessible(n) (m) IMPLIES colour(n) (cs)

black_rootsl : LEMMA
black_roots (N) (cs) IMPLIES black_roots(N) (set_colour(n, TRUE) (cs))

black_roots2 : LEMMA
black_roots(0) (cs)

black_roots3 : LEMMA
black_roots(n) (cs) IMPLIES black_roots(n + 1) (set_colour(n, TRUE) (cs))

bwl : LEMMA
bw(n, i) (cs, m) = (colour(m) (cs) AND NOT colour(son(n, i) (m)) (cs))

bw2 : LEMMA
(NOT bw(nl, i1) (cs, m) AND bw(nl, il1)(cs, set_son(n2, i2, k) (m)))
IMPLIES
(n1, i1) = (n2, i2)

bw3: LEMMA
(NOT bw(n, i) (cs, m) AND bw(n, i) (set_colour(k, TRUE)(cs), m))
IMPLIES
(n = k AND NOT colour(n) (cs))

73



bw4 : LEMMA
bw(n, i) (cs, m) IMPLIES colour(n) (cs) AND NOT colour(son(n, i) (m)) (cs)

exists_bwl : LEMMA
colour (k) (cs) AND NOT exists_bw(cs, m) IMPLIES NOT exists_bw(cs, set_son(n, i, k) (m))

exists_bw2 : LEMMA
exists_bw(cs, m) = exists_bw(0, 0, NODES, 0) (cs, m)

exists_bw3 : LEMMA
NOT exists_bw(N, I, N, I)(cs, m)

exists_bw4 : LEMMA
NOT exists_bw(0, O, N, I)(cs, m) AND exists_bw(0, O, N, I)(cs, set_son(n, i, k)(m))
IMPLIES
NOT colour(k)(cs) AND (n, i) < (N, I)

exists_bwb : LEMMA
accessible(n) (m) AND NOT colour(m) (cs) AND black_roots(ROOTS) (cs)
IMPLIES
exists_bw(0, 0, NODES, 0)(cs, m)

exists_bw6 : LEMMA
exists_bw(0, 0, NODES, 0)(cs, m)
IMPLIES
exists_bw(0, O, N, I)(cs, m) OR exists_bw(N, I, NODES, 0)(cs, m)

exists_bw7 : LEMMA
exists_bw(N, I, NODES, 0)(cs, m) AND (n, i) < (N, I)
IMPLIES
exists_bw(N, I, NODES, 0)(cs, set_son(n, i, k) (m))

exists_bw8 : LEMMA
NOT colour(n) (cs) AND exists_bw(0, O, n + 1, 0)(cs, m)
IMPLIES
exists_bw(0, 0, n, 0)(cs, m)

exists_bw9 : LEMMA
NOT colour(n) (cs) AND exists_bw(n, O, NODES, 0)(cs, m)
IMPLIES
exists_bw(n + 1, 0, NODES, 0)(cs, m)

exists_bwl0 : LEMMA
exists_bw(0, O, N + 1, 0)(cs, m) IMPLIES exists_bw(0, 0, N, SONS) (cs, m)

exists_bwll : LEMMA
exists_bw(N, SONS, NODES, 0)(cs, m) IMPLIES exists_bw(N + 1, 0, NODES, 0) (cs, m)
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exists_bwl2 : LEMMA
colour(son(n, i) (m)) (cs) AND exists_bw(0, O, n, i + 1)(cs, m)
IMPLIES
exists_bw(0, 0, n, i) (cs, m)

exists_bwl3 : LEMMA
colour(son(n, i) (m)) (cs) AND exists_bw(n, i, NODES, 0)(cs, m)
IMPLIES
exists_bw(n, i + 1, NODES, 0)(cs, m)

exists_bwl4 : LEMMA
exists_bw(N1, I1, N2, I2)(cs, m)
IMPLIES
EXISTS (n: Node, i: Index):
bw(n, i) (cs, m) AND NOT (n, i) < (N1, I1) AND (m, i) < (N2, I2)

blacksl : LEMMA
blacks(N, N)(cs) =0

blacks2 : LEMMA
blacks (N1, N2)(cs) <= blacks(N1, N2) (set_colour(n, TRUE) (cs))

blacks3 : LEMMA
NOT colour(n) (cs) IMPLIES blacks(n, N) (cs) = blacks(n + 1, N) (cs)

blacks4 : LEMMA
(n < N AND colour(n) (cs)) IMPLIES blacks(n, N)(cs) = blacks(n + 1, N)(cs) + 1

blacks5_1 : LEMMA
(n < N1 OR n >= N2) IMPLIES blacks (N1, N2) (set_colour(n, c)(cs)) = blacks(Ni, N2)(cs)

blacks5_2 : LEMMA
(n >= N1 AND n < N2 AND NOT colour(n) (cs))
IMPLIES
blacks(N1, N2) (set_colour(n, TRUE) (cs)) = blacks(N1, N2)(cs) + 1

blacksb : LEMMA
(blacks (0, NODES) (set_colour(n, TRUE) (cs)) = blacks(0, NODES) (cs)) IMPLIES colour(n) (cs)

blacks6 : LEMMA
NOT colour(n2) (cs) IMPLIES blacks(nl, n2 + 1) (cs) = blacks(nl, n2) (cs)

blacks7 : LEMMA
nl <= n2 AND colour(n2) (cs) IMPLIES blacks(nl, n2 + 1)(cs) = blacks(nl, n2)(cs) + 1

