
A Flight Rule Checker
for the LADEE Lunar Spacecraft?

Elif Kurklu1 and Klaus Havelund2

1 NASA Ames Research Center, KBR Wyle Services, USA
2 Jet Propulsion Laboratory, California Inst. of Technology, USA

Abstract. As part of the design of a space mission, an important part
is the design of so-called flight rules. Flight rules express constraints on
various parts and processes of the mission, that if followed, will reduce
the risk of failure. One such set of flight rules constrain the format of
command sequences regularly (e.g. daily) sent to the spacecraft to con-
trol its next near term behavior. We present a high-level view of the
automated flight rule checker Frc for checking command sequences sent
to NASA’s LADEE Lunar mission spacecraft, used throughout its entire
mission. A command sequence is in this case essentially a program (a
sequence of commands) with no loops or conditionals, and it can there-
fore be verified with a trace analysis tool. Frc is implemented using
the TraceContract runtime verification tool, an internal Scala DSL
for checking event sequences against “formal specifications”. The paper
illustrates this untraditional use of runtime verification in a real con-
text, with strong demands on the expressiveness and flexibility of the
specification language, illustrating the advantages of an internal DSL.

1 Introduction

On September 7, 2013, NASA launched the LADEE (Lunar Atmosphere and
Dust Environment Explorer) spacecraft to explore the Moon’s atmosphere, specif-
ically the occurrence of dust. The mission lasted seven months and ended on
April 18, 2014, where the spacecraft was intentionally instructed to crash into
the Moon. NASA Ames Research Center designed, built, and tested the space-
craft, and was responsible for its day-to-day operation. This included specifically
programming of command sequences, which were then uploaded to the spacecraft
on a daily basis. A command sequence is, as it says, a sequence of commands,
with no loops or conditionals. A command is an instruction to carry out a certain
task at a certain time. An obvious problem facing these day-to-day programmers
was whether the command sequences were well-formed.

Generally speaking, for each space mission, NASA designs flight rules that
capture constraints that must be obeyed during the mission to reduce the risk

? The research by the second author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

of failures. One particular form of flight rules specifically concern the command
sequences sent from ground to a spacecraft or planetary rover on a regular basis
during the mission. We present in this paper the actual effort on building a flight
rule checker, Frc, for programming (formalize) these flight rules in the Scala
programming language [25] using the TraceContract [3, 27] API. Trace-
Contract was originally developed in a research effort as an internal Domain-
Specific Language (DSL) [14] in Scala for runtime verification [6], supporting
a notation allowing for a mixture of data parameterized state machines and
temporal logic. An internal DSL is a DSL represented within the syntax of a
general-purpose programming language, a stylized use of that language for a
domain-specific purpose [14]. The programming language Scala has convenient
support for the definition of such internal DSLs. It is, however, fundamentally
an API in the host language.

TraceContract is here used for the purpose of code analysis. The rationale
for this use lies in the observation that a command sequence can be perceived
as an event sequence. Using an internal DSL for such a task has the advantage
that the full power of the underlying host programming language is available,
which turns out to be critical in this case. This is in contrast to an external DSL,
which is a small language with its own syntax, parsing, etc. Other advantages
of internal DSLs compared to external DSLs include ease of development and
adjustment, and use of existing tooling for the host programming language.

Missions traditionally write flight rule checkers in programming languages
such as MatLab or Python. However, numerous impressive runtime verifica-
tion systems have been developed over the last two decades. They all attempt
to solve the difficult problem of simultaneously optimizing: Expressiveness of
formalism, Elegance of properties, and Efficiency of monitoring (the three Es).
Many external DSLs have been developed over time [21, 11, 22, 15, 8, 7, 24, 13].
Most of these focus on specification elegance and efficiency. Our own external
DSLs include [1, 5, 2, 20]. Fewer internal DSLs have been developed [26, 10, 9]. In
addition to TraceContract, we developed a rule-based internal Scala DSL
for log analysis [17]. TraceContract itself has evolved into a newer system,
Daut [16, 12], which allows for better optimization wrt. efficiency. We might
conclude by emphasizing that a language such as Scala is generally well suited
for modeling, as argued in [19].

