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Abstract

We describe how the PVS veri�cation system has been used to verify
a safety property of a garbage collection algorithm� The safety property
basically says that �nothing but garbage is ever collected�� The proof is
based on re�nement mappings as suggested by Lamport� Although the al�
gorithm is relatively simple� its parallel composition with a �user� program
that �nearly� arbitrarily modi�es the memory makes the veri�cation quite
challenging� The garbage collection algorithm and its composition with the
user program is regarded as a concurrent system with two processes working
on a shared memory� Such concurrent systems can be encoded in PVS as
state transition systems� very similar to the model of� for example� TLA�
The safety proof is formulated as a re�nement� where the safety speci�cation
itself is formulated as state transition system and where the �nal algorithm
is shown to be a re�nement thereof� The algorithm is an excellent test�case
for formal methods� be they based on theorem proving or model checking�
Various hand�written proofs of the algorithm have been developed� some of
which are wrong� David Russino� has veri�ed the algorithm in the Boyer�
Moore prover� but his proof is not based on re�nement� implying that his
safety property cannot be appreciated without a glass box view of the al�
gorithm� considering it	s internal structure� Using re�nement� however� the
algorithm can be regarded as a black box�
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Chapter �

Introduction

��� The Problem

In �
��� Russino� uses the Boyer�Moore theorem prover to verify a safety
property of a garbage collection algorithm� originally suggested by Ben�
Ari ���� The safety property is formulated as a predicate P over the state
space� and it is veri�ed that this predicate is true in all reachable states�
We will describe how the same algorithm can be formulated in the PVS
veri�cation system �
��� and we demonstrate how the safety property can
be veri�ed� However� we shall use a re�nement approach� where the safety
property itself is formulated as an abstract algorithm� and where the proof is
based on re�nement mappings as suggested by Lamport� This approach has
the advantage that the safety property can be formulated more abstractly
without considering the internal structure of the �nal implementation� the
latter being necessary in �
��� Furthermore� as we formalize and mechanize
re�nement mappings for the general case� this yields a further contribution�

In ��� a proof in PVS is described of the same algorithm and in the
invariant�style applied in �
��� the purpose being to directly compare the
e�ort required in PVS compared to the e�ort required in the Boyer�Moore
prover� The conclusion was that the e�orts were comparable� which means
that PVS can be tuned towards a high degree of automatization due to it	s
decision procedures�

In ��� we veri�ed a distributed communication protocol using the same
techniques for representing state transition systems� Hence� the here pre�
sented work shall be seen in the context of a series of PVS veri�cations of






parallel�distributed algorithms� where we try to establish a stabile frame�
work for such veri�cations� and where we try to identify the main di�culties
in carrying out such proofs� The superior goal being to improve the applica�
bility of PVS to this kind of problems� A key conclusion is that techniques
for strengthening invariants are of major importance� also in re�nement
proofs�

The garbage collection algorithm� the collector� and its composition with
a user program� the mutator� is regarded as a concurrent system with �these�
two processes working on a shared memory� The memory is basically a
structure of nodes� each pointing to other nodes� Some of the nodes are
de�ned as roots� which are always accessible to the mutator� Any node that
can be reached from a root� chasing pointers� is de�ned as accessible to the
mutator� The mutator changes pointers nearly arbitrarily� while the collector
continuously collects garbage �not accessible� nodes� and puts them into a
free list� The collector uses a colouring technique for bookkeeping purposes�
each node has a colour �eld associated with it� which is either coloured black
if the node is accessible or white if not� In order to make the two processes
cooperate correctly� the mutator colours the target node of the redirection
black after the redirection� The safety property basically says that nothing
but garbage is ever collected� Although the collector algorithm is relatively
simple� its parallel composition with the mutator makes the veri�cation quite
challenging�

In �
��� the algorithm is formulated as a state transition system� where
the garbage collector at any time is in one of � di�erent locations� In one of
the locations� say l� an append operation is applied to a node n if this node
is white� meaning that this node is collected by the collector� assuming it is
garbage� The safety property is hence �in principle� formulated as follows�

Whenever in location l� and n is accessible� then n is black

This formulation of the safety property is� however� unfortunate� since
it does not really tell us whether the program is correct� We namely in
addition have to ensure� that the append operation is only called in location
l� and only on white nodes� Hence� we need a glass box view of the algorithm
in order to appreciate the safety property� This observation motivated us
to carry out yet an experiment� this time reformulating the safety proof as
a re�nement� where the safety speci�cation itself is formulated as a state
transition system and where the �nal algorithm is shown to be a re�nement
thereof� Here a black box view of the algorithm is su�cient�

�



The garbage collector has also been speci�ed and veri�ed in the UNITY
framework �� using a notion of re�nement called superposition� This re�
�nement notion di�ers from ours in the sense that the initial algorithm
�speci�cation� is not regarded as a speci�cation of lower levels� Rather it
is supposed to be an initial algorithm� which is then enriched with more
details� until the �nal enrichment satis�es some �di�erent� property� Each
level inherits the properties proved about the previous level� such that the
�nal level inherits all the properties proven for all levels� and this combined
collection of properties can the be used to prove� that the �nal level satis�es
some property� In section � we shall shortly mention how the UNITY proof
di�ers from ours�

��� The History of the Proof

An initial version of the algorithm was �rst proposed by Dijkstra� Lam�
port� et al� ��� as an exercise in organizing and verifying the cooperation of
concurrent processes� They described their experience as follows�

Our exercise has not only been very instructive� but at times
even humiliating� as we have fallen into nearly every logical trap
possible � � � It was only too easy to design what looked � some�
times even for weeks and to many people � like a perfectly valid
solution� until the e�ort to prove it correct revealed a �sometimes
deep� bug�

Their solution involves three colours� Ben�Ari	s later solution is based on
the same algorithm� but it only uses two colours� and the proof is therefore
simpler� Alternative proofs of Ben�Ari	s algorithm were then later published
by Van de Snepscheut ��� and Pixley �

�� All of these proofs were informal
pencil and paper proofs� Ben�Ari defends this as follows�

So as not to obscure the main ideas� the exposition is limited to
the critical facets of the proof� A mechanically veri�able proof
would need all sorts of trivial invariants � � � and elementary trans�
formations of our invariants �� � � with appropriate adjustments of
the indices��

�



These four pieces of work� however� indeed show the problem with hand�
written proofs� as pointed out by Russino� �
��� the story goes as follows�
Dijkstra� Lamport et al� ��� explained how they �as an example of a �logical
trap�� originally proposed a modi�cation to the algorithm where the mu�
tator instructions were executed in reverse order �colouring before pointer
redirection�� This claim was� however� wrong� but was discovered by the
authors before the proof reached publication� Ben�Ari then later again pro�
posed this modi�cation and argued for its correctness without discovering
its �aw� Counter examples were later given in �

� and ����

Furthermore� although Ben�Ari	s algorithm �which is the one we verify
in PVS� is correct� his proof of the safety property was �awed� This �aw was
essentially repeated in �

� where it yet again survived the review process�
and was only discovered 
� years after when Russino� detected the �aw
during his mechanical proof �
��� As if the story was not illustrative enough�
Ben�Ari also gave a proof of a liveness property �every garbage node will

eventually be collected�� and again� this was �awed as later observed in ����
To put this story of �awed proofs into a context� we shall cite �
���

Our summary of the story of this problem is not intended as a
negative commentary on the capability of those who have con�
tributed to its solution� all of whom are distinguished scientists�
Rather� we present this example as an illustration of the in�
evitability of human error in the analysis of detailed arguments
and as an opportunity to demonstrate the viability of mechanical
program veri�cation as an alternative to informal proof�

��� Structure of Report

In �
��� Shankar demonstrates how concurrent systems can easily be spec�
i�ed in PVS as state transition systems� very similar to the models of� for
example� UNITY �� and TLA ���� We extend this modeling technique with
our own modi�cation of Abadi	s and Lamport	s re�nement mappings �
��
where after we formulate the correctness problem within this re�nement
framework�

In chapter �� a formalization of state transition systems and re�nement
mappings is provided in a loose mathematical style� which is later formal�
ized in PVS� In chapter �� the garbage collection algorithm is informally





described� In chapters  and �� we present the re�nements of the algorithm�
starting from an initial speci�cation� and ending after three re�nement steps
with the �nal algorithm� This presentation is based on an informal notation
for writing transition systems� Chapters � and � formalize in PVS the con�
cepts introduced in earlier chapters ��  and �� Finally chapter � provides
some observations on the whole exercise�

�



Chapter �

Transition Systems and

Re�nement Mappings

In this chapter we establish the formal theory for using an abstract non�
deterministic program as a safety speci�cation� such that any behaviour is
safe if it is generated by the program� An implementation is then de�ned
as a re�nement of this program� The basic concepts are those of transition
systems� traces� invariants� observed transition systems� re�nements� and
re�nement mappings� The theory presented is a minor modi�cation of the
theory developed by Abadi and Lamport� for example as described in �
��
and we shall at the end of this chapter outline in which sense we di�er� One
simpli�cation that we make� and shall mention already here� is to ignore
liveness properties and only focus on safety properties� First� we introduce
the basic concept of a transition system� Speci�cations as well as their
re�nements are written as transition systems�

De�nition �
� �transition systems� A transition system is a triple

��� I�N�� where

� � is a state space

� I � � is the set of initial states�

� N � � � � is the next�state relation� Elements of N are denoted by

pairs of the form �s� t�� meaning that there is a transition from the

state s to the state t�

�



We shall next de�ne what is an execution trace of a transition system�
Informally� an execution trace is an in�nite enumeration of states� where the
�rst one satis�es the initiallity predicate and where every two pairs of states
are related by the next�state relation� For that purpose we need the notion of
a sequence� a sequence � is an in�nite enumeration of states hs�� s�� s�� � � �i�
We let �i denote the i	th element si of the sequence� Hence� the traces of a
transition system can be de�ned as follows�

De�nition �
� �traces� The traces of a transition system are de�ned as

follows�

���� I� N� � f� � �� j �� � I � �i � � �N��i� �i���g

We shall need the notion of a transition system invariant� which is a
state predicate true in all states reachable from an initial state by following
the transition relation�

De�nition �
� �invariants� Given a transition system S � ��� I� N��
then a predicate I � �� B is an S invariant i��

�� � ��S� � �i � � � I��i�

Since we want to compare transition systems� and decide whether one
transition system re�nes another� we need a notion of observability� For that
purpose� we extend transition systems with an observation function� which
when applied to a state returns an observation in some domain�

De�nition �
� �observed transition system� An observed transition

system is a �ve�tuple ����o� I�N� �� where

� ��� I� N� is a transition system

� �o is a state space� the observed one

� � � �� �o is an observation function that extracts the observed part

of a state�

�



Typically �at least in our case� a state s � � consists of an observable
part sobs � �o and an internal part sint� hence s � �sobs� sint� and � is just
the projection function� ��sobs� sint� � sobs� We adopt the convention that a
projection function � applied to a trace hs�� s�� � � �i results in the projected
trace h�i�s��� �i�s��� � � �i�

The central concept in all this is the notion of re�nement� that one
observed transition system S� re�nes another observed transition system
S�� By this we intuitively mean that every observation we can make on S��
we can also make on S�� Hence� if S� behaves safely so will S�� This is
su�cient when we only want to prove safety properties� as is our case� Put
more precisely� it means that every projected trace of S� is a projected trace
of S�� This is formulated in the following de�nition�

De�nition �
� �re�nement� An observed transition system

S� � �����o� I�� N�� ��� re�nes an observed transition system S� �
�����o� I�� N�� ��� i� �note that they have the same observed state space

�o��

�t� � ��S�� � 	t� � ��S�� � ��t�� � ��t��

So far� we have established what is an observed transition system� and
what it means for one such to re�ne another such� Hence� the conceptual
framework for showing re�nement is there� What is missing� is a practical
way of showing re�nement� Note that re�nement is de�ned in terms of
traces� Reasoning about traces is unpractical� What is needed is a way of
reasoning about states and pairs of states� Re�nement mappings is the tool
for obtaining this� a re�nement mapping from a lower level transition system
S� to a higher�level one S� is a mapping from S�	s state space to S�	s state
space� that when applied to �the individual states in� traces� maps traces of
S� to traces of S�� This is formally stated as follows�

De�nition �
� �re�nement mapping� A re�nement mapping from an

observed transition system S� � �����o� I�� N�� ��� to an observed transition

system S� � �����o� I�� N�� ��� is a mapping f � �� � �� such that there

exists an S� invariant I� where�

�� �s � �� � ���f�s�� � ���s�

�



	� �s � �� � I��s�
 I��f�s��


� �s� t � ���I�s��I�t��N��s� t�
 N��f�s�� f�t��

We can now state the main theorem �which is stated in �
�� and which
we have proved in PVS for our slightly modi�ed version��

Theorem �
� �Existence of Re�nement Mappings� If there exists a

re�nement mapping from an observed transition system S� to an observed

transition system S�� then S� re�nes S��

We shall show how we demonstrate the existence of re�nement mappings
in PVS� by providing a witness� that is� de�ning a particular one� De�ning
the re�nement mapping turns out typically to be easy� whereas showing that
it is indeed a re�nement mapping �the properties in de�nition ���� is where
the major e�ort goes� Especially �nding the invariant I and prove it� is the
bulk of the proof�

We di�er from Abadi and Lamport �
� in mainly two ways� First of all�
we allow general observation functions� and not just projection functions
being the identity on a subsection of the state� In fact� we introduce the
notion of observed transition systems� which are �ve�tuples� This is not
explicit in �
�� Second� in de�nition ��� of re�nement mappings� we assume
that states s and t satisfy an implementation invariant I� which is not the
case in �
�� Hence� we have weakened the conditions to prove� Whereas
the introduction of observation functions is just a nice �but not strictly
necessary� generalization� invariants are of real importance for any practical
proofs�

�



Chapter �

The Algorithm

In this chapter we informally describe the garbage collection algorithm� As
illustrated in �gure ��
� the system consists of two processes� the mutator

and the collector� working on a shared memory�

Mutator Collector

1
2
3

0

4

0 1 2 3

3

1 4
NODES = 5

SONS = 4

ROOTS = 2

Figure ��
� The Mutator� Collector and Shared Memory

The Memory

The memory is a �xed size array of nodes� In the �gure there are � nodes
�rows� numbered � � � Associated with each node is an array of uniform


�



length of cells� In the �gure there are  cells per node� numbered � � �� A
cell is hence identi�ed by a pair of integers �n�i� where n is a node number
and where i is called the index� Each cell contains a pointer to a node� called
the son� In the case of a LISP system� there are for example two cells per
node� In the �gure we assume that all empty cells contain the NIL value ��
hence points to node �� In addition� node � points to node � �because cell
����� does so�� which in turn points to nodes 
 and � Hence the memory can
be thought of as a two�dimensional array� the size of which is determined by
the positive integer constants NODES and SONS� To each node is associated a
colour� black or white� which is used by the collector in identifying garbage
nodes�

A pre�determined number of nodes� de�ned by the positive integer con�
stant ROOTS� is de�ned as the roots� and these are kept in the initial part
of the array �they may be thought of as static program variables�� In the
�gure there are two such roots� separated from the rest with a dotted line�
A node is accessible if it can be reached from a root by following pointers�
and a node is garbage if it is not accessible� In the �gure nodes �� 
� � and
 are therefore accessible� and � is garbage�

There are only three operations by which the memory structure can be
modi�ed�

� Redirect a pointer towards an accessible node�

� Change the colour of a node�

� Append a garbage node to the free list�

In the initial state� all pointers are assumed to be �� and nothing is assumed
about the colours�

The Mutator

The mutator corresponds to the user program and performs the main com�
putation� From an abstract point of view� it continuously changes pointers
in the memory� the changes being arbitrary except for the fact that a cell
can only be set to point to an already accessible node� In changing a pointer
the �previously pointed�to� node may become garbage� if it is not accessible
from the roots in some alternative way� In the �gure� any cell can hence be







modi�ed by the mutator to point to anything else than �� One should think
that only accessible cells could be modi�ed� but the algorithm can in fact
be proved safe without that restriction� Hence the less restricted context as
possible is chosen� The algorithm is as follows�


� Select a node n� an index i� and an accessible node k� and assign k to
cell �n�i��

�� Colour node k black� Return to step 
�

Each of the two steps are regarded as atomic instructions�

The Collector

The collector	s purpose is purely to collect garbage nodes� and put them
into a free list� from which the mutator may then remove them as they are
needed during dynamic storage allocation� Associated with each node is a
colour �eld� that is used by the collector during it	s identi�cation of garbage
nodes� Basically it colours accessible nodes black� and at a certain point it
collects all white nodes� which are then garbage� and puts them into the free
list� Figure ��
 illustrates a situation at such a point� only node � is white
since only this one is garbage� The collector algorithm is as follows�


� Colour each root black�

�� Examine each pointer in succession� If the source is black and the
target is white� colour the target black�

�� Count the black nodes� If the result exceeds the previous count �or if
there was no previous count�� return to step ��

� Examine each node in succession� If a node is white� append it to the
free list� if it is black� colour it white� Then return to step 
�

Steps 
�� constitute the marking phase and their purpose is to blacken
all accessible nodes� Each iteration within each step is regarded as an atomic
instruction� Hence� for example� step � consists of several atomic instruc�
tions� each counting �or not� a single node�


�



The Correctness Criteria

The safety property we want to verify is the following� No accessible node

is ever appended to the free list� In �
��� the following liveness property is
also veri�ed� Every garbage node is eventually collected� As in our previous
work with a protocol veri�cation in PVS and Murphi ���� we have focused
only on safety� since already this requires an e�ort worth reducing�
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Chapter �

The Speci�cation

In this chapter we give the initial speci�cation of the garbage collector� It	s
presented as a transition system using an informal notation for describing a
such� In chapter � it is described how we encode transition systems in PVS�

We shall assume a data structure representing the memory� The number
of nodes in the memory is de�ned by the constant NODES� The type Node

de�nes the numbers from � to NODES � 
� The constant SONS de�nes the
number of cells per node� The type Index de�nes the numbers from � to
SONS � 
� Hence� the memory can be thought of a two�dimensional array�
Figure �
 shows the shared state of the speci�cation�

var

M � array�Node�Index� of Node�

Figure �
� Speci�cation State

The memory will be the observed part of the state �� o � see de�ni�
tion ���� throughout all re�nements �hence will be the returned value of
projection functions�� For example� the node colouring structure and other
auxiliary variables that we later add will be internal�

Recall� that an initial section of the nodes are roots� the number being
de�ned by the constant ROOTS� A number of functions �reading the state� and
procedures �modifying the state� are assumed� all of which are mentioned
in �gure ���






function accessible�n�Node��bool�

function son�n�Node�i�Index��Node�

procedure set�son�n�Node�i�Index�k�Node��

procedure append�to�free�n�Node��

Figure ��� Auxiliary Functions used in the Speci�cation

The function accessible returns true if it	s argument node is accessible
from one of the roots by following pointers� The function son returns the
contents of cell �n�i�� The procedure set son assigns k to the cell identi�ed
by �n�i�� Hence after the procedure has been called� this cell now points
to k� The function append to free appends it	s argument node to the list
of free nodes� assuming that it is a garbage node�

The speci�cation consists of the parallel composition of the mutator and
the collector� The mutator is described i �gure ���

MODIFY �

choose n�k�Node� i�Index where accessible�k� �	

set�son�n�i�k��

goto MODIFY

end

Figure ��� Speci�cation of Mutator

A program is at any time during its execution considered as being in
one of a �nite collection of locations� identi�ed by program labels� The
above mutator has one such location� named MODIFY� Associated with each
location is a set of rules� in the basic case each on the form p �� s where
p is a pre�condition on the state and s is an e�ect on the state� When
in this location� all rules where the condition p is true are enabled� and a
non�deterministic choice is made between them� resulting in the next state
being obtained by applying the s e�ect of the chosen rule to the current
state� The �choose x�T where p �� s end� construct represents a set of
such rules� one for each choice of x within its type T� Hence� the mutator
repeatedly chooses two arbitrary nodes n�k�Node and an arbitrary index
i�Index such that k is accessible� The cell �n�i� is then set to point to k�
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The collector is described in �gure �� The collector repeatedly chooses
an arbitrary not accessible node� This node is then appended to the free list
of nodes� Since the node is not accessible it is a garbage node� hence only
garbage nodes are collected �appended�� and this is the proper speci�cation
of the garbage collector�

COLLECT �

choose n�Node where not accessible�n� �	

append�to�free�n��

goto COLLECT

end

Figure �� Speci�cation of Collector
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Chapter �

The Re�nement Steps

In this chapter we outline how the re�nement is carried out in three steps�
resulting in the garbage collection algorithm described informally in chapter
�� Each re�nement is given an individual section� which again is divided into
a program section� presenting the new program� and a proof section� outlining
the re�nement proof performed� According to theorem ��
 a re�nement can
be proven by identifying a re�nement mapping from the concrete state space
to the abstract state space� see de�nition ���� Hence� each proof section will
consist of a de�nition of such a mapping together with a proof that it	s a
re�nement mapping� focusing on the simulation relation required in item ���
of de�nition ����

The PVS encoding of the programs is described in chapter �� while the
PVS encoding of the re�nement proofs is described in section ��

��� First Re�nement � Introducing Colours

����� The Program

In the �rst step� the collector is re�ned to base it	s search for garbage nodes
on a colouring technique� The type Colour is assumed to contain the two
colours black and white� The global state must be extended with a colouring
of each node in the memory �not each cell�� and a couple of extra auxiliary
variables Q and L used for other purposes� The extended state is shown in
�gure ��
�
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var

M � array�Node�Index� of Node�

C � array�Node� of Colour�

Q � Node�

L � nat�

Figure ��
� First Re�nement State

procedure set�colour�n�Node�c�Colour��void�

function colour�n�Node��Colour�

function blackened���bool�

Figure ���� Additional Auxiliary Functions used in First Re�nement

Three extra operations on this new data structure are needed� as indi�
cated in �gure ����

The procedure set colour colours a node either white or black� The
function colour returns the colour of a node� Finally� the function
blackened returns true if all accessible nodes are black�

The mutator is now re�ned into the program which was informally de�
scribed in chapter �� see �gure ����

MUTATE �

choose n�k�Nodes� i�Index where accessible�k� �	

set�son�n�i�k��

Q �
 k�

goto COLOUR�

end

COLOUR �

true �	 set�colour�Q�black�� goto MUTATE�

Figure ���� Re�nement of Mutator

There are two locations� MUTATE and COLOUR� In the MUTATE location�
where the mutator starts� in addition to the mutation� the target node k is
assigned to the global auxiliary variable Q� Then in the COLOUR location� Q
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is coloured black� Note that the mutator will not be further re�ned� it will

now stay unchanged during the remaining re�nements of the collector�

The collector is described in �gure ��� It consists of two phases� While
in the COLOUR location� nodes are coloured arbitrarily until all accessible
nodes are black �blackened���� The style in which colouring is expressed
may seem surprising� but it is a way of de�ning a post condition� colour

at least all accessible nodes �� In the second phase� locations TEST L and
APPEND� all white nodes are regarded as garbage nodes� and are hence col�
lected �appended to the free list�� The auxiliary variable L is used to control
the loop� it runs through all the nodes� After having appended all garbage
nodes� the colouring is restarted�

COLOUR �

choose n�Nodes �	

set�colour�n�black��

goto COLOUR�

end

blackened�� �	 L �
 �� goto TEST�L�

TEST�L �

L 
 NODES �	 goto COLOUR�

L � NODES �	 goto APPEND�

APPEND �

not colour�L� �	 append�to�free�L�� L �
 L  �� goto TEST�L�

colour�L� �	 set�colour�L�white�� L �
 L  �� goto TEST�L�

Figure ��� First Re�nement of Collector

����� The Re�nement Proof

The re�nement mapping� call it abs� from the concrete state space to the
abstract state space maps M to M� Note that such a mapping only needs to
be de�ned for each component of the abstract state� showing how it is gen�
erated from components in the concrete state� Hence� the concrete variables
C� Q and L are not used for this purpose� This is generally the case for the
re�nement mappings to follow� they are the identity on the variables occur�
ring in the abstract state� Also program locations have to be mapped� In

�By formulating this colouring as an iteration� we can avoid to introduce a history

variable at a lower re�nement level�
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fact� each program �mutator� collector� can be regarded as having a program
counter variable� and we have to show how the abstract program counter is
obtained �mapped� from the concrete� Whenever the concrete program is in
a particular location l� then the abstract will be in the location abs�l�� In the
current case� the concrete mutator locations MUTATE and COLOUR are both
mapped to MODIFY� while the concrete collector locations COLOUR� TEST L

and APPEND all are mapped to COLLECT� This completes the de�nition of the
re�nement mapping�

In order to prove property ��� in de�nition ���� we associate each transi�
tion in the concrete program with a transition in the abstract program� and
prove that� �if the concrete transition brings a state s� to a state s�� then
the abstract transition brings the state abs�s�� to the state abs�s���� We say
that the concrete transition� say tc� simulates the abstract transition� say ta�
and write this as tc � ta� Putting all these sub�proofs together will yield a
proof of ���� Some of the concrete transitions just simulate a stuttering step
�no state change� in the abstract system� This will typically be some of the
new transitions associated with new location names� by convention� added
to the concrete program� Other concrete transitions have exact counter�
parts in the abstract program� These are transitions associated with same

location names� by convention� as in the abstract program� In the following�
we will only mention cases that deviate from the above two cases� that is�
where we add new location names� and where the corresponding transitions
do not simulate a stuttering step in the abstract program�

Hence in our case� MUTATE� MODIFY� and APPEND� � COLLECT �APPEND�
simulates stuttering�� In the proof of APPEND� � COLLECT� an invariant is
needed about the concrete program�

collector�APPEND � accessible�L� �
 colour�L� ���
�

It says that whenever the concrete collector is at the APPEND location�
and node L is accessible� then L is also black� From this we can conclude
that the append to free operation is only applied to garbage nodes� since
it	s only applied to white nodes� Hence� we need to prove an invariant about
the concrete program in order to prove the re�nement� In general� the proof
of these invariants is what really makes the re�nement proof non�trivial� To
prove the above invariant� we do in fact need to prove a stronger invariant�
namely that in locations TEST L and APPEND� accessible�n� �
 colour�n�
for all nodes n � L� This invariant strengthening is typical in our proofs�
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��� Second Re�nement � Colouring by Propaga�

tion

����� The Program

In this step� accessible nodes are coloured through a propagation strategy�
where �rst all roots are coloured� end next all white nodes which have a black
father are coloured� The state is extended with an extra auxiliary variable
K used for controlling the iteration through the roots� The extended state
is shown in �gure ����

var

M � array�Node�Index� of Node�

C � array�Node� of Colour�

Q � Node�

K � nat�

L � nat�

Figure ���� Second Re�nement State

Two additional functions are needed� as indicated in �gure ����

function bw�n�Node�i�Index��bool�

function exists�bw���bool�

Figure ���� Additional Auxiliary Functions used in Second Re�nement

The function bw returns true if n is black and son�n�i� is white� The
function exists bw returns true if there exists a black node� say n� that via
one of it	s cells� say i� points to a white node� That is� bw�n�i��

The collector is described in �gure ���� The COLOUR location from
the previous level has been replaced by the two locations COLOUR ROOTS

and PROPAGATE �while the append phase is mostly unchanged�� In the
COLOUR ROOTS location all roots are coloured black� the loop being con�
trolled by the variable K� In the PROPAGATE location� either there exists no
black node with a white son �i�e� not exists bw���� in which case we start
collecting �going to location TEST L�� or such a node exists� in which case
it	s son is coloured black� and we continue colouring�
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COLOUR�ROOTS �

K 
 ROOTS �	 goto PROPAGATE�

K � ROOTS �	 set�colour�K�black�� K �
 K�� goto COLOUR�ROOTS�

PROPAGATE �

choose n�Node� i�Index where bw�n�i� �	

set�colour�son�n�i��black��

goto PROPAGATE�

end

not exists�bw�� �	 L �
 �� goto TEST�L�

TEST�L �

L 
 NODES �	 K �
 �� goto COLOUR�ROOTS�

L � NODES �	 goto APPEND�

APPEND �

not colour�L� �	 append�to�free�L�� L �
 L  �� goto TEST�L�

colour�L� �	 set�colour�L�white�� L �
 L  �� goto TEST�L�

Figure ���� Second Re�nement of Collector

����� The Re�nement Proof

The re�nement mapping� besides being the identity on identically named
entities �variables as well as locations�� maps the collector locations
COLOUR ROOTS and PROPAGATE to COLOUR� Hence concrete root colouring as
well as concrete propagation are just particular kinds of abstract colourings�

Concerning the transitions� COLOUR ROOTS� � COLOUR�� PROPAGATE� �
COLOUR�� and PROPAGATE� � COLOUR��

In the proof of PROPAGATE� � COLOUR�� an invariant is needed about the
concrete program�

collector�PROPAGATE �
 �r � Root � colour�r� �����

It states that in location PROPAGATE all roots must be coloured� This fact
combined with the propagation termination condition not exists bw���
�there does not exist a pointer from a black node to a white node�� will im�
ply the propagation termination condition in COLOUR� of the abstract speci�
�cation� blackened��� which says that �all accessible nodes are coloured��
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��� Third Re�nement � Propagation by Scans