END Memory_Properties
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A.3 The Refinement Steps

A.3.1 Top Level Specification
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% Garbage_Collector : %
% The top-level specification of the garbage collector. %
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Garbage_Collector[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory [NODES,SONS,RO0TS]

State : TYPE = Memory
0_State : TYPE = Memory

s,sl,s2 : VAR State
n,k : VAR Node
i : VAR Index

proj(s):0_State = s
init(s):bool = (s = null_array)

Rule_mutate(n,i,k)(s):State =
IF accessible(k) (s) THEN
set_son(n,i,k) (s)
ELSE
s
ENDIF

Rule_append(n) (s) :State =
IF NOT accessible(n) (s) THEN
append_to_free(n) (s)
ELSE
s
ENDIF

next(s1,s2) :bool =
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(EXISTS n,i,k: s2 = Rule_mutate(n,i,k)(sl1)) OR
(EXISTS n: s2 = Rule_append(n) (s1)) OR
s2 = sl

END Garbage_Collector
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A.3.2 First Refinement
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% Garbage_Collectorl : %
% The first refinement of the garbage collector. ¥
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Garbage_Collectori[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Coloured_Memory [NODES,SONS,RO0TS]

MuPC : TYPE = {MUTATE,COLOUR}
CoPC : TYPE {COLOUR,TEST_L,APPEND}

State : TYPE

[# MU : MuPC, CHI : CoPC,
Q : nat, L : nat , C : Colours, M : Memory #]

0_State : TYPE = Memory

s,sl,s2 : VAR State
n,k : VAR Node
i : VAR Index

proj(s):0_State = M(s)

init(s) :bool =
MU(s) = MUTATE
& CHI(s) = COLOUR
& M(s) = null_array

WD IDIh DD I DTt e to s
% The MUTATOR Process %
WD IDIh DD I DTt e to s

Rule_mutate(n,i,k)(s):State =
IF MU(s) = MUTATE AND accessible(k) (M(s)) THEN
s WITH [M := set_son(n,i,k) (M(s)),
Q :=k,
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MU := COLOUR]
ELSE
s
ENDIF

Rule_colour_target(s):State =
IF MU(s) COLOUR AND Q(s) < NODES THEN
s WITH [C := set_colour(Q(s),TRUE) (C(s)),
MU := MUTATE]

ELSE
s
ENDIF

MUTATOR(s1,s2) :bool =
(EXISTS n,i,k: s2 = Rule_mutate(n,i,k) (s1))
OR s2 = Rule_colour_target(sl)

Wl Tl bt bt oo o to lo o fo to o
% The COLLECTOR Process
Wl Tl bt bt oo o to lo o fo to o

Rule_stop_colouring(s) :State =
IF CHI(s) = COLOUR AND blackened(C(s),M(s)) THEN
s WITH [L := 0, CHI := TEST_L]
ELSE
s
ENDIF

Rule_colour(n) (s) :State =
IF CHI(s) = COLOUR THEN
s WITH [C := set_colour(n,TRUE) (C(s))]
ELSE
s
ENDIF

Rule_stop_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) = NODES THEN
s WITH [CHI := COLOUR]
ELSE
s
ENDIF

Rule_continue_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) < NODES THEN
s WITH [CHI := APPEND]
ELSE
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s
ENDIF

Rule_black_to_white(s):State =
IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s)) (C(s)) THEN
s WITH [C := set_colour(L(s),FALSE) (C(s)),
L := L(s)+1,
CHI := TEST_L]
ELSE
s
ENDIF

Rule_append_white(s) :State =
IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)),
L :=L(s) + 1,
CHI := TEST_L]
ELSE
s
ENDIF

COLLECTOR(s1,s2) :bool =
s2 = Rule_stop_colouring(s1)
OR (EXISTS n: s2 = Rule_colour(n)(s1))
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(sl)
OR s2 = Rule_append_white(s1)

WD T T o to o to o oo To o T o o To o
% The Transition Relation %
I T T T Toto oo fe To e
next(sl,s2) :bool =
MUTATOR(s1,s2) OR
COLLECTOR(s1,s2) OR
s2 = s1

END Garbage_Collectorl
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A.3.3 Second Refinement
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% Garbage_Collector2 : YA
% The second refinement of the garbage collector.
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Garbage_Collector2[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Coloured_Memory [NODES,SONS,RO0TS]

MuPC : TYPE = {MUTATE,COLOUR}
CoPC : TYPE {COLOUR_ROOTS ,PROPAGATE, TEST_L , APPEND }

State : TYPE

[# MU : MuPC, CHI : CoPC,
Q : nat, K : nat, L : nat, C : Colours, M : Memory #]