Although the mission took place several years ago, we found that it was
worth reporting on this effort since it represents an actual application of a run-
time verification tool in a highly safety critical environment. Before the LADEE
mission and before the development of Frc, an initial study of the problem was
performed and documented in [4]. Due to restrictions on what can be published
about a NASA mission, the presentation is generic, showing used specification
patterns, without mentioning any mission data.

The rest of this paper is organized as follows. Section 2 outlines the problem
statement, defining the concepts of commands, command sequences, and flight
rules. Section 3 presents the TraceContract DSL, previously presented in [3].
Section 4 describes the overall high-level architecture of the flight rule checker

2

Frc. Section 5 presents some of the patterns used for writing flight rules. Finally,
Section 6 concludes the paper.

2 Command Sequences and Flight Rules

A command sequence to be uploaded to a spacecraft is typically generated by
a software program referred to as a command sequencer. The input to the com-
mand sequencer is a high level plan, that describes a sequence of science or
engineering activities to be achieved, which itself is produced either by humans
or by another program, a planner. Command sequences are short, in the order
10s - 100s commands. Figure 1 shows the generic format of such a command
sequence. Each line represents a command, consisting of a calendar time (year,
number of day in year, and a time stamp), the name of the command, and a list
of parameters each of the form name=value.

2013-103-00:07:00 /Command1 variable11=value11 ... variable1n1=value1n1

2013-103-00:07:10 /Command2 variable21=value21 ... variable2n2=value2n2

2013-103-00:07:16 /Command3 variable31=value31 ... variable3n3=value3n3

2013-103-00:07:17 /Command4 variable41=value41 ... variable4n4=value4n4

2013-103-00:07:18 /Command5 variable51=value51 ... variable5n5=value5n5

2013-103-00:07:20 /Command6 variable61=value61 ... variable6n6=value6n6

...

Fig. 1. Format of a command sequence.

A command sequence must satisfy various flight rules. An example of such
a rule pattern is the following. A maximum of N commands can be issued per
second. That is, no more than N commands can be issued with the same time
stamp. Another rule pattern is the following: Component activation will be per-
formed at least 1 second after application of power to the component, but no
more than the upper limit for activation time. In other words, at least one sec-
ond must pass from a component has been powered on, but no more than some
upper limit, till it is actually activated to perform its task.

As can be seen, a command sequence can be perceived as a sequence of
events, each being a command consisting of a name, a time, and a mapping from
parameter names to values. Such an event sequence can be verified against flight
rules with the TraceContract tool introduced in the next Section.

3 TraceContract

This section introduces the TraceContract DSL through a complete running
example and an overview of the implementation.

3

3.1 A Complete TraceContract Example

TraceContract is a Scala API for writing trace monitors. We also refer to
it as an internal (or embedded) DSL since it is a Domain-Specific Language for
writing monitors in an existing host language, in this case Scala. A trace is
a sequence of events. We don’t really care where the event stream comes from,
whether it is emitted from a running system, or, as in this case, a sequence
of commands (where a command is an event). The DSL supports a flavor of
temporal logic combined with state machines, both parameterized with data to
support verification of events that carry data. TraceContract can be used for
monitoring event streams online (as they are generated) as well as offline (e.g.
stored in files as in this case).

We shall illustrate TraceContract with a single complete executable ex-
ample. Due to lack of space, the reader is referred to [3, 27] for a more complete
exposition. Figure 2 shows a Scala program using the TraceContract DSL.
The line numbers below refer to this figure. It first defines the type of events
we are monitoring (line 3), namely commands, a case class (allowing pattern
matching against objects of the class). The program contains two monitors,
DistinctTimes (lines 5-11) and ActivateTimely (lines 13-24), each extending the
TraceContract Monitor class, parameterized with the event type.