����� The Program

In the last re�nement� the propagation� represented by the location
PROPAGATE above� is re�ned into an algorithm� where all nodes are repeat�
edly scanned in sequential order� and if black� their sons coloured� until a
whole scan does not result in a colouring� The collector is described in �g�
ure ���� where transitions have been divided into  steps corresponding to
the informal description of the algorithm on page 
�� The state is extended
with auxiliary variables BC �black count� and OBC �old black count�� used for
counting black nodes� and the variables H� I� and J for controlling loops� the
state declaration is shown in �gure ����

var

M � array�Node�Index� of Node�

C � array�Node� of Colour�

Q � Node�

H � nat�

I � nat�

J � nat�

K � nat�

L � nat�

BC � nat�

OBC � nat�

Figure ���� Third Re�nement State

Two loops interact �steps � and ��� In the �rst loop� TEST I�
TEST COLOUR and COLOUR SONS� all nodes are scanned� and every black node
has all it	s sons coloured� The variables I and J are used to �walk� through
the cells� In the second loop� TEST H� COUNT and COMPARE� it is counted
how many nodes are black� This amount is stored in the variable BC� and
if this amount exceeds the old black count� stored in the variable OBC� then
yet another scan is started� and OBC is updated� The variable H is used to
control this loop�
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����� The Re�nement Proof

The re�nement mapping is the identity� except for six of the locations
of the collector� That is� the collector locations TEST I� TEST COLOUR�
COLOUR SONS� TEST H� COUNT� and COMPARE are all mapped to PROPAGATE�

Concerning the transitions� COLOUR SONS� � PROPAGATE� whereas
COMPARE� � PROPAGATE�� In the proof of COLOUR SONS� � PROPAGATE��
the following invariant is needed�

collector�COLOUR SONS �
 colour�I� �����

This property implies that the abstract PROPAGATE� transition	s pre�
condition bw�I�J� will be true �in case the son is white� or otherwise �if the
son is also black�� the concrete transition corresponds to a stuttering step
�colouring an already black son is the identity function�� Correspondingly�
in the proof of COMPARE� � PROPAGATE�� the following invariant is needed�

collector�COMPARE �BC � OBC �
 exists bw�� ����

It states that when the collector is in location COMPARE� after a counting
scan where the number of black nodes have been counted and stored in
BC� if the number counted equals the previous �old� count OBC then there
does not exist a pointer from a black node to a white node� Note that BC
� OBC is the propagation termination condition� and this then corresponds
to the termination condition not exists bw�� of the abstract transition
PROPAGATE��

The proof of these two invariants is quite elaborate� and does in fact
compare in size and �look� to the complete proofs in ��� as well as in �
���
Hence� the re�nement proof can be said as �containing� these proofs�
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�� Step � � Colour roots

COLOUR�ROOTS �

K 
 ROOTS �	 I �
 �� goto TEST�I�

K � ROOTS �	 set�colour�K�true�� K �
 K  �� goto COLOUR�ROOTS�

�� Step � � Propagate once

TEST�I �

I 
 NODES �	 BC �
 �� H �
 �� goto TEST�H�

I � NODES �	 goto TEST�COLOUR�

TEST�COLOUR �

not colour�I� �	 I �
 I  �� goto TEST�I�

colour�I� �	 J �
 �� goto COLOUR�SONS�

COLOUR�SONS �

J 
 SONS �	 I �
 I  �� goto TEST�I�

J � SONS �	 set�colour�son�I�J��black�� J �
 J�� goto COLOUR�SONS�

�� Step � � Count black nodes

TEST�H �

H 
 NODES �	 goto COMPARE�

H � NODES �	 goto COUNT�

COUNT �

not colour�H� �	 H �
 H �� goto TEST�H�

colour�H� �	 BC �
 BC  �� H �
 H �� goto TEST�H�

COMPARE �

BC 
 OBC �	 L �
 �� goto TEST�L�

BC �
 OBC �	 OBC �
 BD� I �
 �� goto TEST�I�

�� Step � � Append garbage nodes

TEST�L �

L 
 NODES �	 BC �
 �� OBC �
 �� K �
 �� goto TEST�I�

L � NODES �	 goto APPEND�

APPEND �

not colour�L� �	 append�to�free�L�� L �
 L  �� goto TEST�L�

colour�L� �	 set�colour�L�white�� L �
 L  �� goto TEST�L�

Figure ���� Third Re�nement of Collector
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Chapter �

Formalization in PVS

This chapter describes how in general transition systems and re�nement
mappings are encoded in PVS� and in particular how the garbage collector
re�nement is encoded� The full set of PVS theories is included in appendix
A�

��� Transition Systems and their Re�nement

Recall from chapter � that an observed transition system is a �ve�tuple of
the form� ����o� I� N� �� �de�nition ���� In PVS we model this as a theory
with two type de�nitions� and three function de�nitions� see �gure ��
�

The correspondence with the �ve�tuple is as follows� � � State� �o

� O State� � � proj� I � init and N � next� The init function is a
predicate on states� while the next function is a predicate on pairs of states�
We shall formulate the speci�cation of the garbage collector as well as all
its re�nements in this way� It will become clear below how in particular the
function next is de�ned�

Now we can de�ne what is a trace �de�nition ���� and what is an invariant
�de�nition ����� This is done in the theory Traces in �gure ����

The theory is parameterized with the State type of the observed tran�
sition system� The VAR declarations are just associations of types to names�
such that in later de�nitions and axioms� these names are assumed to have
the corresponding types� In addition� axioms are assumed to be universally
quanti�ed with these names over the types� Note that pred�T� in PVS is
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ots � THEORY

BEGIN

State � TYPE 
 ���

O�State � TYPE 
 ���

proj � �State �	 O�State� 
 ���

init � �State �	 bool� 
 ���

next � �State�State �	 bool� 
 ���

END ots

Figure ��
� Observed Transition Systems

Traces�State � TYPE� � THEORY

BEGIN

init � VAR pred�State�

next � VAR pred��State�State��

sq � VAR sequence�State�

n � VAR nat

trace�init�next��sq��bool 


init�sq���� AND

FORALL n� next�sq�n��sq�n���

p � VAR pred�State�

invariant�init�next��p��bool 


FORALL �tr��trace�init�next���� FORALL n� p�tr�n��

END Traces

Figure ���� Traces and Invariants
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short for the function space �T �� bool�� The type sequence�T� is short
for �nat �� T�� that is� the set of functions from natural numbers to T� A
sequence of State	s is hence an in�nite enumeration of states� Given a tran�
sition system with initiality predicate init and next�state relation next� a
sequence sq is a trace of this transition system if trace�init�next��sq�
holds� A predicate p is an invariant if invariant�init�next��p� holds�
That is� if for any trace tr� p holds in all positions n of that trace� Note how
the predicate trace�init�next� �it	s a predicate on sequences� is turned
into a type in PVS by surrounding it with brackets � the type containing
all the elements for which the predicate holds� which are all the traces�

The next notion we introduce in PVS is that of a re�nement between
two observed transition systems �de�nition ����� Figure ��� shows the theory
de�ning the function refines� which is a predicate on a pair of observed
transition systems� a low level implementation system as the �rst parameter�
and a high level speci�cation system as as the second parameter� The theory
is parameterized with the state space S State of the high level speci�cation
theory� the state space I State of the low level implementation theory� and
the observed state space O State� which we remember is common for the
two observed transition systems�

Re�nement is de�ned as follows� for all traces i tr of the implementa�

tion system� there exists a trace s tr of the speci�cation system� such that

when mapping the respective projection functions to the traces� they become

equal� The function map has the type map � ��D��R� �� �sequence�D�

�� sequence�R��� and simply applies a function to all the elements of a
sequence�

Finally� we introduce in the theory Refinement� �gure ��� the notion
of a re�nement mapping �de�nition ���� and it	s use for proving re�nement
�theorem ��
�� The theory is parameterized with a speci�cation observed

transition system �pre�xes S�� an implementation observed transition sys�

tem �pre�xes I�� an abstraction function abs� and an invariant I inv over
the implementation system� The theory contains a number of assumptions
on the parameters and a theorem� which has been proven using the assump�
tions� Hence� the way to use this parameterized theory is to apply it to
arguments that satisfy the assumptions� prove these� and then get �as a
consequence� the theorem� which states that the implementation re�nes the
speci�cation �corresponding to theorem ��
�� This theorem has been proved
once and for all� The assumptions are as stated in de�nition ����
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Refine�Predicate�

O�State � TYPE�

S�State � TYPE�

I�State � TYPE� � THEORY

BEGIN

IMPORTING Traces

s�init � VAR pred�S�State�

s�next � VAR pred��S�State�S�State��

s�proj � VAR �S�State �	 O�State�

i�init � VAR pred�I�State�

i�next � VAR pred��I�State�I�State��

i�proj � VAR �I�State �	 O�State�

refines�i�init�i�next�i�proj��s�init�s�next�s�proj��bool 


FORALL �i�tr��trace�i�init�i�next����

EXISTS �s�tr��trace�s�init�s�next����

map�i�proj�i�tr� 
 map�s�proj�s�tr�

END Refine�Predicate

Figure ���� Re�nement
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Refinement�

O�State � TYPE�

S�State � TYPE�

S�init � pred�S�State��

S�next � pred��S�State�S�State���

S�proj � �S�State �	 O�State��

I�State � TYPE�

I�init � pred�I�State��

I�next � pred��I�State�I�State���

I�proj � �I�State �	 O�State��

abs � �I�State �	 S�State��

I�inv � �I�State �	 bool�� � THEORY

BEGIN

ASSUMING

IMPORTING Traces

s � VAR I�State

r��r� � VAR �I�inv�

proj�id � ASSUMPTION

FORALL s� S�proj�abs�s�� 
 I�proj�s�

init�h � ASSUMPTION

FORALL s� I�init�s� IMPLIES S�init�abs�s��

next�h � ASSUMPTION

I�next�r��r�� IMPLIES S�next�abs�r���abs�r���

invar � ASSUMPTION

invariant�I�init�I�next��I�inv�

ENDASSUMING

IMPORTING Refine�Predicate�O�State�S�State�I�State�

ref � THEOREM refines�I�init�I�next�I�proj�

�S�init�S�next�S�proj�

END Refinement

Figure ��� Re�nement Mappings

��



Refine�Predicate�Transitive�

O�State � TYPE�

State� � TYPE�

State� � TYPE�

State� � TYPE� � THEORY

BEGIN

IMPORTING Refine�Predicate

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

transitive � LEMMA

refines�O�State�State��State��

�init��next��proj���init��next��proj�� AND

refines�O�State�State��State��

�init��next��proj���init��next��proj��

IMPLIES

refines�O�State�State��State��

�init��next��proj���init��next��proj��

END Refine�Predicate�Transitive

Figure ���� Re�nement is Transitive

We shall further need to assume transitivity of the re�nement relation�
and this is formulated �and proved� in �gure ����

��� The Speci�cation

In this chapter we outline how the initial speci�cation from chapter  of the
garbage collector is modelled in PVS� We start with the speci�cation of the
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memory structure� and then continue with the two processes that work on
this shared structure�

����� The Memory

The memory type is introduced in a theory� parameterized with the memory
boundaries� see �gure ���� That is� NODES� SONS� and ROOTS de�ne respec�
tively the number of nodes �rows�� the number of sons �columns�cells� per
node� and the number of nodes that are roots� They must all be positive
natural numbers �di�erent from ��� There is also an obvious assumption
that ROOTS is not bigger than NODES� These parameters occur in all our
theories�

The Memory type is de�ned as an abstract �non�empty� type upon which
a constant and collection of functions are de�ned�� First� however� types of
nodes� indexes and roots are de�ned�

The constant null array represents the initial memory containing 	 in
all memory cells �axiom mem ax
�� The function son returns the pointer
contained in a particular cell� That is� the expression son�n�i��m� returns
the pointer contained in the cell identi�ed by node n and index i� Finally�
the function set son assigns a pointer to a cell� That is� the expression
set son�n�i�k��m� returns the memory m updated in cell �n�i� to contain
�a pointer to node� k�

In order to de�ne what is an accessible node� we introduce the func�
tion points to� which de�nes what it means for one node� n
� to point to
another� n�� in the memory m� The function accessible is then de�ned
inductively� yielding the least predicate on nodes n �true on the smallest
set of nodes� where either n is a root� or n is pointed to from an already
reachable node k�

Finally we de�ne the operation for appending a garbage node to the
list of free nodes� that can be allocated by the mutator� This operation is
de�ned abstractly� assuming as little as possible about it	s behaviour� Note
that� since the free list is supposed to be part of the memory� we could easily
have de�ned this operation in terms of the functions son and set son� but
this would have required that we took some design decisions as to how the

�Note that we do not model the memory as a two dimensional array as in chapter ��

since we try to be as abstract as possible during the requirement speci�cation� The reason

we used an array earlier was for purely pedagogical reasons�
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Memory�NODES � posnat� SONS � posnat� ROOTS � posnat� � THEORY

BEGIN

ASSUMING roots�within � ASSUMPTION ROOTS �
 NODES ENDASSUMING

IMPORTING List�Functions

Memory � TYPE

Node � TYPE 
 fn � nat � n � NODESg
Index � TYPE 
 fi � nat � i � SONSg
Root � TYPE 
 fr � nat � r � ROOTSg

m � VAR Memory

n�n��n��k � VAR Node

i�i��i� � VAR Index

null�array � Memory

son � �Node�Index �	 �Memory �	 Node��

set�son � �Node�Index�Node �	 �Memory �	 Memory��

mem�ax� � AXIOM son�n�i��null�array� 
 �

mem�ax� � AXIOM son�n��i���set�son�n��i��k��m�� 


IF n�
n� AND i�
i� THEN k ELSE son�n��i���m� ENDIF

points�to�n��n���m��bool 
 EXISTS �i�Index�� son�n��i��m�
n�

accessible�n��m�� INDUCTIVE bool 


n � ROOTS OR

EXISTS k� accessible�k��m� AND points�to�k�n��m�

append�to�free � �Node �	 �Memory �	 Memory��

append�ax� AXIOM

�NOT accessible�k��m��

IMPLIES

�accessible�n��append�to�free�k��m��

IFF

�n 
 k OR accessible�n��m���

END Memory

Figure ���� The Memory
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list was represented �for example where the head of the list should be and
whether new elements should be added �rst or last�� The axiom append ax

de�ning the append operation says that in appending a garbage node� only

that node becomes accessible� and the accessibility of all other nodes stay

unchanged�

����� The Mutator and the Collector

The complete PVS formalization of the garbage collector top level speci��
cation presented in chapter  is given in �gure ����

The state is simply the memory� and so is the observable state� Hence�
there are no hidden variables� and the projection function proj is the iden�
tity� The next�state relation next is de�ned as a disjunction between three
disjuncts� each representing a possible single transition of the total system�
The �rst two disjuncts represent a move of the mutator and the collector�
respectively� each move de�ned through a function� The third possibility
just represents stuttering� the fact that a process does not change the state
�needed for technical reasons��

Since each process �mutator� collector� only has one location �see �g�
ures �� and �� we don	t model these locations explicitly� The function
Rule mutate represents a move by the mutator� which is non�deterministic
in the choice of the nodes n�k and index i� The function� when applied
to an old state� yields a new state� where �if k is accessible� a pointer has
been changed� Non�deterministic choices are modelled via existential quan�
ti�cations� Each transition function is de�ned in terms of an IF�THEN�ELSE

expression� where the condition represents the guard of the transition �the
situation where the transition may meaningfully be applied�� and where the
ELSE part returns the unchanged state� in case the guard is false�� The func�
tion Rule append represents a move by the collector� In each step� either
the mutator makes a move� or the collector does� This corresponds to an
interleaving semantics of concurrency� Note how the repeated execution is
guaranteed by our interpretation of what is a trace in terms of the next�state
relation�

�This allows for stuttering where rules are applied without changing the state� If done

in�nitely often our system would never progress� One way to avoid such behaviour is to

impose certain fairness constraints on execution traces� We shall� however� not do this

since we are only interested in verifying safety properties� where such problems play no

role� In general� transitions have been modelled as functions� instead of as relations� in

order to speed up PVS proofs� using PVS�s rewriting engine�
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Garbage�Collector�NODES � posnat� SONS � posnat� ROOTS � posnat� � THEORY

BEGIN

ASSUMING roots�within � ASSUMPTION ROOTS �
 NODES ENDASSUMING

IMPORTING Memory�NODES�SONS�ROOTS�

State � TYPE 
 Memory

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 s

init�s��bool 
 �s 
 null�array�

Rule�mutate�n�i�k��s��State 


IF accessible�k��s� THEN

set�son�n�i�k��s�

ELSE s ENDIF

Rule�append�n��s��State 


IF NOT accessible�n��s� THEN

append�to�free�n��s�

ELSE s ENDIF

next�s��s���bool 


�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s��� OR

�EXISTS n� s� 
 Rule�append�n��s��� OR

s� 
 s�

END Garbage�Collector

Figure ���� Speci�cation
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Coloured�Memory�NODES � posnat� SONS � posnat� ROOTS � posnat� � THEORY

BEGIN

ASSUMING roots�within � ASSUMPTION ROOTS �
 NODES ENDASSUMING

IMPORTING Memory�NODES�SONS�ROOTS�

Colour � TYPE 
 bool

Colours � TYPE 
 �Node �	 Colour�

n � VAR Node

i � VAR Index

c � VAR Colour

cs � VAR Colours

m � VAR Memory

colour�n��cs��Colour 
 cs�n�

set�colour�n�c��cs��Colours 
 cs WITH �n �
 c�

blackened�cs�m��bool 
 FORALL n� accessible�n��m� IMPLIES colour�n��cs�

bw�n�i��cs�m��bool 
 colour�n��cs� AND NOT colour�son�n�i��m���cs�

exists�bw�cs�m��bool 
 EXISTS n�i� bw�n�i��cs�m�

END Coloured�Memory

Figure ���� Coloured Memory

��� The First Re�nement

In this section we outline how the �rst re�nement from section ��
 of the
garbage collector is modelled in PVS� In order to keep the presentation
reasonably sized� we only illustrate this �rst re�nement� The remaining
re�nements follow the same pattern and are given in the appendix� First�
we describe a collection of colouring functions�

����� The Coloured Memory

The theory Coloured Memory in �gure ��� introduces the primitives needed
for colouring memory nodes�

The type Colour represents the colours black �true� and white �false��
The type Colours contain possible colourings of the memory� each being a

��



mapping from nodes to their colours� The functions colour� set colour

and blackened are formalizations of those presented in �gure ���� The
functions bw and exists bw are formalizations of those presented in �gure
��� and are used in the second re�nement�

����� The Re�ned Mutator and Collector

We here show how the �rst re�nement is formulated in PVS� The entire
theory called Garbage Collector
 is presented in �gures ��� and ��
�� First
of all� the state type is a record type with a �eld for each program variable�
In addition to the ordinary program variables� there is a program counter
�variable� for each process� MU for the mutator� and CHI for the collector�
Each program counter ranges over a type that contains the possible labels
corresponding to those in �gures ��� and ��� The observed state is still just
the memory� hence ignoring for example the colouring C� We see ��gure ����
that the mutator next�state relation MUTATOR is now de�ned as a disjunction
between a mutate transition and a colour Q transition� The collector next�
state relation COLLECTOR ��gure ��
�� is de�ned as the disjunction between
six possible transitions�

��



Garbage�Collector��NODES � posnat� SONS � posnat� ROOTS � posnat� � THEORY

BEGIN

ASSUMING roots�within � ASSUMPTION ROOTS �
 NODES ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

MuPC � TYPE 
 fMUTATE�COLOURg
CoPC � TYPE 
 fCOLOUR�TEST�L�APPENDg

State � TYPE 
 �� MU � MuPC� CHI � CoPC�

Q � nat� L � nat � C � Colours� M � Memory ��

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 M�s�

init�s��bool 
 MU�s� 
 MUTATE � CHI�s� 
 COLOUR � M�s� 
 null�array

Rule�mutate�n�i�k��s��State 


IF MU�s� 
 MUTATE AND accessible�k��M�s�� THEN

s WITH �M �
 set�son�n�i�k��M�s���

Q �
 k�

MU �
 COLOUR�

ELSE s ENDIF

Rule�colour�target�s��State 


IF MU�s� 
 COLOUR AND Q�s� � NODES THEN

s WITH �C �
 set�colour�Q�s��TRUE��C�s���

MU �
 MUTATE�

ELSE s ENDIF

MUTATOR�s��s���bool 


�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s���

OR s� 
 Rule�colour�target�s��

Figure ���� First Re�nement � the Mutator
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Rule�stop�colouring�s��State 


IF CHI�s� 
 COLOUR AND blackened�C�s��M�s�� THEN

s WITH �L �
 �� CHI �
 TEST�L�

ELSE s ENDIF

Rule�colour�n��s��State 


IF CHI�s� 
 COLOUR THEN

s WITH �C �
 set�colour�n�TRUE��C�s���

ELSE s ENDIF

Rule�stop�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� 
 NODES THEN

s WITH �CHI �
 COLOUR�

ELSE s ENDIF

Rule�continue�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� � NODES THEN

s WITH �CHI �
 APPEND�

ELSE s ENDIF

Rule�black�to�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND colour�L�s���C�s�� THEN

s WITH �C �
 set�colour�L�s��FALSE��C�s���

L �
 L�s���

CHI �
 TEST�L�

ELSE s ENDIF

Rule�append�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND NOT colour�L�s���C�s�� THEN

s WITH �M �
 append�to�free�L�s���M�s���

L �
 L�s�  ��

CHI �
 TEST�L�

ELSE s ENDIF

COLLECTOR�s��s���bool 


s� 
 Rule�stop�colouring�s��

OR �EXISTS n� s� 
 Rule�colour�n��s���

OR s� 
 Rule�stop�appending�s��

OR s� 
 Rule�continue�appending�s��

OR s� 
 Rule�black�to�white�s��

OR s� 
 Rule�append�white�s��

next�s��s���bool 
 MUTATOR�s��s�� OR COLLECTOR�s��s�� OR s� 
 s�

END Garbage�Collector�

Figure ��
�� First Re�nement � the Collector
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Chapter �

The Proof in PVS

The proof of a single re�nement lemma �step� is divided into three activities�


� Discovery and proof of function lemmas

�� Discovery and proof of invariant lemmas

�� Proof of the re�nement lemma

A function lemma states a property of one or more auxiliary functions
involved� which in our case are for example properties about the functions
accessible and blackened� An invariant is a predicate on states� and an
invariant lemma states that an invariant holds in every reachable state of
the concrete implementation �Garbage Collector
 in our case�� Recall that
we needed such an invariant when applying the Refinement theory ��gure
���� The function lemmas are used in proofs of invariant lemmas� which
again are used in proofs of re�nement lemmas�

We shall show these lemmas for the �rst re�nement� using a bottom�up
presentation for pedagogical reasons� starting with function lemmas� and
ending with the re�nement lemma� In� reality� however� the proof was
�discovered� top down� the re�nement lemma was stated �by applying the
Refinement theory to proper arguments�� and during the proof of the corre�
sponding ASSUMPTION	s� the need for invariant lemmas were discovered� and
during their proofs� function lemmas were discovered�
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Memory�Observers

�NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

cs � VAR Colours

m � VAR Memory

n � VAR Node

N�N��N� � VAR nat

blackened�N��cs�m��bool 


FORALL �n � N �
 n��

accessible�n��m� IMPLIES colour�n��cs�

���

END Memory�Observers

Figure ��
� Observer Functions

	�� Function Lemmas

During the proof� we need a new set of auxiliary functions to �observe� �or
calculate� certain values based on the current state of the memory� These
observer functions occur i invariants� In the �rst re�nement step� we shall
need the function blackened de�ned in the theory Memory Observers� see
�gure ��
� This function is similar to the function which is part of the �rst
re�nement� �gure ���� except that it has a natural number argument� The
function returns true if all nodes above �and including� its argument are
black if accessible� The theory contains other functions� but these are �rst
needed in later re�nements and will not be discussed here�

The lemmas about auxiliary functions that we need for the �rst re�ne�
ment are given in the theory Memory Properties in �gure ���� The theory
in its entirety contains other lemmas� needed for later re�nements� which we






shall however not present here� The lemma accessible
 is a key lemma��
and it says that the set son operator cannot turn garbage nodes into ac�
cessible nodes�

	�� Invariant Lemmas

Invariants are introduced as predicates over the state� and are formulated
as being invariants using a collection of special functions� which we have
presented in �gure ����

The functions IMPLIES and � are just the corresponding boolean oper�
ators lifted to work on state predicates� The function preserved allows us
to prove a predicate �p� as being inductive� assuming the predicate �inv�
as an induction hypothesis� Using this function� we will be able to split
our invariants into manageable sub�lemmas� which in turn can refer to each
other in a mutually recursive manner�

We can now state the invariant needed for the �rst re�nement step�
This is given in the theory Garbage Collector
 Inv in �gure ��� The
invariant really needed for the re�nement proof is inv
� corresponding to
the invariant ���
� page ��� but during the proof of that� invariant inv� is
needed� Invariant inv
 is in fact the safety property originally formulated
for the garbage collector �
��� Its proof requires a generalization� which is
inv�� This shows an example� where we have to strengthen an invariant
�inv
� to a stronger invariant �inv��� which is then proven instead�

For each new invariant� three declarations are introduced� As an exam�
ple� the invariant inv
 gives rise to �
� the de�nition of the predicate inv
�
��� the i inv
 lemma� and ��� the p inv
 lemma� The latter states the
inductive property� while the i inv
 lemma makes it possible to refer to
inv
 during the proof of other invariant lemmas�

	�� The Re�nement Lemma

The �rst re�nement step is formulated as an application of the Refinement
theory which we de�ned in �gure ��� This is done in the theory

�In appendix A�� the accessible� lemma is in fact introduced in a di�erent special

theory Accessible Memory Properties since it�s proof is slightly involved and requires

additional de�nitions and lemmas�

�



Memory�Properties

�NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Observers�NODES�SONS�ROOTS�

IMPORTING List�Properties

cs � VAR Colours

c � VAR Colour

m � VAR Memory

n�n��n��k � VAR Node

i�i��i��j � VAR Index

N�N��N� � VAR nat

accessible� � LEMMA

accessible�k��m� AND accessible�n���set�son�n�i�k��m��

IMPLIES accessible�n���m�

blackened� � LEMMA

blackened�n��cs�m� AND accessible�n��m� IMPLIES colour�n��cs�

blackened� � LEMMA

accessible�k��m� AND blackened�N��cs�m�

IMPLIES blackened�N��cs�set�son�n�i�k��m��

blackened� � LEMMA

blackened�N��cs�m� IMPLIES blackened�N��set�colour�n�TRUE��cs��m�

blackened� � LEMMA

blackened�n��cs�m� IMPLIES blackened�n���set�colour�n�FALSE��cs��m�

blackened� � LEMMA

NOT accessible�n��m� AND blackened�n��cs�m�

IMPLIES blackened�n���cs�append�to�free�n��m��

blackened� � LEMMA

blackened�cs�m� IMPLIES blackened����cs�m�

END Memory�Properties

Figure ���� Function Lemmas for the First Re�nement
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Invariant�Predicates�State � TYPE� � THEORY

BEGIN

IMPORTING Traces�State�

p�p��p� � VAR pred�State�

s�s��s� � VAR State

init � VAR pred�State�

next � VAR pred��State�State��

inv � VAR pred�State�

IMPLIES�p��p���bool 
 FORALL s� p��s� IMPLIES p��s��

��p��p���pred�State� 
 LAMBDA s� p��s� AND p��s�

preserved�init�next��inv��p��bool 


�init IMPLIES p� AND

FORALL s��s��

inv�s�� AND p�s�� AND next�s��s�� IMPLIES p�s��

END Invariant�Predicates

Figure ���� Invariant Predicates





Garbage�Collector��Inv�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Properties�NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Invariant�Predicates�State�

s � VAR State

inv��s��bool 


CHI�s�
APPEND AND L�s� � NODES AND accessible�L�s���M�s��

IMPLIES

colour�L�s���C�s��

inv��s��bool 


CHI�s�
TEST�L OR CHI�s�
APPEND IMPLIES blackened�L�s���C�s��M�s��

I � pred�State� 
 inv� � inv�

pi � pred�pred�State�� 
 preserved�init�next��I�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�I � LEMMA pi�I�

inv � LEMMA invariant�init�next��I�

END Garbage�Collector��Inv

Figure ��� Invariant Lemmas for the First Re�nement
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Refinement�� NODES � posnat� SONS � posnat� ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

S � THEORY 
 Garbage�Collector �NODES�SONS�ROOTS�

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��Inv�NODES�SONS�ROOTS�

s � VAR I��State

r��r� � VAR �I�

n�k � VAR Node

i � VAR Index

cs � VAR Colours

abs�s��S�State 
 M�s�

���

R� � THEORY 


Refinement�S�O�State�

S�State�S�init�S�next�S�proj�

I��State�I��init�I��next�I��proj�

abs�I�

END Refinement�

Figure ���� First Re�nement Lemma

Refinement
 shown in �gure ���� The theory imports the speci�cation
garbage collector Garbage Collector� giving it the name S� the implemen�
tation Garbage Collector
� named I
� and the implementation invariant I
de�ned in the theory Garbage Collector
 Inv� The theory further de�nes
the abstraction function abs� and �nally applies the Refinement theory�
This application gives rise to four TCC	s �Type Checking Conditions� gen�
erated by PVS� which have to be proven in order for the PVS speci�cation to
be well formed �type check�� Furthermore� the proof of these TCC	s yields
the correctness of the re�nement� The TCC	s are shown in �gure ����

�



� Assuming TCC generated �line ��� for

� Refinement�S�O�State� S�State� S�init� S�next�

� S�proj� I��State� I��init� I��next� I��proj� abs� I�

� proved � complete

R��TCC�� OBLIGATION FORALL s� S�proj�abs�s�� 
 I��proj�s��

� Assuming TCC generated �line ��� for

� Refinement�S�O�State� S�State� S�init� S�next�

� S�proj� I��State� I��init� I��next� I��proj� abs� I�

� proved � complete

R��TCC�� OBLIGATION FORALL s� I��init�s� IMPLIES S�init�abs�s���

� Assuming TCC generated �line ��� for

� Refinement�S�O�State� S�State� S�init� S�next�

� S�proj� I��State� I��init� I��next� I��proj� abs� I�

� proved � complete

R��TCC�� OBLIGATION

�FORALL �r�� �I�� r�� �I���

I��next�r�� r�� IMPLIES S�next�abs�r��� abs�r�����

� Assuming TCC generated �line ��� for

� Refinement�S�O�State� S�State� S�init� S�next�

� S�proj� I��State� I��init� I��next� I��proj� abs� I�

� proved � complete

R��TCC�� OBLIGATION invariant�I��init� I��next��I��

Figure ���� TCC	s Generated by Applying Refinement
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sim�append�white � LEMMA

r� 
 Rule�append�white�r�� IMPLIES

�EXISTS n� abs�r�� 
 Rule�append�n��abs�r���� OR abs�r�� 
 abs�r��

Figure ���� PVS Version of APPEND� � COLLECT

There is a TCC for each ASSUMPTION of the Refinement theory� In
particular R
 TCC states the simulation property� and R
 TCC� states the
invariant property� As illustrated in section ��
�� page ��� we show for each
concrete transition which abstract transition it simulates� for example we
had that APPEND� � COLLECT� which in this PVS setting is formulated as
the lemma in �gure ����

	�
 Composing the Re�nements

The technique illustrated above for the �rst re�nement step is repeated for
the next two� yielding two further theories Refinement� and Refinement�
All � re�nements can now be composed� and the bottom level implementa�
tion can be shown to re�ne the top level speci�cation using transitivity of the
re�nement relation� This is expressed in the theory Composed Refinement

in �gure ���� where the theorem ref is our main correctness criteria�
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Composed�Refinement�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refine�Predicate

IMPORTING Refine�Predicate�Transitive

ref� � LEMMA

refines�S�O�State�S�State�I��State�

�I��init�I��next�I��proj��S�init�S�next�S�proj�

ref � THEOREM

refines�S�O�State�S�State�I��State�

�I��init�I��next�I��proj��S�init�S�next�S�proj�

END Composed�Refinement

Figure ���� Composing the Re�nements
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Chapter �

Observations

In this chapter we relate the re�nement proof to three other proofs of the
same algorithm� two of which are mechanized�

��� Comparison with Two Mechanized Proofs

It is possible to compare the present proof with two other mechanized proofs
of exactly the same algorithm� a proof in the Boyer�Moore prover �
���
from now on referred to as the BMinv�proof� and a PVS proof ���� referred
to as the PVSinv�proof� Instead of being based on re�nement� these two
proofs are based on a statement of the correctness criteria as an invariant
to be proven about the implementation �the third re�nement step�� In
addition� a superposition proof has been done in UNITY ��� referred to as
the UNITYref �proof� This proof is manual� hence no theorem prover has
been used�

The PVSinv�proof follows the BMinv�proof closely� Basically the same in�
variants were used� but the PVSinv�proof used �� function lemmas� whereas
the BMinv�proof used over 
��� The BM�lemmas were not published� so we
have not been able to examine the reason for this di�erence� One reason
could be that our lemmas are more general�

The PVSref �proof has the advantage over the two other proofs� that the
correctness criteria can be appreciated without knowing the internal struc�
ture of the implementation� That is� we do not need to know for example
that the append operation is only applied in location APPEND to node L�

�




and only if L is white� Hence� from this perspective� the re�nement proof
represents an improvement�

The PVSref �proof has approximately the same size as the PVSinv�proof�
in that basically the same invariants and lemmas about auxiliary functions
need to be proven� Hence� one cannot argue that the proof has become any
simpler� On the contrary in fact� since we have many levels� we have to
prove some invariants several times�

One can perhaps say� that some invariants were easier to discover when
using re�nement� especially at the top levels� In particular nested loops may
be treated nicely with re�nement� only introducing one loop at a time� In
general� loops in the algorithm to be veri�ed are the reason why invariant
discovery is hard� and of course nested loops are no better�

The main lesson obtained from the PVSinv�proof was that invariant dis�
covery was the key element to focus attention on� The experience with the
PVSref �proof is in fact the same� re�nement does not relieve us from search�
ing invariants� We had to come up with exactly the same invariants� but
the discovery process was di�erent� perhaps more structured�

Our lesson can be summarized in the following formula� where S is a
transition system� and where P and Q are state predicates� and �X �X
being P or Q� means always X� and where S � �X means that X is true in
all reachable states of S� hence� X is an S invariant�

S � �P� P 
 Q

S � �Q

The formula says that if we want to prove S � �Q� we have to �nd a
stronger predicate P �which implies Q�� and prove S � �P � Now proving
S � �P � once we have P is normally not the problem� assuming a good
theorem prover like PVS� Here we believe that the decision procedures in
PVS helped us greatly�

The problem is to �nd P � This is no new knowledge� since it corresponds
to �nding the loop�invariant in while programs� and this is known to be
unsolvable in general� However� heuristics for �nding P in many practical
situations may be feasible� A second lesson is that even using re�nement
does not relieve us from the invariant discovery process� Hence� it is central�
The problem has also been investigated in ��� by Saddek Bensalem� amongst
others�

��



��� Comparison with the Manual UNITY Proof

In �� a proof has been carried out of basically the same algorithm using
the technique of superposition� We describe that e�ort in the following�
comparing it to our proof�

����� The Superposition Technique

The UNITYref �proof is based on superposition� As mentioned earlier� this
notion of re�nement di�ers from ours in the sense that the initial program
is not regarded as a speci�cation of lower levels� Rather it is supposed to be
just a starting point� called the underlying program which is then enriched
with more details� in several steps� until the �nal enrichment� call it the
goal program satis�es some �di�erent� property� which we shall call the goal
property� Hence� this kind of proof is in fact closer to the other invariant
proofs PVSinv and PVSref mentioned above� in that what we really end up
with is a goal program� which then must satisfy some goal property� which
could for example be an invariant� The stepwise manner in which this goal
program is developed does of course resemble re�nement� but it	s rather a
horizontal re�nement than a vertical one� Each level in the enrichment chain
inherits the properties proven about the previous level� and all the collected
properties can then be used to prove that the goal program satis�es the goal
property�

����� Overview of the Proof

The UNITY program to be developed is planned to consist in principle of
a mutator in parallel with a garbage collector� They both work on a graph
with a �xed set of vertices where edges are changed by the mutator� One of
the vertices is the root� and any vertice reachable from the root is accessible�
The mutator works very much the same way as ours� The garbage collector
moves garbage vertices into the free list� Each execution of the garbage
collector consists of an execution of a program called marker followed by an
execution of a program called collector� Program marker marks all accessi�
ble vertices� where after the collector places unmarked vertices on the free
list� The algorithm veri�ed is in fact only the marker in parallel with the
mutator� leaving out the collector� Hence� a simpli�cation compared to our
proof� Another simpli�cation is� that the marker is only called once� and
not repeatedly as it is in our model�

��



����� The Initial Program

The initial underlying program �to be enriched� in the UNITYref �proof just
consists of the mutator� adding and deleting edges between vertices� Hence�
already here the approach di�ers� since our initial program �section � is
in fact a complete speci�cation of the �nal program� which includes this
mutator ��gure ���� but also an abstract version of the garbage collector
��gure ��� that appends garbage vertices to the free list� without specifying
how garbage vertices are identi�ed�

	
�
�
� The First Superposition

This program is then enriched in two steps� In the �rst step� a program prop�

agator is obtained� which �in addition to the mutator	s activity� contains a
�rst development of the garbage collector� which repeatedly marks some
arbitrary vertice that is pointed to from an already marked vertice �prop�
agation of marked vertices�� Prior to the execution� the root is marked�
Hence� this should sooner or later result in the marking of all accessible
vertices� In addition� when the mutator adds an arc� the target is marked�
just as in our own case�

The propagator should be compared to our second re�nement �section
����� the mutator of which is presented in �gure ���� and the collector pre�
sented in �gure ���� There are three di�erences� First� the UNITYref muta�
tor marks the target simultaneously with the addition of the edge� while in
our case� the target is assigned to the variable Q� and then Q is marked in
the mutator	s next transition� Second� the UNITYref program operates with
one root while we operate with several� Third� our second re�nement con�
tains a condition for terminating the propagation� namely not exists bw���
there does not exist a pointer from a black node to a white node� This con�
dition is not part of the second UNITYref re�nement� which just continues
marking� In fact� the third UNITYref superposition� to be described below�
has as purpose to add this termination condition� As we� see� this again
illustrates the di�erence in approach� our re�nement contains a complete
view of the system� while the UNITYref re�nement only provides a partial
view �without a termination condition��

�



	
�
�
� The Second Superposition

The �nal program� the marker is obtained by adding a termination condi�
tion� This is done by adding four variables� two boolean �ags� mu��ag and
ma��ag� one for the mutator and one for the garbage collector� a variable b�
containing a set of edges� and a boolean variable over� which will become
true eventually when all accessible vertices have been marked� The variable
b is initially the empty set� and over is false �the two �ags have arbitrary
values�� The �nal superposition is now done by modifying the mutator and
the garbage collector� and by adding three new� always enabled� transitions
which manipulate the four new variables�

The mutator and garbage collector are modi�ed such that they set their
respective �ags to false in case they mark a non�marked vertice� The three
new transitions are as follows� First� a transition simply adds an edge �u�v�
to b in case it holds that� �marked�u� implies marked�v��� Second� a transi�
tion empties b and assigns true to the two �ags in case any of them are false�
Finally� a third transition assigns true to the variable over in case both �ags
are true and also the variable b contains all possible edges�

This program di�ers from our third and �nal re�nement �section ����
presented in �gure ��� in basically two ways� First� we have re�ned the
propagation further such that nodes are scanned in a pre�de�ned lexico�
graphic order� and not arbitrarily as in the UNITYref program� Second�
we model the termination condition by another scan of all nodes� count�
ing the number of black nodes� and comparing this number to the previous
count� terminating the propagation only if these numbers are equal �no new
nodes have been coloured�� If they are not equal� a lexicographically ordered
propagation is repeated�

����� The Proof

The property proven about the �nal marker is�

� The variable over eventually becomes true

� When over is true� all accessible nodes are marked�

This is a liveness property in contrast to ours� which is a safety property�
Our safety property is basically stated in �gure �� and states that only

��



garbage nodes are appended to the free list� Since the UNITYref program
does not include this collecter phase� the correctness property must be stated
di�erently� hence as a liveness property�
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A�� Transition Systems and their Re�nement

����������������������������������������������������������������

� Traces � �

� Assuming a transition system �State�init�next� this theory �

� defines what a trace is and what an invariant is� �

����������������������������������������������������������������

Traces�State � TYPE� � THEORY

BEGIN

init � VAR pred�State�

next � VAR pred��State�State��

sq � VAR sequence�State�

n � VAR nat

trace�init�next��sq��bool 


init�sq���� AND

FORALL n� next�sq�n��sq�n���

p � VAR pred�State�

invariant�init�next��p��bool 


FORALL �tr��trace�init�next���� FORALL n� p�tr�n��

END Traces

��



�����������������������������������������������������������

� Refine�Predicate � �

� Defines the predicate ��refines�� expressing when one �

� transition system refines another� �

�����������������������������������������������������������

Refine�Predicate�

O�State � TYPE�

S�State � TYPE�

I�State � TYPE� � THEORY

BEGIN

IMPORTING Traces

s�init � VAR pred�S�State�

s�next � VAR pred��S�State�S�State��

s�proj � VAR �S�State �	 O�State�

i�init � VAR pred�I�State�

i�next � VAR pred��I�State�I�State��

i�proj � VAR �I�State �	 O�State�

refines�i�init�i�next�i�proj��s�init�s�next�s�proj��bool 


FORALL �i�tr��trace�i�init�i�next����

EXISTS �s�tr��trace�s�init�s�next����

map�i�proj�i�tr� 
 map�s�proj�s�tr�

END Refine�Predicate

��



������������������������������������������������������

� Refine�Predicate�Transitive � �

� States as a lemma that refinement is transitive� �

������������������������������������������������������

Refine�Predicate�Transitive�

O�State � TYPE�

State� � TYPE�

State� � TYPE�

State� � TYPE� � THEORY

BEGIN

IMPORTING Refine�Predicate

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

init� � VAR pred�State��

next� � VAR pred��State��State���

proj� � VAR �State� �	 O�State�

transitive � LEMMA

refines�O�State�State��State��

�init��next��proj���init��next��proj�� AND

refines�O�State�State��State��

�init��next��proj���init��next��proj��

IMPLIES

refines�O�State�State��State��

�init��next��proj���init��next��proj��

END Refine�Predicate�Transitive

��



��������������������������������������������������������������

� Refinement � �

� The lemma ��ref�� states that the implementation refines �

� the specification conditioned the assumptions� �

��������������������������������������������������������������

Refinement�

O�State � TYPE�

S�State � TYPE�

S�init � pred�S�State��

S�next � pred��S�State�S�State���

S�proj � �S�State �	 O�State��

I�State � TYPE�

I�init � pred�I�State��

I�next � pred��I�State�I�State���

I�proj � �I�State �	 O�State��

abs � �I�State �	 S�State��

I�inv � �I�State �	 bool�� � THEORY

BEGIN

ASSUMING

IMPORTING Traces

s � VAR I�State

r��r� � VAR �I�inv�

proj�id � ASSUMPTION

FORALL s� S�proj�abs�s�� 
 I�proj�s�

init�h � ASSUMPTION

FORALL s� I�init�s� IMPLIES S�init�abs�s��

next�h � ASSUMPTION

I�next�r��r�� IMPLIES S�next�abs�r���abs�r���

invar � ASSUMPTION

invariant�I�init�I�next��I�inv�

ENDASSUMING

IMPORTING Refine�Predicate�O�State�S�State�I�State�

�




ref � THEOREM refines�I�init�I�next�I�proj�

�S�init�S�next�S�proj�

END Refinement

��



��������������������������������������������

� Invariant�Predicates � �

� Functions used for proving invariants� �

��������������������������������������������

Invariant�Predicates�State � TYPE� � THEORY

BEGIN

IMPORTING Traces�State�

p�p��p� � VAR pred�State�

s�s��s� � VAR State

init � VAR pred�State�

next � VAR pred��State�State��

inv � VAR pred�State�

IMPLIES�p��p���bool 
 FORALL s� p��s� IMPLIES p��s��

��p��p���pred�State� 
 LAMBDA s� p��s� AND p��s�

preserved�init�next��inv��p��bool 


�init IMPLIES p� AND

FORALL s��s��

inv�s�� AND p�s�� AND next�s��s�� IMPLIES p�s��

preserved�and � LEMMA

preserved�init�next��inv��p�� AND

preserved�init�next��inv��p��

IMPLIES

preserved�init�next��inv��p� � p��

preserved�inv � LEMMA

preserved�init�next��inv��inv� IMPLIES invariant�init�next��inv�

END Invariant�Predicates

��



A�� The Memory

���������������������������������������������������������������

� Memory � �

� Defines the memory type and the basic operations upon it� �

� Defines what it means for a node to be accessible in a �

� memory� �

���������������������������������������������������������������

Memory�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

Memory � TYPE

Node � TYPE 
 fn � nat � n � NODESg
Index � TYPE 
 fi � nat � i � SONSg
Root � TYPE 
 fr � nat � r � ROOTSg