0_State : TYPE = Memory

s,sl,s2 : VAR State
n,k : VAR Node
i : VAR Index

proj(s):0_State = M(s)

init(s) :bool =
MU(s) = MUTATE
& CHI(s) = COLOUR_ROOTS
& K(s) =0
& M(s) = null_array

WD IDIh DD I DTt e to s
% The MUTATOR Process %
WD IDIh DD I DTt e to s

Rule_mutate(n,i,k)(s):State =
IF MU(s) = MUTATE AND accessible(k) (M(s)) THEN
s WITH [M := set_son(n,i,k) (M(s)),
Q :=k,
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MU := COLOUR]
ELSE
s
ENDIF

Rule_colour_target(s):State =
IF MU(s) COLOUR AND Q(s) < NODES THEN
s WITH [C := set_colour(Q(s),TRUE) (C(s)),
MU := MUTATE]

ELSE
s
ENDIF

MUTATOR(s1,s2) :bool =
(EXISTS n,i,k: s2 = Rule_mutate(n,i,k) (s1))
OR s2 = Rule_colour_target(sl)

Wl Tl bt bt oo o to lo o fo to o
% The COLLECTOR Process
Wl Tl bt bt oo o to lo o fo to o

Rule_stop_colouring_roots(s) :State =
IF CHI(s) = COLOUR_ROOTS AND K(s) = ROOTS THEN
s WITH [CHI := PROPAGATE]
ELSE
s
ENDIF

Rule_colour_root(s):State =
IF CHI(s) = COLOUR_ROOTS AND K(s) < ROOTS THEN
s WITH [C := set_colour(K(s),TRUE) (C(s)),
K := K(s) + 1]
ELSE
s
ENDIF

Rule_stop_propagating(s) :State =
IF CHI(s) = PROPAGATE AND NOT exists_bw(C(s),M(s)) THEN
s WITH [L := 0, CHI := TEST_L]
ELSE
s
ENDIF

Rule_propagate(n,i) (s) :State =

IF CHI(s) = PROPAGATE AND bw(n,i) (C(s),M(s)) THEN
s WITH [C := set_colour(son(n,i) (M(s)),TRUE) (C(s))]
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ELSE
s
ENDIF

Rule_stop_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) = NODES THEN
s WITH [K := 0, CHI := COLOUR_ROOTS]
ELSE
s
ENDIF

Rule_continue_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) < NODES THEN
s WITH [CHI := APPEND]
ELSE
s
ENDIF

Rule_black_to_white(s):State =
IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s)) (C(s)) THEN
s WITH [C := set_colour(L(s),FALSE) (C(s)),
L := L(s)+1,
CHI := TEST_L]
ELSE
s
ENDIF

Rule_append_white(s) :State =
IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)),
L :=L(s) + 1,
CHI := TEST_L]
ELSE
s
ENDIF

COLLECTOR(s1,s2) :bool =
s2 = Rule_stop_colouring_roots(sl)
OR s2 = Rule_colour_root(sl)
OR s2 = Rule_stop_propagating(s1)
OR (EXISTS n,i: s2 = Rule_propagate(n,i) (s1))
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(s1)
OR s2 = Rule_append_white(sl)

WRRRRRRRRRRRRRDDIDIBDDDDDN N
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% The Transition Relation %

WRRRRRRRRRRRRRDDIDIBDDDDDN N

next(s1,s2) :bool =
MUTATOR(s1,s2) OR
COLLECTOR(s1,s2) OR
s2 = sl

END Garbage_Collector2
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A.3.4 Third Refinement
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% Garbage_Collector3 : %
% The third refinement of the garbage collector. ¥
bbbl o h oo Toto o ToToTo To ToToTo To T To To T To T To T T T T T T T o T o o o o o o o o o
Garbage_Collector3[

NODES : posnat,

SONS : posnat,

ROOTS : posnat] : THEORY
BEGIN

ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Coloured_Memory [NODES,SONS,RO0TS]

MuPC : TYPE = {MUTATE,COLOUR}

CoPC : TYPE = {COLOUR_ROOTS,TEST_I,TEST_COLOUR,COLOUR_SONS,
TEST_H,COUNT,COMPARE, TEST_L , APPEND }

State : TYPE

[# MU : MuPC, CHI : CoPC,
Q : nat, BC : nat, OBC : nat,
H: nat, I : nat, J : nat, K :
C : Colours, M : Memory #]

0_State : TYPE = Memory
s,sl,s2 : VAR State

n,k : VAR Node

i : VAR Index
proj(s):0_State = M(s)
init(s) :bool =

MU(s) = MUTATE
& CHI(s) = COLOUR_ROOTS

& 0BC(s) =0
& K(s) =0
& M(s) = null_array

WLl B T Dh DIt hotos
% The MUTATOR Process
WD IDIh DD I DTt e to s
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Rule_mutate(n,i,k)(s):State =
IF MU(s) = MUTATE AND accessible(k) (M(s)) THEN
s WITH [M := set_son(n,i,k) (M(s)),
Q :=k,
MU := COLOUR]
ELSE
s
ENDIF