The DistinctTimes monitor (lines 5-11) checks that commands are issued with
strictly increasing stamps. It waits for any Cmd object to be submitted to it (line
7). The require function (line 6) takes as argument a partial function, enclosed
in curly brackets (lines 6-10), and defined by case statements, in this case one,
ready to fire when an event matches one of the case patterns, in which case
the “transition” is taken. In this case, when a command arrives, matching the
pattern Cmd(,time1) (line 7), the monitor transitions to the inner anonymous
cold state, where it waits for the next command to be submitted (line 8), which
does not need to occur since it is a cold state (a final state). If a second command
is submitted, however, it is asserted that the time stamp of the second command
is bigger than that of the first. The require function works like the temporal logic
always-operator (�).

The ActivateTimely monitor (lines 13-24) checks that if a power command is
observed then a subsequent activate command must be observed within 30 time
units. The activate command must occur, which is modeled by a hot state (lines
21-23). For illustration purposes, we have defined this rule a bit more long-
winded than needed by defining a function activateTimely(powerTime: Int) (lines
20-23), which when called (line 17) returns the hot state. This style illustrates
how to write state machines using Scala functions. As can be seen, states can
be parameterized with data, and can be written in a way resembling temporal
logic (lines 7-8) or state machines (lines 17 + 20-23), or even a mixture.

There are different kinds of states inspired by temporal logic operators [23],
including the cold (line 7) and hot states (line 21) as we have seen. These states
differ in (1) how they react to an event that does not match any transition (stay
in the state, fail, or drop the state), (2) how they react to an event that matches
a transition to another state (keep staying in the source state or leave it), and

4

1 import tracecontract.
2

3 case class Cmd(name: String, time: Int)
4

5 class DistinctTimes extends Monitor[Cmd] {
6 require {
7 case Cmd(,time1) ⇒ state {
8 case Cmd(,time2) ⇒ time2 > time1
9 }

10 }
11 }
12

13 class ActivateTimely extends Monitor[Cmd] {
14 val upperBound : Int = 30
15

16 require {
17 case Cmd(”power”, time) ⇒ activateTimely(time)
18 }
19

20 def activateTimely(powerTime: Int): Formula =
21 hot {
22 case Cmd(”activate”, time) ⇒ time − powerTime < upperBound
23 }
24 }
25

26 class Monitors extends Monitor[Cmd] {
27 monitor(new DistinctTimes, new ActivateTimely)
28 }
29

30 object Run {
31 def main(args: Array[String]) {
32 val monitors = new Monitors
33 val trace = List(Cmd(”power”,100), Cmd(”transmit”, 130), Cmd(”activate”, 150))
34 monitors.verify(trace)
35 }
36 }

Fig. 2. A complete TraceContract example.

(3) how they evaluate at the end of the trace (true or false). Beyond the hot

state having the three attributes: (stay if no match, leave if match, false at end),
there are the following states: state (stay, leave, true), strong (fail, leave, false),
weak (fail, leave, true), drop (drop, leave, true), and always (stay, stay, true). A
require(f) call (lines 6 and 16) creates and stores an always(f) state. Un-named

5

(anonymous) states are allowed, as shown in the DistinctTimes monitor (lines 7-
9), thereby relieving the user from naming intermediate states in a progression
of transitions, as shown in the ActivateTimely monitor (lines 17 + 20-23). This
gives a flavor of temporal logic. The target of a transition can be a conjunction of
states as well as a disjunction, corresponding to alternating automata (although
this is not used in this work).

