Noname manuscript No.
(will be inserted by the editor)

First-Order Temporal Logic Monitoring with BDDs

Klaus Havelund - Doron Peled - Dogan Ulus

Received: date / Accepted: date

Abstract Runtime verification is aimed at analyzing execution traces stemming from
a running program or system. The traditional purpose is to detect the lack of confor-
mance with respect to a formal specification. Numerous efforts in the field have fo-
cused on monitoring parametric specifications, where events carry data, and formulas
can refer to such. Since a monitor for such specifications has to store observed data,
the challenge is to have an efficient representation and manipulation of Boolean oper-
ators, quantification, and lookup of data. The fundamental problem is that the actual
values of the data are not necessarily bounded or provided in advance. In this work
we explore the use of Binary Decision Diagrams (BDDs) for representing observed
data. Our experiments show a substantial improvement in performance compared to
related work.

Keywords Past time temporal logic - data - BDDs

The research performed by the first author was carried out at Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration. The research per-
formed by the second author was partially funded by Israeli Science Foundation grant 2239/15: “Runtime
Measuring and Checking of Cyber Physical Systems”.

K. Havelund
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
E-mail: klaus.havelund @jpl.nasa.gov

D. Peled
Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
E-mail: doron.peled @ gmail.com

D. Ulus
Boston University, Boston, MA, USA
E-mail: doganulus @gmail.com

2 Havelund, Peled, Ulus

1 Introduction

Runtime verification (RV) allows checking whether a temporal property holds during
the execution of a system. The system execution can be considered as emitting an
execution trace, i.e., a sequence of events, which is then consumed and checked by a
monitor. A monitor performs for each received event some incremental computation
that is aimed at detecting and warning as soon as the temporal property is violated.
The field of model checking has mostly focused on propositional logics [22]]. Early
RV systems were also based on specifications given in some form of propositional
temporal logic. A propositional temporal logic formula can be translated into a finite
automaton, where the incremental computation updates the automaton state based on
the recent input reporting information captured from the monitored system. However,
the state of the art in RV has for some time focused on monitoring parametric specifi-
cations, where events carry data, and formulas can refer to such. Since such a monitor
has to store observed data, the challenge is using a representation that allows efficient
manipulation of operators over sets of observed data. The field of RV has not settled
on a single best solution. As is usually the case, there are compromises to be made
with respect to the efficiency of algorithms and expressiveness of logics.

Temporal logics usually come in two variants: future and past (or mixtures). As
future temporal properties depend on an infinite input, after a finite sequence of events
one may only provide partial information about whether the property holds; namely,
if it is already violated, already achieved, or undecided yet [22]. The focus of this
work is past time temporal properties, which are also classified as the safety temporal
properties [2L23]], and are properties for which we are capable of detecting a violation
based on the monitored current prefix of the execution, as soon as it occurs. As an
example, consider a predicate open(f), indicating that a file f is being opened, and
a predicate close(f) indicating that f is being closed. We can formulate that a file
cannot be closed unless it was opened before with the following first-order past time
temporal logic formula:

Vf (close(f) —> Popen(f))

Here P is the “sometimes in the past” temporal operator. This property must be
checked for every monitored event. Already in this very simple example we see that
we need to store all the names of files that were previously opened so we can com-
pare to the files that are being closed. A more refined specification would be the
following, requiring that a file can be closed only if it was opened before, and has not
been closed since. Here, we use the temporal operators © (“at previous step”) and S
(“since”):

Vf (close(f) — ©(—close(f)Sopen(f)))

One problem we need to solve is the unboundedness caused by negation. For ex-
ample, assume that we have only observed so far one close event close(“ab”). The
subformula close(f) is therefore satisfied for the value f = “ab”. The subformula
—close(f) is satisfied by all values from the domain of f excepr for “ab”. This set
contains those values that we have not seen yet in the input within a close event.

First-Order Temporal Logic Monitoring with BDDs 3

We need a representation of finite and infinite sets of values, upon which applying
complementation is efficient.