Rule_colour_target(s):State =
IF MU(s) = COLOUR AND Q(s) < NODES THEN
s WITH [C := set_colour(Q(s),TRUE) (C(s)),
MU := MUTATE]
ELSE
s
ENDIF

MUTATOR (s1,s2) :bool =
(EXISTS n,i,k: s2 = Rule_mutate(n,i,k) (s1))
OR s2 = Rule_colour_target(s1)

I T DI T oIt o to feto s
% The COLLECTOR Process Y%
I T DI T oIt o to feto s

Rule_stop_colouring_roots(s) :State =
IF CHI(s) = COLOUR_ROOTS AND K(s) = ROOTS THEN
s WITH [I := 0, CHI := TEST_I]
ELSE
s
ENDIF

Rule_colour_root(s):State =
IF CHI(s) = COLOUR_ROOTS AND K(s) < ROOTS THEN
s WITH [C := set_colour(K(s),TRUE) (C(s)),
K := K(s) + 1]
ELSE
s
ENDIF

Rule_stop_propagating(s) :State =
IF CHI(s) = TEST_I AND I(s) = NODES THEN
s WITH [BC := 0, H := 0, CHI := TEST_H]
ELSE
s
ENDIF
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Rule_continue_propagating(s) :State =
IF CHI(s) = TEST_I AND I(s) < NODES THEN
s WITH [CHI := TEST_COLOUR]
ELSE
s
ENDIF

Rule_white_node(s) :State =
IF CHI(s) = TEST_COLOUR AND I(s) < NODES AND NOT colour(I(s))(C(s)) THEN
s WITH [I := I(s) + 1, CHI := TEST_I]
ELSE
S
ENDIF

Rule_black_node(s) :State =
IF CHI(s) = TEST_COLOUR AND I(s) < NODES AND colour(I(s))(C(s)) THEN
s WITH [J := 0, CHI := COLOUR_SONS]
ELSE
S
ENDIF

Rule_stop_colouring_sons(s):State =
IF CHI(s) = COLOUR_SONS AND J(s) = SONS THEN
s WITH [I := I(s) + 1, CHI := TEST_I]
ELSE
s
ENDIF

Rule_colour_son(s) :State =
IF CHI(s) = COLOUR_SONS AND I(s) < NODES AND J(s) < SONS THEN
s WITH [C := set_colour(son(I(s),J(s)) (M(s)),TRUE) (C(s)),
J = J(s) + 1]

ELSE
s
ENDIF

Rule_stop_counting(s) :State =
IF CHI(s) = TEST_H AND H(s) = NODES THEN
s WITH [CHI := COMPARE]
ELSE
s
ENDIF

Rule_continue_counting(s) :State =

IF CHI(s) = TEST_H AND H(s) /= NODES THEN
s WITH [CHI := COUNT]
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ELSE
s
ENDIF

Rule_skip_white(s):State =
IF CHI(s) = COUNT AND H(s) < NODES AND NOT colour(H(s)) (C(s)) THEN
s WITH [H := H(s) + 1, CHI := TEST_H]
ELSE
S
ENDIF

Rule_count_black(s) :State =
IF CHI(s) = COUNT AND H(s) < NODES AND colour (H(s))(C(s)) THEN
s WITH [BC := BC(s) + 1, H := H(s) + 1, CHI := TEST_H]
ELSE
S
ENDIF

Rule_stop_colouring(s) :State
IF CHI(s) = COMPARE AND BC(s) = OBC(s) THEN
s WITH [L := 0, CHI := TEST_L]
ELSE
s
ENDIF

Rule_continue_colouring(s) :State =
IF CHI(s) = COMPARE AND BC(s) /= 0BC(s) THEN
s WITH [OBC := BC(s), I := 0, CHI := TEST_I]
ELSE
s
ENDIF

Rule_stop_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) = NODES THEN
s WITH [BC := 0, OBC := 0, K := 0, CHI := COLOUR_ROOTS]
ELSE
s
ENDIF

Rule_continue_appending(s) :State =
IF CHI(s) = TEST_L AND L(s) < NODES THEN
s WITH [CHI := APPEND]
ELSE
s
ENDIF

Rule_black_to_white(s):State =
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IF CHI(s) = APPEND AND L(s) < NODES AND colour(L(s)) (C(s)) THEN
s WITH [C := set_colour(L(s),FALSE) (C(s)),
L := L(s)+1, CHI := TEST_L]
ELSE
S
ENDIF

Rule_append_white(s) :State =
IF CHI(s) = APPEND AND L(s) < NODES AND NOT colour(L(s))(C(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)),
L :=L(s) + 1, CHI := TEST_L]

ELSE
s
ENDIF

COLLECTOR(s1,s2) :bool =
s2 Rule_stop_colouring_roots(s1)
OR s2 = Rule_colour_root(sl)
OR s2 = Rule_stop_propagating(sl)
OR s2 = Rule_continue_propagating(s1)
OR s2 = Rule_white_node(s1)
OR s2 = Rule_black_node(s1)
OR s2 = Rule_stop_colouring_sons(s1)
OR s2 = Rule_colour_son(sl)
OR s2 = Rule_stop_counting(s1l)
OR s2 = Rule_continue_counting(s1)
OR s2 = Rule_skip_white(sl)
OR s2 = Rule_count_black(s1)
OR s2 = Rule_stop_colouring(sl)
OR s2 = Rule_continue_colouring(sl)
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(s1)
OR s2 = Rule_append_white(s1)