Since these monitors are classes, we can write Scala code anywhere Scala
allows it, e.g. declaring constants, variables, methods, etc, and use these in the
formulas. Note that although we in our example associate one property with
each monitor, it is possible to define several properties in a monitor. It is also
possible to combine monitors for purely organizational purposes, with no change
in semantics. E.g. in our example, we define the monitor Monitors (lines 26-28),
the only purpose of which is to group the two other monitors into one. In the main
method (lines 31-35) we instantiate this parent monitor and feed it a trace of
three commands. This event sequence in fact violates the ActivateTimely monitor,
causing the following error message to be issued (slightly shortened), showing
an error trace of relevant events:

Total number of reports: 1

Monitor Monitors.ActivateTimely property violations: 1

Monitor: Monitors.ActivateTimely Property violated

Violating event number 3: Cmd(activate,150)

Trace:

1=Cmd(power,100)

3=Cmd(activate,150)

3.2 The TraceContract Implementation

In this section we shall very briefly give an idea of how TraceContract is
implemented3, see [3, 27] for more details. A monitor is parameterized with an
event type Event, and monitors a collection of formulas over such events, each
kind of formula sub-classing the class Formula:

class Monitor[Event] {
var formulas: List[Formula] = List()
...
}

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this
def and(that: Formula): Formula = And(this, that).reduce()
def or(that: Formula): Formula = Or(this, that).reduce()

3 Note that we have made some simplifications for ease of presentation.

6

...
}

The apply function allows one to apply a formula f to an event e as follows:
f(e), resulting in a new formula. For each new event, each formula is evaluated
by applying it to the event, to become a new formula. The function is defined as
abstract and is overridden by the different subclasses of Formula corresponding
to the various kinds of formulas. The reduce function, also specific for each kind
of formula (by default being the identity), will simplify a formula by rewriting
it according to the classical reduction axioms of propositional logic, e.g. true ∧
f = f.

In the monitors above, the function require(f) takes as argument a partial func-
tion f of type PartialFunction[Event,Formula], which represents a transition function,
and creates and stores a formula object always(f) to be monitored, where always(f)

is a formula of the class below.

type Block = PartialFunction[Event, Formula]

def require(block: Block) {
formulas ++= List(always(block))
}

case class always(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) And(block(event),this) else this

}

Similarly for cold and hot states, we have the following definitions, which are
identical (the difference between cold and hot states shows at the end of a trace,
as explained below):

case class state(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

case class hot(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

Other states follow the same pattern, but vary in the definition of the apply

function. We saw in Figure 2 Boolean expressions, such as time2 > time1 occur as
formulas on the right-hand side of case transitions. This is permitted by implicit

7

functions (applied by the compiler) lifting these values to formulas. E.g., the
functions below are applied by the compiler when a value of the argument type
occurs in a place where the return type (Formula) is expected. Note that True

and False are TraceContract Formula objects. The second implicit function
allows code with side-effects, not returning a value (of type Unit), as the result
of transitions.

implicit def convBoolean2Formula(cond: Boolean): Formula = if (cond) True else False
implicit def convUnitToFormula(unit: Unit): Formula = True

Finally, a monitor offers a method for verifying a single event, a method for
ending verification (verifying that all active states are cold, e.g. no hot states),
and a method for verifying an entire trace, which calls the previous two methods.

def verify(event: Event): Unit {...}

def end(): Unit {
for (formula ← formulas) {
if (!end(formula)) reportError(formula)
}
}

def end(formula: Formula): Boolean = {
formula match {
case always() ⇒ true
case state() ⇒ true
case hot() ⇒ false
...
}
}

def verify(trace: Trace): MonitorResult[Event] = {
for (event ← trace) verify(event)
end()
getMonitorResult
}

TraceContract also offers Linear Temporal Logic (Ltl) [23] operators, and
rule-based operators for recording facts, useful for checking past time properties.
These features were not used in Frc.

TraceContract was developed with expressiveness in focus rather than
efficiency. However, for the small command sequences of up to 100s of commands,
efficiency is not an issue. As previously mentioned, TraceContract evolved
into a newer system, Daut [16, 12]. In [18] is described a performance evaluation
of Daut, processing a log of 218 million events. Daut is here able to process

8

between 100,000+ - 400,000+ events per second, depending on the property
being verified.