m � VAR Memory

n�n��n��k � VAR Node

i�i��i� � VAR Index

null�array � Memory

son � �Node�Index �	 �Memory �	 Node��

set�son � �Node�Index�Node �	 �Memory �	 Memory��

mem�ax� � AXIOM son�n�i��null�array� 
 �

mem�ax� � AXIOM son�n��i���set�son�n��i��k��m��




IF n�
n� AND i�
i� THEN k ELSE son�n��i���m� ENDIF

points�to�n��n���m��bool 


EXISTS �i�Index�� son�n��i��m�
n�

accessible�n��m�� INDUCTIVE bool 


n � ROOTS OR

EXISTS k� accessible�k��m� AND points�to�k�n��m�

append�to�free � �Node �	 �Memory �	 Memory��

�



append�ax� AXIOM

�NOT accessible�k��m��

IMPLIES

�accessible�n��append�to�free�k��m�� IFF �n 
 k OR accessible�n��m���

END Memory

��



������������������������������������������������������

� Accessible�Memory�Properties � �

� States lemmas about the ��accessible�� function� �

� These lemmas are needed during invariant proofs� �

������������������������������������������������������

Accessible�Memory�Properties�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�NODES�SONS�ROOTS�

m � VAR Memory

n�n��n��k�k� � VAR Node

i � VAR Index

l�l��l� � VAR list�Node�

path�m��n� n���l�� RECURSIVE bool 


�CASES l OF

null� n 
 n��

cons�k�l�� �points�to�k� n���m� AND

path�m��n� k��l��

ENDCASES�

MEASURE length�l�

member�cdr�n� l�� RECURSIVE list�Node� 


�CASES l OF

null� null�

cons�k� l��� �IF k 
 n THEN l�

ELSE member�cdr�n� l�� ENDIF�

ENDCASES�

MEASURE length�l�

set�son�points�to��� LEMMA

points�to�n� k��set�son�n� i� k��m��

set�son�points�to��� LEMMA

n �
 n� IMPLIES

points�to�n�� k���set�son�n� i� k��m�� 


points�to�n�� k���m�

��



set�son�points�to��� LEMMA

k�
k� AND

points�to�n�� k���set�son�n� i� k��m��

IMPLIES points�to�n�� k���m�

path�append� LEMMA

path�m��n� n���l�� AND path�m��k� k���l�� AND points�to�k�� n��m�

IMPLIES path�m��k� n���append�l�� cons�k�� l����

accessible�path� LEMMA

accessible�n��m�


 �EXISTS n�� l� path�m��n�� n��l� AND n� � ROOTS�

path�member�cdr� LEMMA

path�m��n� n���l� AND member�k� l� IMPLIES

path�m��n� k��member�cdr�k� l��

length�member�cdr� LEMMA

cons��l� IMPLIES

length�member�cdr�n� l�� � length�l�

path�without�duplicates� LEMMA

path�m��n� n���l� IMPLIES

�EXISTS l�� path�m��n� n���l�� AND

NOT member�n�� l���

path�set�son� LEMMA

path�m��n� n���l� AND NOT member�k� l� IMPLIES

path�set�son�k� i� k���m���n� n���l�

path�set�son��� LEMMA

path�set�son�k� i� k���m���n� n���l� AND

NOT member�k� l�

IMPLIES

path�m��n� n���l�

path�set�son��� LEMMA

path�set�son�k� i� k���m���n� n���l� AND

path�m��n�� k���l��

IMPLIES

�EXISTS l�� path�m��n� n���l�� OR

path�m��n�� n���l���

accessible� � LEMMA

accessible�k��m� AND accessible�n���set�son�n�i�k��m��

IMPLIES

��



accessible�n���m�

accessible� � LEMMA

accessible�k��m� IMPLIES accessible�k��set�son�n�i�k��m��

END Accessible�Memory�Properties

��



��������������������������������������������������������������

� Coloured�Memory � �

� Defines functions to colour �and examine the colours of� �

� memory nodes� �

��������������������������������������������������������������

Coloured�Memory�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�NODES�SONS�ROOTS�

Colour � TYPE 
 bool

Colours � TYPE 
 �Node �	 Colour�

n � VAR Node

i � VAR Index

c � VAR Colour

cs � VAR Colours

m � VAR Memory

colour�n��cs��Colour 


cs�n�

set�colour�n�c��cs��Colours 


cs WITH �n �
 c�

blackened�cs�m��bool 


FORALL n� accessible�n��m� IMPLIES colour�n��cs�

bw�n�i��cs�m��bool 


colour�n��cs� AND NOT colour�son�n�i��m���cs�

exists�bw�cs�m��bool 


EXISTS n�i� bw�n�i��cs�m�

END Coloured�Memory

��



������������������������������������������������������������

� Memory�Observers � �

� Defines memory observers� being functions that extract �

� information from the memory� These functions are used �

� when stating the invariants� �

������������������������������������������������������������

Memory�Observers

�NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

cs � VAR Colours

m � VAR Memory

n � VAR Node

i � VAR Index

r � VAR Root

N�N��N� � VAR nat

I��I� � VAR nat

cl��cl� � VAR �nat�nat�

blackened�N��cs�m��bool 


FORALL �n � N �
 n��

accessible�n��m� IMPLIES colour�n��cs�

black�roots�N��cs��bool 


FORALL �r � r � N�� colour�r��cs��

��cl��cl���bool 


LET

n� 
 PROJ���cl��� i� 
 PROJ���cl���

n� 
 PROJ���cl��� i� 
 PROJ���cl��

IN

n� � n� OR �n� 
 n� AND i� � i���

exists�bw�N��I��N��I���cs�m��bool 


EXISTS n�i�

bw�n�i��cs�m� AND

NOT �n�i� � �N��I�� AND

��



�n�i� � �N��I��

blacks�N��N���cs� � RECURSIVE nat 


IF N� � N� AND N� � NODES THEN

IF colour�N���cs� THEN � ELSE � ENDIF  blacks�N���N���cs�

ELSE

�

ENDIF

MEASURE abs�N��N��

END Memory�Observers

�




������������������������������������������������������

� Memory�Properties � �

� States lemmas about memory observers� �

� These lemmas are needed during invariant proofs� �

������������������������������������������������������

Memory�Properties�NODES� posnat� SONS� posnat� ROOTS� posnat�� THEORY

BEGIN

ASSUMING

roots�within� ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Observers�NODES� SONS� ROOTS�

IMPORTING Accessible�Memory�Properties�NODES� SONS� ROOTS�

abs��i� int��� nat 
 IF i � � THEN �i ELSE i ENDIF

cs � VAR Colours

c � VAR Colour

m � VAR Memory

n� n�� n�� k � VAR Node

i� i�� i�� j � VAR Index

N� N�� N� � VAR nat

I� I�� I� � VAR nat

x � VAR nat

l� l�� l� � VAR list�Node�

smaller� � LEMMA

NOT �n� i� � ��� ��

smaller� � LEMMA

�NOT �n� i� � �k� �� AND �n� i� � �k  �� ��� IMPLIES n 
 k

smaller� � LEMMA

�n� i� � �k� SONS� IFF �n� i� � �k  �� ��

smaller� � LEMMA

�NOT �n� i� � �k� j� AND �n� i� � �k� j  ��� IMPLIES �n� i� 
 �k� j�

colour� � LEMMA

colour�n��set�colour�n�� c��cs�� 
 IF n 
 n� THEN c ELSE colour�n��cs� ENDIF

colour� � LEMMA

colour�n��cs� IMPLIES set�colour�n� TRUE��cs� 
 cs

��



blackened� � LEMMA

blackened�n��cs� m� AND accessible�n��m� IMPLIES colour�n��cs�

blackened� � LEMMA

accessible�k��m� AND blackened�N��cs� m� IMPLIES blackened�N��cs� set�son�n� i� k��m��

blackened� � LEMMA

blackened�N��cs� m� IMPLIES blackened�N��set�colour�n� TRUE��cs�� m�

blackened� � LEMMA

blackened�n��cs� m� IMPLIES blackened�n  ���set�colour�n� FALSE��cs�� m�

blackened�� LEMMA

NOT accessible�n��m� AND blackened�n��cs� m� IMPLIES

blackened�n  ���cs� append�to�free�n��m��

blackened� � LEMMA

blackened�cs� m� IMPLIES blackened����cs� m�

blackened� � LEMMA

black�roots�ROOTS��cs� AND NOT exists�bw�cs� m� IMPLIES blackened�cs� m�

blackened� � LEMMA

blackened�cs� m� AND accessible�n��m� IMPLIES colour�n��cs�

black�roots� � LEMMA

black�roots�N��cs� IMPLIES black�roots�N��set�colour�n� TRUE��cs��

black�roots� � LEMMA

black�roots����cs�

black�roots� � LEMMA

black�roots�n��cs� IMPLIES black�roots�n  ���set�colour�n� TRUE��cs��

bw� � LEMMA

bw�n� i��cs� m� 
 �colour�n��cs� AND NOT colour�son�n� i��m���cs��

bw� � LEMMA

�NOT bw�n�� i���cs� m� AND bw�n�� i���cs� set�son�n�� i�� k��m���

IMPLIES

�n�� i�� 
 �n�� i��

bw�� LEMMA

�NOT bw�n� i��cs� m� AND bw�n� i��set�colour�k� TRUE��cs�� m��

IMPLIES

�n 
 k AND NOT colour�n��cs��

��



bw� � LEMMA

bw�n� i��cs� m� IMPLIES colour�n��cs� AND NOT colour�son�n� i��m���cs�

exists�bw� � LEMMA

colour�k��cs� AND NOT exists�bw�cs� m� IMPLIES NOT exists�bw�cs� set�son�n� i� k��m��

exists�bw� � LEMMA

exists�bw�cs� m� 
 exists�bw��� �� NODES� ���cs� m�

exists�bw� � LEMMA

NOT exists�bw�N� I� N� I��cs� m�

exists�bw� � LEMMA

NOT exists�bw��� �� N� I��cs� m� AND exists�bw��� �� N� I��cs� set�son�n� i� k��m��

IMPLIES

NOT colour�k��cs� AND �n� i� � �N� I�

exists�bw� � LEMMA

accessible�n��m� AND NOT colour�n��cs� AND black�roots�ROOTS��cs�

IMPLIES

exists�bw��� �� NODES� ���cs� m�

exists�bw� � LEMMA

exists�bw��� �� NODES� ���cs� m�

IMPLIES

exists�bw��� �� N� I��cs� m� OR exists�bw�N� I� NODES� ���cs� m�

exists�bw� � LEMMA

exists�bw�N� I� NODES� ���cs� m� AND �n� i� � �N� I�

IMPLIES

exists�bw�N� I� NODES� ���cs� set�son�n� i� k��m��

exists�bw� � LEMMA

NOT colour�n��cs� AND exists�bw��� �� n  �� ���cs� m�

IMPLIES

exists�bw��� �� n� ���cs� m�

exists�bw� � LEMMA

NOT colour�n��cs� AND exists�bw�n� �� NODES� ���cs� m�

IMPLIES

exists�bw�n  �� �� NODES� ���cs� m�

exists�bw�� � LEMMA

exists�bw��� �� N  �� ���cs� m� IMPLIES exists�bw��� �� N� SONS��cs� m�

exists�bw�� � LEMMA

exists�bw�N� SONS� NODES� ���cs� m� IMPLIES exists�bw�N  �� �� NODES� ���cs� m�

�



exists�bw�� � LEMMA

colour�son�n� i��m���cs� AND exists�bw��� �� n� i  ���cs� m�

IMPLIES

exists�bw��� �� n� i��cs� m�

exists�bw�� � LEMMA

colour�son�n� i��m���cs� AND exists�bw�n� i� NODES� ���cs� m�

IMPLIES

exists�bw�n� i  �� NODES� ���cs� m�

exists�bw�� � LEMMA

exists�bw�N�� I�� N�� I���cs� m�

IMPLIES

EXISTS �n� Node� i� Index��

bw�n� i��cs� m� AND NOT �n� i� � �N�� I�� AND �n� i� � �N�� I��

blacks� � LEMMA

blacks�N� N��cs� 
 �

blacks� � LEMMA

blacks�N�� N���cs� �
 blacks�N�� N���set�colour�n� TRUE��cs��

blacks� � LEMMA

NOT colour�n��cs� IMPLIES blacks�n� N��cs� 
 blacks�n  �� N��cs�

blacks� � LEMMA

�n � N AND colour�n��cs�� IMPLIES blacks�n� N��cs� 
 blacks�n  �� N��cs�  �

blacks��� � LEMMA

�n � N� OR n 	
 N�� IMPLIES blacks�N�� N���set�colour�n� c��cs�� 
 blacks�N�� N���cs�

blacks��� � LEMMA

�n 	
 N� AND n � N� AND NOT colour�n��cs��

IMPLIES

blacks�N�� N���set�colour�n� TRUE��cs�� 
 blacks�N�� N���cs�  �

blacks� � LEMMA

�blacks��� NODES��set�colour�n� TRUE��cs�� 
 blacks��� NODES��cs�� IMPLIES colour�n��cs�

blacks� � LEMMA

NOT colour�n���cs� IMPLIES blacks�n�� n�  ���cs� 
 blacks�n�� n���cs�

blacks� � LEMMA

n� �
 n� AND colour�n���cs� IMPLIES blacks�n�� n�  ���cs� 
 blacks�n�� n���cs�  �

END Memory�Properties

��



A�� The Re�nement Steps

A���� Top Level Speci�cation

�����������������������������������������������������������

� Garbage�Collector � �

� The top�level specification of the garbage collector� �

�����������������������������������������������������������

Garbage�Collector�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�NODES�SONS�ROOTS�

State � TYPE 
 Memory

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 s

init�s��bool 
 �s 
 null�array�

Rule�mutate�n�i�k��s��State 


IF accessible�k��s� THEN

set�son�n�i�k��s�

ELSE

s

ENDIF

Rule�append�n��s��State 


IF NOT accessible�n��s� THEN

append�to�free�n��s�

ELSE

s

ENDIF

next�s��s���bool 


��



�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s��� OR

�EXISTS n� s� 
 Rule�append�n��s��� OR

s� 
 s�

END Garbage�Collector

��



A���� First Re�nement

����������������������������������������������������

� Garbage�Collector� � �

� The first refinement of the garbage collector� �

����������������������������������������������������

Garbage�Collector��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

MuPC � TYPE 
 fMUTATE�COLOURg
CoPC � TYPE 
 fCOLOUR�TEST�L�APPENDg

State � TYPE 
 �� MU � MuPC� CHI � CoPC�

Q � nat� L � nat � C � Colours� M � Memory ��

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 M�s�

init�s��bool 


MU�s� 
 MUTATE

� CHI�s� 
 COLOUR

� M�s� 
 null�array

�����������������������

� The MUTATOR Process �

�����������������������

Rule�mutate�n�i�k��s��State 


IF MU�s� 
 MUTATE AND accessible�k��M�s�� THEN

s WITH �M �
 set�son�n�i�k��M�s���

Q �
 k�

��



MU �
 COLOUR�

ELSE

s

ENDIF

Rule�colour�target�s��State 


IF MU�s� 
 COLOUR AND Q�s� � NODES THEN

s WITH �C �
 set�colour�Q�s��TRUE��C�s���

MU �
 MUTATE�

ELSE

s

ENDIF

MUTATOR�s��s���bool 


�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s���

OR s� 
 Rule�colour�target�s��

�������������������������

� The COLLECTOR Process �

�������������������������

Rule�stop�colouring�s��State 


IF CHI�s� 
 COLOUR AND blackened�C�s��M�s�� THEN

s WITH �L �
 �� CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�colour�n��s��State 