I T T T Toto oo fe To e
% The Transition Relation %
WD T T o to o to o oo To o T o o To o
next(sl,s2) :bool =
MUTATOR(s1,s2) OR
COLLECTOR(s1,s2) OR
s2 = s1

END Garbage_Collector3d
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A.4 Refinement and Invariant Lemmas

A.4.1 Lemmas in First Refinement
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% Refinementl : %
% Applies the ‘‘Refinement’’ theory to yield h
% the first refinement lemma ‘‘R1’’. There is a %
% ‘‘sim_xxx’’ lemma for each concrete transition ‘xxx’’, %

% and these lemmas are used in proving the ‘‘next_h’’ lemma, %

%  which again is used in proving the TCC’s generated by the
%  application of the ‘‘Refinement’’ theory. YA
T b T bt T oo o T T o o o T o o T T o o o T T o o o T o o T o o T T o o T T o T T o o T o

Refinement1[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
S : THEORY = Garbage_Collector [NODES,SONS,RO0TS]
I1 : THEORY = Garbage_Collectorl[NODES,SONS,R00TS]

IMPORTING Garbage_Collectorl_Inv[NODES,SONS,R00TS]

s : VAR I1.State
ri,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):S.State = M(s)

sim_mutate : LEMMA
(EXISTS n,i,k: r2 = Rule_mutate(n,i,k)(r1l)) IMPLIES
(EXISTS n,i,k: abs(r2) = Rule_mutate(n,i,k) (abs(rl))) OR
abs(r2) = abs(ri)

sim_colour_target : LEMMA
r2 = Rule_colour_target(r1l) IMPLIES
abs(r2) = abs(rl)

sim_stop_colouring : LEMMA
r2 = Rule_stop_colouring(rl) IMPLIES
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abs(r2) = abs(ril)

sim_colour : LEMMA
(EXISTS n: r2 = Rule_colour(mn)(r1)) IMPLIES
abs(r2) = abs(ri)

sim_stop_appending : LEMMA
r2 = Rule_stop_appending(r1l) IMPLIES
abs(r2) = abs(rl)

sim_continue_appending : LEMMA
r2 = Rule_continue_appending(rl) IMPLIES
abs(r2) = abs(rl)

sim_black_to_white : LEMMA
r2 = Rule_black_to_white(r1l) IMPLIES
abs(r2) = abs(ri)

sim_append_white : LEMMA
r2 = Rule_append_white(rl) IMPLIES
(EXISTS n: abs(r2) = Rule_append(n) (abs(r1l))) OR abs(r2) = abs(rl)

next_h : LEMMA
next(rl,r2) IMPLIES next(abs(rl),abs(r2))

R1 : THEORY =
Refinement[S.0_State,
S.State,S.init,S.next,S.proj,
I1.State,Il.init,I1.next,I1.proj,
abs,I]

END Refinementl
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% Garbage_Collectorl_Inv : %
% Defines all invariants used in proving the first refinement.
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Garbage_Collectorl_Inv[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Properties [NODES,SONS,R0O0TS]
IMPORTING Garbage_Collectorl[NODES,SONS,RO0TS]
IMPORTING Invariant_Predicates[State]
s : VAR State
invi(s) :bool =
CHI(s)=APPEND AND L(s) < NODES AND accessible(L(s)) (M(s))
IMPLIES
colour (L(s)) (C(s))

inv2(s) :bool =
CHI(s)=TEST_L OR CHI(s)=APPEND IMPLIES blackened(L(s))(C(s),M(s))

I : pred[State]l = invl & inv2
pi : pred[pred[State]] = preserved(init,next) (I)

i_invl : LEMMA I IMPLIES invi
i_inv2 : LEMMA I IMPLIES inv2

p-invl : LEMMA pi(inv1)
p-inv2 : LEMMA pi(inv2)

p_I : LEMMA pi(I)
inv : LEMMA invariant(init,next) (I)

END Garbage_Collectorl_Inv
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A.4.2 Lemmas in Second Refinement
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% Refinement2 : %
%  Applies the °‘Refinement’’ theory to yield %
% the second refinement lemma ‘‘R2’’. YA
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Refinement2[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

I1 : THEORY Garbage_Collector1[NODES, SONS,R0O0TS]
I2 : THEORY = Garbage_Collector2[NODES,SONS,RO0TS]
IMPORTING Garbage_Collector2_Inv[NODES,SONS,R00TS]

s : VAR I2.State
ri,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):I1.State =
(# MU := CASES MU(s) OF
MUTATE : MUTATE,
COLOUR : COLOUR
ENDCASES,