4 Architecture of Flight Rule Checker

Figure 3 shows the architecture of the flight rule checker. It takes as input a
command sequence, an initial state of the spacecraft (the expected current state),
and an identification of which rules to verify. The catalog of rules programmed
in TraceContract is provided as a Scala library. It produces a verification
report as result. Which rules to execute is selected by a mission operator in
a flight rule editor, a GUI showing all LADEE flight rules, see Figure 4. The
initial state is also specified in the GUI. Descriptions of the flight rules are
stored as an Xml file, see Figure 5, grouped into sub-systems. Each rule has an
id, a descriptive title, and a class name indicating which is the corresponding
TraceContract monitor.

Flight Rule Checker

Rule catalog
in Scala

Verification report

Rule
descriptions

In XML
Rule selector

GUI

Selected
monitor
names

Initial
state

Command
sequence

Fig. 3. The flight rule checker architecture.

Figure 6 shows the Scala case class FRCCommand, instantiations of which
will represent the commands found in the command sequence file (Figure 1).
The figure also shows the flight rule checker’s verification function, which takes
as arguments a list of names of monitor classes selected, representing the choices
made in the GUI in Figure 4; the location of the command sequence file; and
other arguments. The function first locates and instantiates the Scala monitor
classes according to their names (using reflection), adding each instance as a sub-
monitor to the ruleVerifier parent monitor. It then builds the command sequence,

9

Fig. 4. The flight rule checker GUI for selecting rules.

<?xml version=’1.0’ encoding=’UTF−8’?>
<frc>
<rules>
<subsystem name=”System1”>

<rule id=”ID1” title=”Title1” class=”Monitor1”></rule>
<rule id=”ID2” title=”Title2” class=”Monitor2”></rule>
<rule id=”ID3” title=”Title3” class=”Monitor3”></rule>

...
</subsystem>

<subsystem name=”System2”>
...

</subsystem>
...

</rules>
</frc>

Fig. 5. Flight rule catalog in XML format, organized into sub systems.

verifies the command sequence, and finally produces an error report based on
the data stored in the ruleVerifier monitor.

10

case class FRCCommand(name: String, time: Calendar, params: Map[String, String]) {..}

object FRCService extends ... {
def verify(rules: List[String], cmdSequence: File, ...): Report = {

// build monitor containing a sub−monitor for each rule:
val ruleVerifier = new Monitor[FRCCommand]
rules.foreach(key ⇒ {
val ruleInstance = FlightRuleCatalog.getRuleInstance(key)
ruleVerifier.monitor(ruleInstance)
})

// create command sequence:
val commands: List[FRCCommand] = ...

// verify command sequence:
ruleVerifier.verify(commands)

// create and return report:
generateReport(ruleVerifier)
}
...
}

Fig. 6. The Flight Rule Checker.

5 Flight Rules

A total of 37 flight rules were programmed, out of which 31 were actively used.
We will here present the patterns of six of the most generic ones, illustrating dif-
ferent aspects. The rules concern the Flight Software (FSW) subsystem, specifi-
cally expressing constraints on how the commands should be sent, etc. Each rule
is programmed as a class extending the TraceContract Monitor class.

5.1 Command Rate

Figure 7 shows the ‘Command Rate’ monitor. It verifies that no more than MAX

= N commands are issued per second, that is: with the same time stamp, for
some constant N . For each command, let’s call it the initiator command, the
monitor calls the function count, which itself returns a formula, and which re-
cursively consumes commands until either a command with a bigger time stamp
is observed (ok causes the monitor to end tracking this particular initiator com-
mand), or the limit of N is reached, in which case an error is issued. Note that

11

the require function initiates this tracking for every observed command. A new
counting state machine is created for each command, tracking commands with
the same time stamp.

// The maximum rate of command issuance is N issued commands per second.

class CommandRate extends Monitor[FRCCommand] {
val MAX = N

require {
case FRCCommand(, time,) ⇒ count(time)
}

def count(time: Calendar, nr: Int = 1): Formula =
state {
case FRCCommand(, time2,) ⇒ {
if (time2 > time) ok else if (nr == MAX) error else count(time, nr + 1)
}
}

}

Fig. 7. Command Rate monitor.