IF CHI�s� 
 COLOUR THEN

s WITH �C �
 set�colour�n�TRUE��C�s���

ELSE

s

ENDIF

Rule�stop�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� 
 NODES THEN

s WITH �CHI �
 COLOUR�

ELSE

s

ENDIF

Rule�continue�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� � NODES THEN

s WITH �CHI �
 APPEND�

ELSE

��



s

ENDIF

Rule�black�to�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND colour�L�s���C�s�� THEN

s WITH �C �
 set�colour�L�s��FALSE��C�s���

L �
 L�s���

CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�append�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND NOT colour�L�s���C�s�� THEN

s WITH �M �
 append�to�free�L�s���M�s���

L �
 L�s�  ��

CHI �
 TEST�L�

ELSE

s

ENDIF

COLLECTOR�s��s���bool 


s� 
 Rule�stop�colouring�s��

OR �EXISTS n� s� 
 Rule�colour�n��s���

OR s� 
 Rule�stop�appending�s��

OR s� 
 Rule�continue�appending�s��

OR s� 
 Rule�black�to�white�s��

OR s� 
 Rule�append�white�s��

���������������������������

� The Transition Relation �

���������������������������

next�s��s���bool 


MUTATOR�s��s�� OR

COLLECTOR�s��s�� OR

s� 
 s�

END Garbage�Collector�

��



A���� Second Re�nement

�����������������������������������������������������

� Garbage�Collector� � �

� The second refinement of the garbage collector� �

�����������������������������������������������������

Garbage�Collector��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

MuPC � TYPE 
 fMUTATE�COLOURg
CoPC � TYPE 
 fCOLOUR�ROOTS�PROPAGATE�TEST�L�APPENDg

State � TYPE 
 �� MU � MuPC� CHI � CoPC�

Q � nat� K � nat� L � nat� C � Colours� M � Memory ��

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 M�s�

init�s��bool 


MU�s� 
 MUTATE

� CHI�s� 
 COLOUR�ROOTS

� K�s� 
 �

� M�s� 
 null�array

�����������������������

� The MUTATOR Process �

�����������������������

Rule�mutate�n�i�k��s��State 


IF MU�s� 
 MUTATE AND accessible�k��M�s�� THEN

s WITH �M �
 set�son�n�i�k��M�s���

Q �
 k�

�




MU �
 COLOUR�

ELSE

s

ENDIF

Rule�colour�target�s��State 


IF MU�s� 
 COLOUR AND Q�s� � NODES THEN

s WITH �C �
 set�colour�Q�s��TRUE��C�s���

MU �
 MUTATE�

ELSE

s

ENDIF

MUTATOR�s��s���bool 


�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s���

OR s� 
 Rule�colour�target�s��

�������������������������

� The COLLECTOR Process �

�������������������������

Rule�stop�colouring�roots�s��State 


IF CHI�s� 
 COLOUR�ROOTS AND K�s� 
 ROOTS THEN

s WITH �CHI �
 PROPAGATE�

ELSE

s

ENDIF

Rule�colour�root�s��State 


IF CHI�s� 
 COLOUR�ROOTS AND K�s� � ROOTS THEN

s WITH �C �
 set�colour�K�s��TRUE��C�s���

K �
 K�s�  ��

ELSE

s

ENDIF

Rule�stop�propagating�s��State 


IF CHI�s� 
 PROPAGATE AND NOT exists�bw�C�s��M�s�� THEN

s WITH �L �
 �� CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�propagate�n�i��s��State 


IF CHI�s� 
 PROPAGATE AND bw�n�i��C�s��M�s�� THEN

s WITH �C �
 set�colour�son�n�i��M�s���TRUE��C�s���

��



ELSE

s

ENDIF

Rule�stop�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� 
 NODES THEN

s WITH �K �
 �� CHI �
 COLOUR�ROOTS�

ELSE

s

ENDIF

Rule�continue�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� � NODES THEN

s WITH �CHI �
 APPEND�

ELSE

s

ENDIF

Rule�black�to�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND colour�L�s���C�s�� THEN

s WITH �C �
 set�colour�L�s��FALSE��C�s���

L �
 L�s���

CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�append�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND NOT colour�L�s���C�s�� THEN

s WITH �M �
 append�to�free�L�s���M�s���

L �
 L�s�  ��

CHI �
 TEST�L�

ELSE

s

ENDIF

COLLECTOR�s��s���bool 


s� 
 Rule�stop�colouring�roots�s��

OR s� 
 Rule�colour�root�s��

OR s� 
 Rule�stop�propagating�s��

OR �EXISTS n�i� s� 
 Rule�propagate�n�i��s���

OR s� 
 Rule�stop�appending�s��

OR s� 
 Rule�continue�appending�s��

OR s� 
 Rule�black�to�white�s��

OR s� 
 Rule�append�white�s��

���������������������������

��



� The Transition Relation �

���������������������������

next�s��s���bool 


MUTATOR�s��s�� OR

COLLECTOR�s��s�� OR

s� 
 s�

END Garbage�Collector�

�



A���� Third Re�nement

����������������������������������������������������

� Garbage�Collector� � �

� The third refinement of the garbage collector� �

����������������������������������������������������

Garbage�Collector��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Coloured�Memory�NODES�SONS�ROOTS�

MuPC � TYPE 
 fMUTATE�COLOURg
CoPC � TYPE 
 fCOLOUR�ROOTS�TEST�I�TEST�COLOUR�COLOUR�SONS�

TEST�H�COUNT�COMPARE�TEST�L�APPENDg

State � TYPE 
 �� MU � MuPC� CHI � CoPC�

Q � nat� BC � nat� OBC � nat�

H � nat� I � nat� J � nat� K � nat� L � nat�

C � Colours� M � Memory ��

O�State � TYPE 
 Memory

s�s��s� � VAR State

n�k � VAR Node

i � VAR Index

proj�s��O�State 
 M�s�

init�s��bool 


MU�s� 
 MUTATE

� CHI�s� 
 COLOUR�ROOTS

� OBC�s� 
 �

� K�s� 
 �

� M�s� 
 null�array

�����������������������

� The MUTATOR Process �

�����������������������

��



Rule�mutate�n�i�k��s��State 


IF MU�s� 
 MUTATE AND accessible�k��M�s�� THEN

s WITH �M �
 set�son�n�i�k��M�s���

Q �
 k�

MU �
 COLOUR�

ELSE

s

ENDIF

Rule�colour�target�s��State 


IF MU�s� 
 COLOUR AND Q�s� � NODES THEN

s WITH �C �
 set�colour�Q�s��TRUE��C�s���

MU �
 MUTATE�

ELSE

s

ENDIF

MUTATOR�s��s���bool 


�EXISTS n�i�k� s� 
 Rule�mutate�n�i�k��s���

OR s� 
 Rule�colour�target�s��

�������������������������

� The COLLECTOR Process �

�������������������������

Rule�stop�colouring�roots�s��State 


IF CHI�s� 
 COLOUR�ROOTS AND K�s� 
 ROOTS THEN

s WITH �I �
 �� CHI �
 TEST�I�

ELSE

s

ENDIF

Rule�colour�root�s��State 


IF CHI�s� 
 COLOUR�ROOTS AND K�s� � ROOTS THEN

s WITH �C �
 set�colour�K�s��TRUE��C�s���

K �
 K�s�  ��

ELSE

s

ENDIF

Rule�stop�propagating�s��State 


IF CHI�s� 
 TEST�I AND I�s� 
 NODES THEN

s WITH �BC �
 �� H �
 �� CHI �
 TEST�H�

ELSE

s

ENDIF

��



Rule�continue�propagating�s��State 


IF CHI�s� 
 TEST�I AND I�s� � NODES THEN

s WITH �CHI �
 TEST�COLOUR�

ELSE

s

ENDIF

Rule�white�node�s��State 


IF CHI�s� 
 TEST�COLOUR AND I�s� � NODES AND NOT colour�I�s���C�s�� THEN

s WITH �I �
 I�s�  �� CHI �
 TEST�I�

ELSE

s

ENDIF

Rule�black�node�s��State 


IF CHI�s� 
 TEST�COLOUR AND I�s� � NODES AND colour�I�s���C�s�� THEN

s WITH �J �
 �� CHI �
 COLOUR�SONS�

ELSE

s

ENDIF

Rule�stop�colouring�sons�s��State 


IF CHI�s� 
 COLOUR�SONS AND J�s� 
 SONS THEN

s WITH �I �
 I�s�  �� CHI �
 TEST�I�

ELSE

s

ENDIF

Rule�colour�son�s��State 


IF CHI�s� 
 COLOUR�SONS AND I�s� � NODES AND J�s� � SONS THEN

s WITH �C �
 set�colour�son�I�s��J�s���M�s���TRUE��C�s���

J �
 J�s�  ��

ELSE

s

ENDIF

Rule�stop�counting�s��State 


IF CHI�s� 
 TEST�H AND H�s� 
 NODES THEN

s WITH �CHI �
 COMPARE�

ELSE

s

ENDIF

Rule�continue�counting�s��State 


IF CHI�s� 
 TEST�H AND H�s� �
 NODES THEN

s WITH �CHI �
 COUNT�

��



ELSE

s

ENDIF

Rule�skip�white�s��State 


IF CHI�s� 
 COUNT AND H�s� � NODES AND NOT colour�H�s���C�s�� THEN

s WITH �H �
 H�s�  �� CHI �
 TEST�H�

ELSE

s

ENDIF

Rule�count�black�s��State 


IF CHI�s� 
 COUNT AND H�s� � NODES AND colour�H�s���C�s�� THEN

s WITH �BC �
 BC�s�  �� H �
 H�s�  �� CHI �
 TEST�H�

ELSE

s

ENDIF

Rule�stop�colouring�s��State 


IF CHI�s� 
 COMPARE AND BC�s� 
 OBC�s� THEN

s WITH �L �
 �� CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�continue�colouring�s��State 


IF CHI�s� 
 COMPARE AND BC�s� �
 OBC�s� THEN

s WITH �OBC �
 BC�s�� I �
 �� CHI �
 TEST�I�

ELSE

s

ENDIF

Rule�stop�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� 
 NODES THEN

s WITH �BC �
 �� OBC �
 �� K �
 �� CHI �
 COLOUR�ROOTS�

ELSE

s

ENDIF

Rule�continue�appending�s��State 


IF CHI�s� 
 TEST�L AND L�s� � NODES THEN

s WITH �CHI �
 APPEND�

ELSE

s

ENDIF

Rule�black�to�white�s��State 


��



IF CHI�s� 
 APPEND AND L�s� � NODES AND colour�L�s���C�s�� THEN

s WITH �C �
 set�colour�L�s��FALSE��C�s���

L �
 L�s��� CHI �
 TEST�L�

ELSE

s

ENDIF

Rule�append�white�s��State 


IF CHI�s� 
 APPEND AND L�s� � NODES AND NOT colour�L�s���C�s�� THEN

s WITH �M �
 append�to�free�L�s���M�s���

L �
 L�s�  �� CHI �
 TEST�L�

ELSE

s

ENDIF

COLLECTOR�s��s���bool 


s� 
 Rule�stop�colouring�roots�s��

OR s� 
 Rule�colour�root�s��

OR s� 
 Rule�stop�propagating�s��

OR s� 
 Rule�continue�propagating�s��

OR s� 
 Rule�white�node�s��

OR s� 
 Rule�black�node�s��

OR s� 
 Rule�stop�colouring�sons�s��

OR s� 
 Rule�colour�son�s��

OR s� 
 Rule�stop�counting�s��

OR s� 
 Rule�continue�counting�s��

OR s� 
 Rule�skip�white�s��

OR s� 
 Rule�count�black�s��

OR s� 
 Rule�stop�colouring�s��

OR s� 
 Rule�continue�colouring�s��

OR s� 
 Rule�stop�appending�s��

OR s� 
 Rule�continue�appending�s��

OR s� 
 Rule�black�to�white�s��

OR s� 
 Rule�append�white�s��

���������������������������

� The Transition Relation �

���������������������������

next�s��s���bool 


MUTATOR�s��s�� OR

COLLECTOR�s��s�� OR

s� 
 s�

END Garbage�Collector�

��



A�
 Re�nement and Invariant Lemmas

A���� Lemmas in First Re�nement

����������������������������������������������������������������

� Refinement� � �

� Applies the ��Refinement�� theory to yield �

� the first refinement lemma ��R���� There is a �

� ��sim�xxx�� lemma for each concrete transition ��xxx��� �

� and these lemmas are used in proving the ��next�h�� lemma� �

� which again is used in proving the TCC�s generated by the �

� application of the ��Refinement�� theory� �

����������������������������������������������������������������

Refinement��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

S � THEORY 
 Garbage�Collector �NODES�SONS�ROOTS�

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��Inv�NODES�SONS�ROOTS�

s � VAR I��State

r��r� � VAR �I�

n�k � VAR Node

i � VAR Index

cs � VAR Colours

abs�s��S�State 
 M�s�

sim�mutate � LEMMA

�EXISTS n�i�k� r� 
 Rule�mutate�n�i�k��r��� IMPLIES

�EXISTS n�i�k� abs�r�� 
 Rule�mutate�n�i�k��abs�r���� OR

abs�r�� 
 abs�r��

sim�colour�target � LEMMA

r� 
 Rule�colour�target�r�� IMPLIES

abs�r�� 
 abs�r��

sim�stop�colouring � LEMMA

r� 
 Rule�stop�colouring�r�� IMPLIES

��



abs�r�� 
 abs�r��

sim�colour � LEMMA

�EXISTS n� r� 
 Rule�colour�n��r��� IMPLIES

abs�r�� 
 abs�r��

sim�stop�appending � LEMMA

r� 
 Rule�stop�appending�r�� IMPLIES

abs�r�� 
 abs�r��

sim�continue�appending � LEMMA

r� 
 Rule�continue�appending�r�� IMPLIES

abs�r�� 
 abs�r��

sim�black�to�white � LEMMA

r� 
 Rule�black�to�white�r�� IMPLIES

abs�r�� 
 abs�r��

sim�append�white � LEMMA

r� 
 Rule�append�white�r�� IMPLIES

�EXISTS n� abs�r�� 
 Rule�append�n��abs�r���� OR abs�r�� 
 abs�r��

next�h � LEMMA

next�r��r�� IMPLIES next�abs�r���abs�r���

R� � THEORY 


Refinement�S�O�State�

S�State�S�init�S�next�S�proj�

I��State�I��init�I��next�I��proj�

abs�I�

END Refinement�

�




������������������������������������������������������������������

� Garbage�Collector��Inv � �

� Defines all invariants used in proving the first refinement� �

������������������������������������������������������������������

Garbage�Collector��Inv�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Properties�NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Invariant�Predicates�State�

s � VAR State

inv��s��bool 


CHI�s�
APPEND AND L�s� � NODES AND accessible�L�s���M�s��

IMPLIES

colour�L�s���C�s��

inv��s��bool 


CHI�s�
TEST�L OR CHI�s�
APPEND IMPLIES blackened�L�s���C�s��M�s��

I � pred�State� 
 inv� � inv�

pi � pred�pred�State�� 
 preserved�init�next��I�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�I � LEMMA pi�I�

inv � LEMMA invariant�init�next��I�

END Garbage�Collector��Inv

��



A���� Lemmas in Second Re�nement

������������������������������������������������

� Refinement� � �

� Applies the ��Refinement�� theory to yield �

� the second refinement lemma ��R���� �

������������������������������������������������

Refinement��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��Inv�NODES�SONS�ROOTS�

s � VAR I��State

r��r� � VAR �I�

n�k � VAR Node

i � VAR Index

cs � VAR Colours

abs�s��I��State 


�� MU �
 CASES MU�s� OF

MUTATE � MUTATE�

COLOUR � COLOUR

ENDCASES�

CHI �
 CASES CHI�s� OF

COLOUR�ROOTS � COLOUR�

PROPAGATE � COLOUR�

TEST�L � TEST�L�

APPEND � APPEND

ENDCASES�

Q �
 Q�s��

L �
 L�s��

C �
 C�s��

M �
 M�s�

��

sim�mutate � LEMMA

�EXISTS n�i�k� r� 
 Rule�mutate�n�i�k��r��� IMPLIES

��



EXISTS n�i�k� abs�r�� 
 Rule�mutate�n�i�k��abs�r���

sim�colour�target � LEMMA

r� 
 Rule�colour�target�r�� IMPLIES

abs�r�� 
 Rule�colour�target�abs�r���

sim�stop�colouring�roots � LEMMA

r� 
 Rule�stop�colouring�roots�r�� IMPLIES

abs�r�� 
 abs�r��

sim�colour�root � LEMMA

r� 
 Rule�colour�root�r�� IMPLIES

�EXISTS n� abs�r�� 
 Rule�colour�n��abs�r���� OR abs�r�� 
 abs�r��

sim�stop�propagating � LEMMA

r� 
 Rule�stop�propagating�r�� IMPLIES

abs�r�� 
 Rule�stop�colouring�abs�r��� OR abs�r�� 
 abs�r��

sim�propagate � LEMMA

�EXISTS n�i� r� 
 Rule�propagate�n�i��r��� IMPLIES

�EXISTS k� abs�r�� 
 Rule�colour�k��abs�r���� OR

abs�r�� 
 abs�r��

sim�stop�appending � LEMMA

r� 
 Rule�stop�appending�r�� IMPLIES

abs�r�� 
 Rule�stop�appending�abs�r���

sim�continue�appending � LEMMA

r� 
 Rule�continue�appending�r�� IMPLIES

abs�r�� 
 Rule�continue�appending�abs�r���

sim�black�to�white � LEMMA

r� 
 Rule�black�to�white�r�� IMPLIES

abs�r�� 
 Rule�black�to�white�abs�r���

sim�append�white � LEMMA

r� 
 Rule�append�white�r�� IMPLIES

abs�r�� 
 Rule�append�white�abs�r���

next�h � LEMMA

next�r��r�� IMPLIES next�abs�r���abs�r���

R� � THEORY 


Refinement�I��O�State�

I��State�I��init�I��next�I��proj�

I��State�I��init�I��next�I��proj�

abs�I�

�



END Refinement�

��



�������������������������������������������������������������������

� Garbage�Collector��Inv � �

� Defines all invariants used in proving the second refinement� �

�������������������������������������������������������������������

Garbage�Collector��Inv�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Properties�NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Invariant�Predicates�State�

s � VAR State

inv��s��bool 


CHI�s�
PROPAGATE IMPLIES black�roots�ROOTS��C�s��

inv��s��bool 


CHI�s�
COLOUR�ROOTS IMPLIES black�roots�K�s���C�s��

I � pred�State� 
 inv� � inv�

pi � pred�pred�State�� 
 preserved�init�next��I�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�I � LEMMA pi�I�

inv � LEMMA invariant�init�next��I�

END Garbage�Collector��Inv

��



A���� Lemmas in Third Re�nement

������������������������������������������������

� Refinement� � �

� Applies the ��Refinement�� theory to yield �

� the third refinement lemma ��R���� �

������������������������������������������������

Refinement��

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

I� � THEORY 
 Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��Inv�NODES�SONS�ROOTS�

s � VAR I��State

r��r� � VAR �I�

n�k � VAR Node

i � VAR Index

cs � VAR Colours

abs�s��I��State 


�� MU �
 CASES MU�s� OF

MUTATE � MUTATE�

COLOUR � COLOUR

ENDCASES�

CHI �
 CASES CHI�s� OF

COLOUR�ROOTS � COLOUR�ROOTS�

TEST�I � PROPAGATE�

TEST�COLOUR � PROPAGATE�

COLOUR�SONS � PROPAGATE�

TEST�H � PROPAGATE�

COUNT � PROPAGATE�

COMPARE � PROPAGATE�

TEST�L � TEST�L�

APPEND � APPEND

ENDCASES�

Q �
 Q�s��

K �
 K�s��

L �
 L�s��

��



C �
 C�s��

M �
 M�s�

��

sim�mutate � LEMMA

�EXISTS n�i�k� r� 
 Rule�mutate�n�i�k��r��� IMPLIES

EXISTS n�i�k� abs�r�� 
 Rule�mutate�n�i�k��abs�r���

sim�colour�target � LEMMA

r� 
 Rule�colour�target�r�� IMPLIES

abs�r�� 
 Rule�colour�target�abs�r���

sim�stop�colouring�roots � LEMMA

r� 
 Rule�stop�colouring�roots�r�� IMPLIES

abs�r�� 
 Rule�stop�colouring�roots�abs�r���

sim�colour�root � LEMMA

r� 
 Rule�colour�root�r�� IMPLIES

abs�r�� 
 Rule�colour�root�abs�r���

sim�stop�propagating � LEMMA

r� 
 Rule�stop�propagating�r�� IMPLIES

abs�r�� 
 abs�r��

sim�continue�propagating � LEMMA

r� 
 Rule�continue�propagating�r�� IMPLIES

abs�r�� 
 abs�r��

sim�white�node � LEMMA

r� 
 Rule�white�node�r�� IMPLIES

abs�r�� 
 abs�r��

sim�black�node � LEMMA

r� 
 Rule�black�node�r�� IMPLIES

abs�r�� 
 abs�r��

sim�stop�colouring�sons � LEMMA

r� 
 Rule�stop�colouring�sons�r�� IMPLIES

abs�r�� 
 abs�r��

sim�colour�son � LEMMA

r� 
 Rule�colour�son�r�� IMPLIES

�EXISTS n�i� abs�r�� 
 Rule�propagate�n�i��abs�r���� OR

abs�r�� 
 abs�r��

sim�stop�counting � LEMMA

r� 
 Rule�stop�counting�r�� IMPLIES

��



abs�r�� 
 abs�r��

sim�continue�counting � LEMMA

r� 
 Rule�continue�counting�r�� IMPLIES

abs�r�� 
 abs�r��

sim�skip�white � LEMMA

r� 
 Rule�skip�white�r�� IMPLIES

abs�r�� 
 abs�r��

sim�count�black � LEMMA

r� 
 Rule�count�black�r�� IMPLIES

abs�r�� 
 abs�r��

sim�stop�colouring � LEMMA

r� 
 Rule�stop�colouring�r�� IMPLIES

abs�r�� 
 Rule�stop�propagating�abs�r��� OR

abs�r�� 
 abs�r��

sim�continue�colouring � LEMMA

r� 
 Rule�continue�colouring�r�� IMPLIES

abs�r�� 
 abs�r��

sim�stop�appending � LEMMA

r� 
 Rule�stop�appending�r�� IMPLIES

abs�r�� 
 Rule�stop�appending�abs�r���

sim�continue�appending � LEMMA

r� 
 Rule�continue�appending�r�� IMPLIES

abs�r�� 
 Rule�continue�appending�abs�r���

sim�black�to�white � LEMMA

r� 
 Rule�black�to�white�r�� IMPLIES

abs�r�� 
 Rule�black�to�white�abs�r���

sim�append�white � LEMMA

r� 
 Rule�append�white�r�� IMPLIES

abs�r�� 
 Rule�append�white�abs�r���

next�h � LEMMA

next�r��r�� IMPLIES next�abs�r���abs�r���

R� � THEORY 


Refinement�I��O�State�

I��State�I��init�I��next�I��proj�

I��State�I��init�I��next�I��proj�

abs�I�

��



END Refinement�


��



������������������������������������������������������������������

� Garbage�Collector��Inv � �

� Defines all invariants used in proving the third refinement� �

������������������������������������������������������������������

Garbage�Collector��Inv�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Memory�Properties�NODES�SONS�ROOTS�

IMPORTING Garbage�Collector��NODES�SONS�ROOTS�

IMPORTING Invariant�Predicates�State�

s � VAR State

inv��s��bool 


CHI�s�
COLOUR�SONS AND I�s� � NODES IMPLIES colour�I�s���C�s��

inv��s��bool 


CHI�s�
COMPARE AND BC�s�
OBC�s� IMPLIES NOT exists�bw�C�s��M�s��

inv��s��bool 


�CHI�s�
COLOUR�ROOTS OR

CHI�s�
TEST�I OR CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS OR

CHI�s�
TEST�H OR CHI�s�
COUNT OR CHI�s�
COMPARE�

IMPLIES

black�roots�IF CHI�s�
COLOUR�ROOTS THEN K�s� ELSE ROOTS ENDIF��C�s��

inv��s��bool 


MU�s�
COLOUR AND Q�s� � NODES IMPLIES accessible�Q�s���M�s��

inv��s��bool 


�CHI�s�
TEST�H OR CHI�s�
COUNT OR CHI�s�
COMPARE� AND

OBC�s� 
 BC�s�  blacks�H�s��NODES��C�s��

IMPLIES

NOT exists�bw�C�s��M�s��

inv��s��bool 


CHI�s�
APPEND AND L�s� � NODES AND accessible�L�s���M�s��

IMPLIES


�




colour�L�s���C�s��

inv��s��bool 


��CHI�s�
TEST�I OR CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS� AND

OBC�s� 
 blacks���NODES��C�s�� AND

exists�bw�����I�s��IF CHI�s�
COLOUR�SONS THEN J�s� ELSE � ENDIF��C�s��M�s���

IMPLIES

exists�bw�I�s��IF CHI�s�
COLOUR�SONS THEN J�s� ELSE � ENDIF�NODES���

�C�s��M�s��

inv��s��bool 


�CHI�s�
TEST�H OR CHI�s�
COUNT OR CHI�s�
COMPARE�

IMPLIES

OBC�s� �
 BC�s�  blacks�H�s��NODES��C�s��

inv��s��bool 


��CHI�s�
TEST�I OR CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS� AND

OBC�s� 
 blacks���NODES��C�s�� AND

exists�bw�����I�s��IF CHI�s�
COLOUR�SONS THEN J�s� ELSE � ENDIF��C�s��M�s���

IMPLIES

MU�s�
COLOUR

inv���s��bool 


�CHI�s�
COLOUR�ROOTS OR

CHI�s�
TEST�I OR CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS�

IMPLIES

OBC�s� �
 blacks���NODES��C�s��

inv���s��bool 


FORALL �n�Node�i�Index��

���CHI�s�
TEST�I OR CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS� AND

OBC�s� 
 blacks���NODES��C�s�� AND

�n�i� � �I�s��IF CHI�s�
COLOUR�SONS THEN J�s� ELSE � ENDIF� AND

bw�n�i��C�s��M�s���

IMPLIES

�MU�s�
COLOUR AND son�n�i��M�s��
Q�s���

inv���s��bool 


��CHI�s�
TEST�COLOUR OR CHI�s�
COLOUR�SONS� IMPLIES I�s� � NODES�

inv���s��bool 


�CHI�s�
TEST�L OR CHI�s�
APPEND�

IMPLIES

blackened�L�s���C�s��M�s��

inv���s��bool 


CHI�s�
COMPARE IMPLIES BC�s� �
 blacks���NODES��C�s��


��



inv���s��bool 


�CHI�s�
TEST�H OR CHI�s�
COUNT� IMPLIES BC�s� �
 blacks���H�s���C�s��

I � pred�State� 


inv� � inv� � inv� � inv� � inv� � inv� � inv� �

inv� � inv�� � inv�� � inv�� � inv�� � inv�� � inv��

pi � pred�pred�State�� 
 preserved�init�next��I�

c�inv� � LEMMA inv�� IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv� � LEMMA I IMPLIES inv�

i�inv�� � LEMMA I IMPLIES inv��

i�inv�� � LEMMA I IMPLIES inv��

i�inv�� � LEMMA I IMPLIES inv��

i�inv�� � LEMMA I IMPLIES inv��

i�inv�� � LEMMA I IMPLIES inv��

i�inv�� � LEMMA I IMPLIES inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv� � LEMMA pi�inv��

p�inv�� � LEMMA pi�inv���

p�inv�� � LEMMA pi�inv���

p�inv�� � LEMMA pi�inv���

p�inv�� � LEMMA pi�inv���

p�inv�� � LEMMA pi�inv���

p�inv�� � LEMMA pi�inv���

p�I � LEMMA pi�I�

inv � LEMMA invariant�init�next��I�


��



END Garbage�Collector��Inv


�



A���� Final Re�nement Theorem

��������������������������������������������������������������������

� Composed�Refinement � �

� States the final correctness criteria in theorem ��ref��� �

� which says that the third implementation refines the top�level �

� specification� The proof uses the transitivity property of the �

� refinement relation� �

��������������������������������������������������������������������

Composed�Refinement�

NODES � posnat�

SONS � posnat�

ROOTS � posnat� � THEORY

BEGIN

ASSUMING

roots�within � ASSUMPTION ROOTS �
 NODES

ENDASSUMING

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refinement��NODES�SONS�ROOTS�

IMPORTING Refine�Predicate

IMPORTING Refine�Predicate�Transitive

ref� � LEMMA

refines�S�O�State�S�State�I��State�

�I��init�I��next�I��proj��S�init�S�next�S�proj�

ref � THEOREM

refines�S�O�State�S�State�I��State�

�I��init�I��next�I��proj��S�init�S�next�S�proj�

END Composed�Refinement


��
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