We present a first-order past time temporal logic, named QTL (Quantified Tempo-
ral Logic), and an implementation, named DEJAVUF_] based on a BDD (Binary Deci-
sion Diagram) representation of sets of assignments of values to the free variables of
subformulas. Instead of storing the values assigned to variables, we enumerate input
values as soon as we see them and use Boolean encodings of this enumeration. We
use BDDs to represent sets of such enumerations. For example, if the runtime verifier
sees the input events open(“a”), open(“b”), open(“c”), it will encode them as 000,
001 and 010 (say, we use 3 bits by, by and b, to represent each enumeration, with
by being the most significant bit). A BDD that represents the set of values {“a”,“c”}
would be equivalent to a Boolean function (—by A —b;) that returns 1 for 000 and 010
(the value of by can be arbitrary). This approach has the following benefits:

— It is highly compact. With k bits used for representing enumerations, the BDD
can grow to 20(0) nodes [10]; but BDDs usually compact the representation very
well [L1]. In fact, we often do not pay much in overhead for keeping surplus bits.
Thus, we can start with an overestimated number of bits k such that it is unlikely
to see more than 2% different values for the domain they represent. We can also
incrementally extend the BDD with additional bits when needed at runtime.

— Complementation (negation) is efficient, by just switching between the 0 and 1
leaves of the BDD. Moreover, even though at any point we may have not seen
the entire set of values that will show up during the execution, we can safely (and
efficiently) perform complementation: values that have not appeared yet in the
execution are being accounted for and their enumerations are reserved already in
the BDD before these values appear.

— Our representation of sets of assignments as BDDs allows a very simple algo-
rithm that naturally extends the dynamic programming monitoring algorithm for
propositional past time temporal logic shown in [18].

We first define a semantics of a past time first-order linear temporal logic that
determines whether an assignment of values to (free) variables satisfies a formula
after a given finite sequence. We then provide an equivalent semantics as a function
that returns the set of assignments satisfying the property at that prefix, based on set
operators. For the final algorithm, we replace the set operators by logical operators on
BDDs, e.g., union is replaced by disjunction. We only have to keep values to represent
the current and previous state in the execution.

The remaining part of the paper is organized as follows. Section || discusses re-
lated work. Section [2] presents the syntax and semantics of the QTL temporal logic.
Section [3] presents the BDD-based algorithm for monitoring a trace against a QTL
formula. Section [outlines the implementation, and Section 5| presents an evaluation
of the implementation. Finally, Section [6]concludes the paper.

This paper is an extension of the conference paper [16] with the following ad-
ditional contributions. In Section we present a set theoretical characterization of
sets of assignments that satisfy properties of our temporal properties after a finite se-
quence. This is based on a finite representation of infinite sets of assignments. This

! DEJAVU is available at https://github.com/havelund/de javu,

https://github.com/havelund/dejavu

4 Havelund, Peled, Ulus

presentation provides additional intuition for the BDD-based solution presented in
this paper. The evaluation in Section [5] of the DEJAVU tool is extended with addi-
tional experiments showing new results. Finally, various figures of BDDs have been
added to explain the approach better.

Related Work

There are several systems that allow monitoring temporal properties with data. The
system closest to our presentation, in monitoring first-order temporal logic, is MON-
PoLY [7]. As in the current work, it monitors first-order temporal properties. In fact,
it also has the additional capabilities of asserting and checking properties that involve
arithmetic relations among the data elements, progress of time, and a limited capa-
bility of reasoning about the future. The main difference between our system and
MONPOLY is in the way in which data are represented and manipulated. MONPOLY
exists in two versions. The first one models unbounded sets of values using regular
expressions (see, e.g., [20] for a simple representation of sets of values). That ver-
sion allows unrestricted complementation of sets of data values. Another version of
MONPOLY, which is several orders of magnitude faster according to [7], is based
on storing finite sets of assignments, and applying database operators to these. We
compare our tool to this latter version in Section [5} In that implementation comple-
mentation is restricted, to account for finite sets. Our system is based on representing
sets of enumerations of data values as BDD functions, and does not restrict negation.

An important volume of work on data centric runtime verification is the set of
systems based on trace slicing. Trace slicing maps variable bindings to propositional
automata relevant for those particular bindings. This results in very efficient moni-
toring algorithms, although with limitations w.r.t. expressiveness. Systems based on
trace slicing include TRACEMATCHES [L], MOP [24]], and QEA [25]. QEA is an
attempt to increase the expressiveness of the trace slicing approach. It is based on
automata, as is the ORHCIDS system [13]].