5.2 Device Activation

Figure 8 shows the ‘Device Activation’ monitor. It verifies that if a device is
powered on at time t, it must be eventually activated within the time interval
[t + N1, t + N2] for two positive natural numbers N1 < N2, stored in the con-
stants activateMin and activateMax. The monitor defines a map from device power
on commands to their corresponding activation commands, which is used in the
formula to match them up. There are K such map entries for some not small K.
This mapping is manually created and cannot be calculated. The formula itself
shows use of Scala’s conditioned case statements (a match requires the condi-
tion after if to hold), and the hot state to indicate that activation must eventually
occur. The pattern ‘activationCommand‘ (a variable name in single quotes) means:
match the value of the variable activationCommand. The formula states that if we
observe an FRCCommand(”power”, t1, params) command, where params(”state”) =
”on” and params(”device”) = d (power device d on) and deviceMap(d) = a (d’s ac-
tivation command is a), then we want to eventually see an FRCCommand(a,t2,...)

such that t2 ∈ [t1 + N1, t1 + N2]. An alternative would have been to define a

12

monitor for each pair of power on and activate commands. Since there are K
such pairs this would become heavy handed. This illustrates the advantage of
an internal DSL, where maps are available as a data structure.

// Component activation will be performed at least N1 seconds
// after application of power to the component, but no more than N2 seconds.

class DeviceActivation extends Monitor[FRCCommand] {
val activateMin = N1

val activateMax = N2

val deviceMap: Map[String, String] = Map(
”device1 pwr” → ”name1 activate”,
”device2 pwr” → ”name2 activate”,
”device3 pwr” → ”name3 activate”,
...
”deviceK pwr” → ”nameK activate”

)

require {
case FRCCommand(”power”, powerOnTime, params)
if deviceMap.keys.toList.contains(params.get(”device”).get) &&

params.get(”state”).get.equals(”on”) ⇒
val device = params.get(”device”).get
val activationCommand = deviceMap.get(device).get
hot {
case FRCCommand(‘activationCommand‘, activateTime,) ⇒

val timeDiff = activateTime.toSeconds − powerOnTime.toSeconds
timeDiff ≥ activateMin && timeDiff ≤ activateMax

}
}
}

Fig. 8. Device Activation monitor.

5.3 Time Granularity

Figure 9 shows the ‘Time granularity’ monitor. It verifies that the millisecond
part of a flight command is 0. That is, the smallest time granularity allowed is
seconds. This property shows a simple check on a command argument. It also
shows the classification of a monitor as a warning rather than an error if violated.

13

// No stored command sequence shall include commands or command sequences whose
// successful execution depends on command time granularity of less than 1 second.

class TimeGranularity extends Monitor[FRCCommand](Severity.WARNING) {
require {
case FRCCommand(, cmd time,) ⇒

cmd time.get(Calendar.MILLISECOND) == 0
}
}

Fig. 9. Time granularity monitor.

// The y value will not be changed while the x mode is M .

class ValueChange extends Monitor[FRCCommand] {
var xMode = Config.getVarValue(”x mode”)
var yValue = Config.getVarValue(”y value”)

val specialMode = M

require {
case FRCCommand(”set x mode”, , params) ⇒

xMode = params.get(”mode”).get
case FRCCommand(”set y value”, , params) ⇒ {
val yValueNew = params.get(”value”).get
if (xMode.equals(specialMode) && !yValueNew.equals(yValue) & ...) {

error
} else {

yValue = yValueNew
}
}
}
}

Fig. 10. Value Change monitor.

5.4 Value Change

Figure 10 shows the ‘Value Change’ monitor. It verifies that some value y will not
change while the mode of some component x is M . The monitor is not temporal,

14

but illustrates the use of class variables, xMode for holding the current mode of
x, and yValue for holding the current value of y. ”set x mode” commands change
the x mode, and ”set y value” commands change the value of y.