CHI := CASES CHI(s) OF
COLOUR_ROOTS : COLOUR,
PROPAGATE : COLOUR,
TEST_L : TEST_L,
APPEND : APPEND
ENDCASES,
Q = Q(s),
L = L(s),
C = C(s),
M = M(s)
#)

sim_mutate : LEMMA
(EXISTS n,i,k: r2 = Rule_mutate(n,i,k)(r1l)) IMPLIES
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EXISTS n,i,k: abs(r2) = Rule_mutate(n,i,k) (abs(rl))

sim_colour_target : LEMMA
r2 = Rule_colour_target(rl) IMPLIES
abs(r2) = Rule_colour_target (abs(r1))

sim_stop_colouring_roots : LEMMA
r2 = Rule_stop_colouring_roots(r1l) IMPLIES
abs(r2) = abs(rl)

sim_colour_root : LEMMA
r2 = Rule_colour_root(rl) IMPLIES
(EXISTS n: abs(r2) = Rule_colour(n) (abs(rl))) OR abs(r2) = abs(rl)

sim_stop_propagating : LEMMA
r2 = Rule_stop_propagating(rl) IMPLIES
abs(r2) = Rule_stop_colouring(abs(r1l)) OR abs(r2) = abs(rl)

sim_propagate : LEMMA
(EXISTS n,i: r2 = Rule_propagate(n,i) (r1)) IMPLIES
(EXISTS k: abs(r2) = Rule_colour(k) (abs(rl))) OR

abs(r2) = abs(rl)

sim_stop_appending : LEMMA
r2 = Rule_stop_appending(r1l) IMPLIES
abs(r2) = Rule_stop_appending(abs(r1))

sim_continue_appending : LEMMA
r2 = Rule_continue_appending(rl) IMPLIES
abs(r2) = Rule_continue_appending(abs(rl))

sim_black_to_white : LEMMA
r2 = Rule_black_to_white(r1l) IMPLIES
abs(r2) = Rule_black_to_white(abs(rl))

sim_append_white : LEMMA
r2 = Rule_append_white(rl) IMPLIES
abs(r2) = Rule_append_white(abs(r1l))

next_h : LEMMA
next (rl,r2) IMPLIES next(abs(rl),abs(r2))

R2 : THEORY =
Refinement[I1.0_State,
I1.State,Il.init,I1.next,I1.proj,
I2.State,I2.init,I2.next,I2.proj,
abs,I]
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END Refinement2
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% Garbage_Collector2_Inv : %
% Defines all invariants used in proving the second refinement. %
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Garbage_Collector2_Inv[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Properties [NODES,SONS,R0O0TS]
IMPORTING Garbage_Collector2[NODES,SONS,R0O0TS]
IMPORTING Invariant_Predicates[State]
s : VAR State

invi(s) :bool =
CHI (s)=PROPAGATE IMPLIES black_roots(ROOTS) (C(s))

inv2(s) :bool =
CHI (s)=COLOUR_ROOTS IMPLIES black_roots(K(s)) (C(s))

I : pred[State]l = invl & inv2
pi : pred[pred[Statel] = preserved(init,next) (I)

i_invl : LEMMA I IMPLIES invl
i_inv2 : LEMMA I IMPLIES inv2

p-invl : LEMMA pi(invl)
p-inv2 : LEMMA pi(inv2)

p_I : LEMMA pi(I)
inv : LEMMA invariant(init,next) (I)

END Garbage_Collector2_Inv
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A.4.3 Lemmas in Third Refinement
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% Refinement3 : %
%  Applies the °‘Refinement’’ theory to yield %
% the third refinement lemma ‘‘R3’’. %
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hhh

Refinement3[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING

roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

I2 : THEORY Garbage_Collector2[NODES, SONS,RO0TS]
I3 : THEORY = Garbage_Collector3[NODES,SONS,R00TS]
IMPORTING Garbage_Collector3_Inv[NODES,SONS,R00TS]

s : VAR I3.State
ri,r2 : VAR (I)

n,k : VAR Node

i : VAR Index

cs : VAR Colours

abs(s):I2.State =
(# MU := CASES MU(s) OF
MUTATE : MUTATE,
COLOUR : COLOUR
ENDCASES,
CHI := CASES CHI(s) OF
COLOUR_ROOTS : COLOUR_ROOTS,
TEST_I : PROPAGATE,
TEST_COLOUR : PROPAGATE,
COLOUR_SONS : PROPAGATE,
TEST_H : PROPAGATE,
COUNT : PROPAGATE,
COMPARE : PROPAGATE,
TEST_L : TEST_L,
APPEND : APPEND

ENDCASES,
Q :=Q(s),
K := K(s),
L :=L(s),
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C :
M
#)