Other systems include BEEPBEEP [14] and TRACECONTRACT [3], which are
based on future time temporal logic using formula rewriting. Very different kinds
of specification formalisms can be found in systems such as EAGLE [4], RULER [6],
LOGFIRE [15] and LOLA [3]]. The system MMT [12] represents sets of assignments as
constraints solved with an SMT solver. An encoding of BDD functions over enumer-
ations of values appears in [27], where BDDs are used to represent large relations in
order to efficiently perform program analysis expressed as Datalog programs. How-
ever, that work does not deal with unbounded domains.

2 Syntax and Semantics

We define here the syntax and semantics for the QTL logic. Assume a finite set of
domains D1,D;,.... Assume further that the domains are infinite, e.g., they can be
the integers or strings. (In Section[3.3]it is explained how to deal with finite domains.)
Let V be a finite set of variables, with typical instances x, y, z. We denote by x : D

First-Order Temporal Logic Monitoring with BDDs 5

the fact that the variable x has the domain D. An assignment over a set of variables
V maps each variable x € V to a value from its associated domain domain(x), where
multiple variables (or all of them) can be related to the same domain. For example
[x — 5,y — “abc”] assigns the values 5 to x and the value “abc” to y. Let T be a set of
predicate names with typical instances p, g, r. Each predicate name p is associated
with some domain domain(p). (Notice that domain is used both with a predicate name
and with a variable.) A predicate is constructed from a predicate name and a variable
or a constant of the same domain. Thus, if the predicate name p and the variable x are
associated with the domain of strings, we have predicates like p(“gaga”), p(“baba”)
and p(x). Similarly, if ¢ and y are associated with the domain of integers, then we
can have the predicates ¢(3) and g(y). Predicates over constants are called ground
predicates. A state is a finite set of ground predicates, also referred to as events,
where each predicate name may appear at most once. We occasionally refer to a state
containing only one ground predicate (event) as an event. An execution G = §153 ...
(observed at any time) is a finite sequence of states. For example, if T = {p,q,r},
then {p(“xyzzy”),q(3)} is a possible state. At any point in time during monitoring
we have only observed a finite trace, consisting of a prefix of an execution, but there
is no a priori limit on the length of the input trace.

Syntax. The formulas of the core QTL logic are defined by the following gram-
mar, where a is a constant representing a value in domain(p). For simplicity of the
presentation, we define here the logic with unary predicates, but this is not due to
any principle limitation, and, in fact, our implementation supports predicates with
multiple arguments, including zero arguments, which correspond to propositions.

¢ == true | false | p(a) | p(x) [(9V Q) [(9AQ) [-0 | (¢S@)| @[Ix@[Vxe

[T9%1) [TPe1] [T9%1)

At a given state the formula p(“a”) means that p(“a”) happened, that is, p(“a”) is
among the ground predicates of the state. Consider now the formula p(x), for a vari-
able x € V. We interpret it such that x is assigned any value “a” where p(“a”) ap-
pears in the current state. Thus, for interpreting (p(x) A ¢(y)) in a state that has the
predicates p(“a”) and ¢(3), we have the assignment [x — “a”,y — 3]. The formula
(91 S @2) (reads @; since @) means that ¢, occurred in the past (including now) and
since then (beyond that state) @1 has been true. This is the past dual of the commonly
used future time until modality [23]]. The property & ¢ means that @ is true in the
previous state. This is the past dual of the future time next modality. We can also
define the following additional temporal operators: P ¢ = (trueS¢) (“previously”),
and Hp = —P—¢ (“always in the past” or “historically”). The operator [¢;,©2), bor-
rowed from [21]], has the same meaning as (=@, S @), but reads more naturally as a
semi-open interval.

We present the semantics of QTL, formulated in two alternative ways. First using
predicates on variable assignments, and subsequently using sets of such assignments.
In Section [3| an algorithm that encodes such sets of assignments as BDDs is intro-
duced.

Semantics. Let y be an assignment to the variables that appear free in a formula
¢. Then (y,0,i) = ¢ if @ holds for the prefix s;s;...s; of the trace ¢ with the as-
signment Y. This is a standard definition, agreeing, e.g., with [7]]. Note that by using
past operators, the semantics is not affected by states s; for j > i. Let vars(@) be the

6 Havelund, Peled, Ulus

set of free (i.e., unquantified) variables of a subformula @. We denote by 7Y|,4s(q) the
restriction (projection) of an assignment 7 to the free variables appearing in @. Let €
be the empty assignment. In any of the following cases, (V,0,i) = @ is defined when
v is an assignment over vars(@), and i > 1.