5.5 Unsafe Activation

Figure 11 shows the ‘Unsafe Activation’ property. It verifies that some feature
y is not being activated, while some other feature x is being disabled (disabling
has a duration). The first outer case treats the situation where first an x dis-
abling command (”disable x”) is observed, followed by a y activating command
(”activate y”). In this case it is checked that the time of y activation does not
occur within the duration of the x disabling. The second outer case treats the
situation where we first observe a y activating command and subsequently an
x disabling command. y activation will happen normally after x disabling, but
if it happens at the same time it could occur before in the command sequence.
This monitor shows this more complicated timing constraint.

// Feature y will not be activated while feature x is being disabled.

class UnsafeActivation extends Monitor[FRCCommand] {
require {
case FRCCommand(”disable x”, disableStart, disableParams) ⇒

state {
case FRCCommand(”activate y”, activateTime,)
if activateTime ≥ disableStart &&

activateTime.toSeconds − disableStart.toSeconds ≤
disableParams.get(”duration”).get.toInt ⇒

error
}

case FRCCommand(”activate y”, activateTime,) ⇒
state {
case FRCCommand(”dispable x”, disableStart, disableParams)
if disableStart==activateTime ||

(disableStart.toSeconds + disableParams.get(”duration”).get.toInt
== activateTime.toSeconds) ⇒

error
}

}
}

Fig. 11. Unsafe Activation monitor.

15

5.6 Mathematical Constraint

Figure 12 shows the ‘Mathematical Constraint’ property. It verifies that for a se-
lection of commands command1 . . . commandk, the constraint W is satisfied on a
function F of parameter variables x1 . . . xn. That is, it verifies that W (F (x1,. . .,xn))

holds. The formula is not temporal and mainly shows validation of command
arguments using a function for performing a non-trivial mathematical computa-
tion.

// Commands command1 ... commandk must satisfy a non−trivial mathematical
// well−formedness constraint W on a function F of their arguments.

class MathematicalConstraint extends Monitor[FRCCommand] {
def wellformed(command: FRCCommand): Boolean = {
val v1 = command.valueOf(”x1”).get.toDouble
...
val vn = command.valueOf(”xn”).get.toDouble
val value =F (v1,...,vn) // non−trivial mathematical computation
return W (value)
}

require {
case cmd @ FRCCommand(”command1”, ,) if (!wellformed(cmd)) ⇒ error
...
case cmd @ FRCCommand(”commandk”, ,) if (!wellformed(cmd)) ⇒ error
}
}

Fig. 12. Mathematical Constraint monitor.

6 Conclusion

The manual translation of rules expressed in English to monitors in the Trace-
Contract DSL was performed by the first author. The biggest challenges were
finding out which command parameters corresponded to those mentioned in the
flight rules expressed in natural language, and finding programming patterns in
the DSL that would work. Coding errors in Scala was not an issue. We have
some testimony to the value of the developed framework, as the person who
was responsible for command sequencing and verification back then wrote (in
response to the question of how often Frc found errors in command sequences):

16

“I would actually say it was often, perhaps every other command sequencing
cycle.”.

The effort has shown the use of a runtime verification tool, TraceCon-
tract, for code analysis. The tool was largely not changed for the purpose, and
hence provided all needed features. We attribute this in part to the fact that it
was an internal DSL, as opposed to an external DSL. In addition it was reliable
with no bugs reported. Many real-life log analysis problems in practice are per-
formed with programming languages, and the reason is in part the attractiveness
of Turing completeness. However, internal DSLs do have drawbacks, specifically
the difficulty of analyzing “specifications” since they effectively are programs.
It is always possible to design an external DSL for a particular problem, also
for this application, which more easily can be subject to analysis. However, an
external DSL may fit one problem but not another. An internal DSL can be
more flexible.