C(s),
M(s)

sim_mutate : LEMMA
(EXISTS n,i,k: r2 = Rule_mutate(n,i,k)(r1l)) IMPLIES
EXISTS n,i,k: abs(r2) = Rule_mutate(n,i,k) (abs(rl))

sim_colour_target : LEMMA
r2 = Rule_colour_target(rl) IMPLIES
abs(r2) = Rule_colour_target (abs(r1l))

sim_stop_colouring_roots : LEMMA
r2 = Rule_stop_colouring_roots(r1l) IMPLIES
abs(r2) = Rule_stop_colouring_roots(abs(rl))

sim_colour_root : LEMMA
r2 = Rule_colour_root(rl) IMPLIES
abs(r2) = Rule_colour_root(abs(rl))

sim_stop_propagating : LEMMA
r2 = Rule_stop_propagating(r1l) IMPLIES
abs(r2) = abs(rl)

sim_continue_propagating : LEMMA
r2 = Rule_continue_propagating(r1l) IMPLIES
abs(r2) = abs(rl)

sim_white_node : LEMMA
r2 = Rule_white_node(rl) IMPLIES
abs(r2) = abs(ri)

sim_black_node : LEMMA
r2 = Rule_black_node(rl) IMPLIES
abs(r2) = abs(ri)

sim_stop_colouring_sons : LEMMA
r2 = Rule_stop_colouring_sons(rl) IMPLIES
abs(r2) = abs(rl)

sim_colour_son : LEMMA
r2 = Rule_colour_son(rl) IMPLIES
(EXISTS n,i: abs(r2) = Rule_propagate(n,i) (abs(r1))) OR
abs(r2) = abs(ri)

sim_stop_counting : LEMMA
r2 = Rule_stop_counting(r1l) IMPLIES

98



abs(r2) = abs(ril)

sim_continue_counting : LEMMA
r2 = Rule_continue_counting(rl) IMPLIES
abs(r2) = abs(rl)

sim_skip_white : LEMMA
r2 = Rule_skip_white(rl) IMPLIES
abs(r2) = abs(rl)

sim_count_black : LEMMA
r2 = Rule_count_black(rl) IMPLIES
abs(r2) = abs(rl)

sim_stop_colouring : LEMMA
r2 = Rule_stop_colouring(rl) IMPLIES
abs(r2) = Rule_stop_propagating(abs(r1)) OR
abs(r2) = abs(rl)

sim_continue_colouring : LEMMA
r2 = Rule_continue_colouring(rl) IMPLIES
abs(r2) = abs(ri)

sim_stop_appending : LEMMA
r2 = Rule_stop_appending(r1l) IMPLIES
abs(r2) = Rule_stop_appending(abs(r1))

sim_continue_appending : LEMMA
r2 = Rule_continue_appending(rl) IMPLIES
abs(r2) = Rule_continue_appending(abs(rl))

sim_black_to_white : LEMMA
r2 = Rule_black_to_white(r1l) IMPLIES
abs(r2) = Rule_black_to_white(abs(rl))

sim_append_white : LEMMA
r2 = Rule_append_white(rl) IMPLIES
abs(r2) = Rule_append_white(abs(r1l))

next_h : LEMMA
next(rl,r2) IMPLIES next(abs(rl),abs(r2))

R3 : THEORY =
Refinement[I2.0_State,
I2.State,I2.init,I2.next,I2.proj,
I3.State,I3.init,I3.next,I3.proj,
abs,I]
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END Refinement3
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% Garbage_Collector3_Inv : %
% Defines all invariants used in proving the third refinement. ¥
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Garbage_Collector3_Inv[
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory_Properties [NODES,SONS,R0O0TS]
IMPORTING Garbage_Collector3[NODES,SONS,R00TS]
IMPORTING Invariant_Predicates[State]

s : VAR State

inv1(s) :bool =
CHI (s)=COLOUR_SONS AND I(s) < NODES IMPLIES colour(I(s))(C(s))

inv2(s) :bool =
CHI (s)=COMPARE AND BC(s)=0BC(s) IMPLIES NOT exists_bw(C(s),M(s))

inv3(s) :bool =
(CHI(s)=COLOUR_ROOTS OR
CHI(s)=TEST_I OR CHI(s)=TEST_COLOUR OR CHI(s)=COLOUR_SONS OR
CHI(s)=TEST_H OR CHI(s)=COUNT OR CHI (s)=COMPARE)
IMPLIES
black_roots(IF CHI(s)=COLOUR_ROOTS THEN K(s) ELSE ROOTS ENDIF) (C(s))

inv4(s) :bool =
MU(s)=COLOUR AND Q(s) < NODES IMPLIES accessible(Q(s)) (M(s))

inv5(s) :bool =
(CHI(s)=TEST_H OR CHI(s)=COUNT OR CHI(s)=COMPARE) AND
OBC(s) = BC(s) + blacks(H(s),NODES) (C(s))
IMPLIES
NOT exists_bw(C(s),M(s))

inv6(s) :bool =

CHI (s)=APPEND AND L(s) < NODES AND accessible(L(s)) (M(s))
IMPLIES
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colour(L(s)) (C(s))

inv7(s) :bool =
((CHI(s)=TEST_I OR CHI(s)=TEST_COLOUR OR CHI(s)=COLOUR_SONS) AND
0OBC(s) = blacks(0,NODES) (C(s)) AND
exists_bw(0,0,I(s),IF CHI(s)=COLOUR_SONS THEN J(s) ELSE O ENDIF) (C(s),M(s)))
IMPLIES
exists_bw(I(s),IF CHI(s)=COLOUR_SONS THEN J(s) ELSE 0 ENDIF,NODES,0)
(C(s),M(s))