- (g,0,i) = true.
- (&,6,i) = p(a) if p(a) € oli].
- (V= d,0,i) = p(v) if p(a) € oli].
(ch l) ': ((p/\\lj) if ('Y‘vars O i) ': ¢ and (Y|van¥(w)707 i) ': v.
- (v,0,i) = —~¢if not (v,0, t) |=q>
- (v,0,i) = (¢ Sy) if for some 1 < j <4, (Ylyars(y)>O>J) = Wand forall j <k <4,
EY|vars(go O k)): 0.
- (

Y,6,i) Feeifi>1and (v,6,i—1) = o.
Y,0,i) = 3x ¢ if there exists a € domain(x) such tha (Y[x+— a],0,i) E .

The definition of the since operator S can be simplified in a standard way such that it
refers only to the positions i and i — 1 in the sequence G. This is based on the fact that
according to the semantics of since, (9Sy) = (YV (¢ AS(@SV))). This will serve
in the implementation to work with only two versions of the sets of assignments, for
the current and previous state:

- (Y763 l) ': ((PS\V) if (Ylvars(w)acai)): yori> 1, (Y|vars((p)76a l) ': o, and
(Y:0,i=1) = (9S¥).

The rest of the operators are defined as syntactic sugar using the operators defined in
the above semantic definitions: false = —true, Vx @ = =3x—@, (V) = =(—~QA V).

Set Semantics. We now refine the semantics of the logic. Under the new defi-
nition, I[@, G, i] is a function that returns a set of assignments such that y € [, G, i]
iff (y,0,i) = ¢. This redefinition will later lead to a simple implementation using
BDDs, where each set of assignments will be represented as a BDD, and the Boolean
operators will correspond directly to Boolean operators on BDDs.

In order to deal with subformulas with different sets of free variables (hence,
different domains for assignments), we apply a projection and an extension operator
to assignments over a subset of the variables. Let I" be a set of assignments over
the variables W, and U C W. Then hide(I'",U) (for “projecting out” or “hiding” the
variables U) is the largest set of assignments over W \ U, each agreeing with some
assignment of I on all the variables in W\ U. Let U NW = 0, then ext(T',U) is
the largest set of assignments over W U U, where each such assignment agrees with
some assignment in I" on the values assigned to the variables W. This means that we
extend I' by adding arbitrary values to the variables in U from their domains. Then
hide(ext(T",U),U) =T holds. We define the union and intersection operators on sets
of assignments, even if they are defined over non identical sets of variables. In this
case, the assignments are extended over the union of the variables. Thus, if I" is a set
of assignments over W and I is a set of assignments over W/, then T" |J I" is defined
as ext(T,W' \W)Uext(I',W\W) and T N I" is ext(T, W \ W) Next(I",W \ W').
Hence, both are defined over the set of variables W UW'.

2 y[x+ a] is the overriding of y with the binding [x — a].

First-Order Temporal Logic Monitoring with BDDs 7

We denote by A,,(e) the set of all possible assignments of values to the variables
that appear free in @. Thus, I[@,0,i] C Ayars(e)- To simplify definitions, we add a
dummy position O for sequence 6 (which starts with s;), where every formula is
interpreted as an empty set. Observe that the value @ and {e}, behave as the Boolean
constants 0 and 1, respectively. The set semantics is defined as follows, where i > 1.

- I[true,c,i] = {&}.

[
[
- I[p(a),G, i] = if p(a) € o[i] then {e} else 0.
= I[p(v),0.i] = {[v—d] | p(a) € ofi]}.
- I[(9AW),0,i] =1[9,0,i]] N I[y,0,i].
- I[ﬁ([LG,i] = A s(Q) \ [(Pac l}
- I[((pSW)aG } I[W7G l} U([(P,(S,i] m I[((pSW)7G>i_1])'
- I[@(p,c,i]:l[(p,c,z—l]
[

As before, the interpretation for the rest of the operators can be obtained from the
above using the connections between the operators, e.g., [P, 0,i] =I[(trueS¢), o, .
The correspondence between this set based semantics and the previous semantics,
namely that y € I[@,0,] iff (,0,i) = ¢ can be proved by a simple structural induc-
tion on the size of the formulas.