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In Verification, Model Checking, and Abstract Interpretation (VMCAI’04),
volume 2937 of LNCS, pages 44–57. Springer, 2004.

2. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

3. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis. In
Formal Methods (FM’11), volume 6664 of LNCS, pages 57–72. Springer, 2011.

4. H. Barringer, K. Havelund, E. Kurklu, and R. Morris. Checking flight rules with
TraceContract: Application of a Scala DSL for trace analysis. In Scala Days 2011,
Stanford University, California, 2011.

5. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time moni-
toring: from Eagle to RuleR. In Int. Workshop on Runtime Verification (RV’07),
volume 4839 of LNCS, pages 111–125. Springer, 2007.

6. E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, and G. Reger. An introduc-
tion to runtime verification. In Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of LNCS, pages 1–23. Springer, 2018.

7. D. A. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of tempo-
ral first-order properties with aggregations. Formal Methods in System Design,
46(3):262–285, 2015.

8. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order moni-
toring. In Int. Conference on Runtime Verification (RV’13), volume 8174 of LNCS,
pages 59–75. Springer, 2013.

9. E. Bodden. MOPBox: A library approach to runtime verification. In Int. Con-
ference on Runtime Verification (RV’11), volume 7186 of LNCS, pages 365–369.
Springer, 2011.

10. C. Colombo, G. J. Pace, and G. Schneider. LARVA — safer monitoring of real-
time Java programs (tool paper). In Int. Conference on Software Engineering and
Formal Methods (SEFM’09), pages 33–37. IEEE, 2009.

17

11. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner,
H. B. Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of syn-
chronous systems. In Int. Symposium on Temporal Representation and Reasoning
(TIME’05), pages 166–174. IEEE, 2005.

12. Daut on github. https://github.com/havelund/daut.
13. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. Int. Journal

on Software Tools for Technology Transfer, 18(2):205–225, 2016.
14. M. Fowler and R. Parsons. Domain-Specific Languages. Addison-Wesley, 2010.
15. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts

with data. IEEE Transactions on Services Computing, 5(2):192–206, 2012.
16. K. Havelund. Data automata in Scala. In Theoretical Aspects of Software Engi-

neering (TASE’14), pages 1–9. IEEE, 2014.
17. K. Havelund. Rule-based runtime verification revisited. Int. Journal on Software

Tools for Technology Transfer, 17(2):143–170, 2015.
18. K. Havelund and G. Holzmann. A programming approach to event monitoring. In

K. Rozier, editor, Formal Methods for Aerospace Engineering, Progress in Com-
puter Science and Applied Logic. Springer, 2021. Draft version, in preparation, to
appear.

19. K. Havelund and R. Joshi. Modeling with Scala. In Leveraging Applications of
Formal Methods, Verification and Validation. Modeling (ISoLA’18), volume 11244
of LNCS, pages 184–205. Springer, 2018.

20. K. Havelund and D. Peled. Runtime verification: From propositional to first-order
temporal logic. In Int. Conference on Runtime Verification (RV’18), volume 11237
of LNCS, pages 90–112. Springer, 2018.

21. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a run-time assurance
tool for Java. In Int. Workshop on Runtime Verification (RV’01), volume 55(2) of
ENTCS. Elsevier, 2001.

22. P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP
runtime verification framework. Int. Journal on Software Tools for Technology
Transfer, 14:249–289, 2011.

23. A. Pnueli. The temporal logic of programs. In Symposium on Foundations of
Computer Science (SFCS’77), pages 46–57. IEEE Computer Society, 1977.

24. G. Reger, H. C. Cruz, and D. Rydeheard. MarQ: Monitoring at runtime with QEA.
In Int. Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’15), volume 9035 of LNCS, pages 596–610. Springer, 2015.

25. Scala. http://www.scala-lang.org.
26. V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. Electr.

Notes Theor. Comput. Sci., 113:201–216, 2005.
27. TraceContract on github. https://github.com/havelund/tracecontract.

18