inv8(s) :bool =
(CHI(s)=TEST_H OR CHI(s)=COUNT OR CHI (s)=COMPARE)
IMPLIES
DBC(s) <= BC(s) + blacks(H(s),NODES) (C(s))

inv9(s) :bool =
((CHI(s)=TEST_I OR CHI(s)=TEST_COLOUR OR CHI(s)=COLOUR_SONS) AND
0BC(s) = blacks(0,NODES) (C(s)) AND
exists_bw(0,0,I(s),IF CHI(s)=COLODUR_SONS THEN J(s) ELSE O ENDIF) (C(s),M(s)))
IMPLIES
MU (s)=COLOUR

inv10(s) :bool =
(CHI(s)=COLOUR_ROOTS OR
CHI(s)=TEST_I OR CHI(s)=TEST_COLOUR OR CHI(s)=COLOUR_SONS)
IMPLIES
DBC(s) <= blacks(0,NODES) (C(s))

inv11(s) :bool =
FORALL (n:Node,i:Index):
(((CHI(s)=TEST_I OR CHI(s)=TEST_COLOUR OR CHI(s)=COLOUR_SONS) AND
DBC(s) = blacks(0,NODES) (C(s)) AND

(n,i) < (I(s),IF CHI(s)=COLOUR_SONS THEN J(s) ELSE O ENDIF) AND
bw(n,i) (C(s),M(s)))

IMPLIES
(MU(s)=COLOUR AND son(n,i) (M(s))=Q(s)))

inv12(s) :bool =
((CHI(s)=TEST_COLOUR OR CHI (s)=COLOUR_SONS) IMPLIES I(s) < NODES)

inv13(s) :bool =
(CHI(s)=TEST_L OR CHI (s)=APPEND)
IMPLIES
blackened (L(s)) (C(s),M(s))

inv14(s) :bool =
CHI (s)=COMPARE IMPLIES BC(s) <= blacks(0,NODES) (C(s))

102



inv15(s) :bool =
(CHI(s)=TEST_H OR CHI(s)=COUNT) IMPLIES BC(s) <= blacks(0,H(s))(C(s))

I : pred[Statel
invl & inv2 & inv3 & inv4d & invb & inv6 & inv7 &
inv8 & inv10 & invll & inv12 & inv13 & invi4 & invilb

pi : pred[pred[Statel]

c_inv9 :

i_invl
i_inv2
i_inv3
i_inv4
i_invh
i_inv6
i_inv7
i_inv8
i_inv9

i_inv10 :
: LEMMA

i_invii

i_invi2 :
i_invi3 :
i_invid :
i_invi5 :

p-invil
p-inv2
p-inv3
p-invé
p-invb
p-inv6
p-inv7
p-inv8

p_inviO :
: LEMMA

p_invil

p-invi2 :
p_invi3 :
p_invid :
p-invib :

: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA

LEMMA

LEMMA
LEMMA
LEMMA
LEMMA

: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA
: LEMMA

LEMMA

LEMMA
LEMMA
LEMMA
LEMMA

preserved (init,next) (I)

LEMMA inv1il IMPLIES inv9

I IMPLIES invl
I IMPLIES inv2
I IMPLIES inv3
I IMPLIES inv4
I IMPLIES invb
I IMPLIES inv6
I IMPLIES inv7
I IMPLIES inv8
I IMPLIES inv9
I IMPLIES inv10
I IMPLIES inviil
I IMPLIES invi12
I IMPLIES inv13
I IMPLIES invi14
I IMPLIES invib

pi(invl)
pi(inv2)
pi(inv3)
pi(invé4)
pi(invb)
pi(inve6)
pi(inv7)
pi(inv8)
pi(inv10)
pi(invil)
pi(inv12)
pi(invi13)
pi(invi4)
pi(inv15)

p_I : LEMMA pi(I)

inv : LEMMA invariant(init,next) (I)
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END Garbage_Collector3_Inv
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A.4.4 Final Refinement Theorem

Wb II DTN TololololololoToloToToloToloToloTolototottottoto o to oo to oo to o oo to oo to o to oo o o o o o o
% Composed_Refinement : %
% States the final correctness criteria in theorem ¢ ‘ref’’, %
% which says that the third implementation refines the top-level
%  specification. The proof uses the transitivity property of the %
% refinement relation.

Wb IIIINT N ToToToloTolo oo o

b

Composed_Refinement [
NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Refinementl1 [NODES,SONS,RO0TS]
IMPORTING Refinement2[NODES,SONS,RO0TS]
IMPORTING Refinement3[NODES,SONS,R00TS]

IMPORTING Refine_Predicate
IMPORTING Refine_Predicate_Transitive

ref2 : LEMMA
refines[S.0_State,S.State,I2.State]
(I2.init,I2.next,I2.proj) (S.init,S.next,S.proj)
ref : THEOREM
refines[S.0_State,S.State,I3.State]
(I3.init,I3.next,I3.proj) (S.init,S.next,S.proj)

END Composed_Refinement
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