3 An efficient Algorithm using BDDs
3.1 Representation of Sets of Assignments as BDDs

Our last refinement is to represent sets of assignments using Ordered Binary Deci-
sion Diagrams (OBDDs, although we write simply BDDs) [9]. A BDD is a compact
representation for a Boolean tree, corresponding to a Boolean function. Because of
compaction, however, the BDD forms a directed acyclic graph rather than a tree, see
Figure E} Each internal node is marked with a Boolean variable, which we also call
a BDD bit or simply a bit. One edge, drawn as a dotted arrow from a node, repre-
sents that this bit has the Boolean value 0, while another edge, drawn as a full arrow,
represents that it has the value 1. The nodes in the tree have the same order along
all paths from the root, although some of the nodes may be missing, when the result
of the Boolean function does not depend on the value of the corresponding bit. The
leaves have the Boolean values 0 and 1. Thus, following a path in this graph, mov-
ing along dotted or fully drawn arrows, corresponding to evaluating the values O or
1 respectively for the BDD bits from which the edges emanate, leads to a leaf node
that is marked by either a O or 1. This leaf value is the Boolean value returned by
the function represented by the BDD for the assignment of Os and 1s to the Boolean
bits on this path. The graph is compacted in such a way that isomorphic subtrees
are “glued” together. In addition, instead of keeping a node b with both edges that
lead to the same subgraph, the node and its outgoing edges are removed from graph
representation of the BDD, and consequently incoming edges are redirected to the
successor node. This means that for the Boolean values on the prefix of the path so

8 Havelund, Peled, Ulus

far, the BDD value does not depend on the value of b. This compaction can be quite
significant. BDDs have been instrumental in achieving a tremendous improvement in
the size of systems that can be automatically verified [[L1].

When a new value for some variable appears in a ground predicate in the current
state, we add it to a list of values of that variable that were seen. In order to search effi-
ciently if this value already appeared, in time close to linear in the length of its repre-
sentation, we can use a hash structure (we use a hash table as explained below). Thus,
if we see p(“ab”), p(“de”), p(“af”) and ¢(“fg”) in subsequent states, where p and ¢
are over the domain of strings, then we obtain a list of values [“ab”,“de”, “af”, “fg”].
We use BDDs to represent sets of such values. Each new value that appears in the
monitored sequence is enumerated as a binary number, according to the order in
which they appear in the input. The BDDs are Boolean representations of sets of
these binary encodings, rather than a direct representation of the actual observed val-
ues. This allows us to use less BDD bits.

Thus, using three bits, “ab” can be represented as the bit string 000 (we start to
enumerate from 000), “de” as 001, “af” as 010 and “fg” as 011. A BDD returns a 1
for each bit string representing an enumeration of a value in the set, and 0 otherwise.
Then a BDD for a set containing the values “de” and “af”” (2nd and 3rd values) will
return 1 for 001 and 010. If the Boolean function is over b (for least significant bit),
by and b, (for most significant), then this is the Boolean function —b; A ((—b; Abg) V
(b1 A —=by)). Figure [1| shows the BDDs for each of these values as well as the BDD
for the set containing the values “de” and “af”. The least significant bit is denoted by
BDD bit 0, and the most significant bit in this case with BDD bit 2.

We can now represent sets of assignments to variables as required by our set
semantics. We use a partition of the BDD bits according to the variables. Say, we
want to represent a set S of assignments to the variables x and y, each expected to
have no more than 7 values. Then we can use the bits y, yj yox2 x1 X9, where xp, x|
and x; represent the enumerations of values of x, and yg, y; and y; represent the
enumerations of values of y. The BDD over these 6 bits will return 1 for each pair
of enumerations that represent an assignment of values to x and y in the set S. This
representation is illustrated with an example in Section d.T]

A subset of a set of k values can be represented as a function from a binary rep-
resentation using [log,(k+ 1)] bits to 0 or 1. (As explained later, we reserve one
enumeration for representing values that were not seen so far.) It can be represented
as a Boolean tree of size O(k). If we have m variables, z',...z", where the number
of values from the domain of the variable 7' is of size k;, then we can represent any
encoding of an assignment to the m variables with X;_;_,,[log,(k; + 1)] bits. With
this number of bits, the BDD graph can grow up to size O(Il;=;_k;). However, rep-
resenting this function as a BDD can often be quite more compact.

3.2 The Algorithm
Given some value a observed in the trace as an argument to a ground predicate,

let lookup(a) return a bit string that represents the enumeration assigned to a. First
lookup(a) will check in the hash table whether a already appeared in the input. If so,

First-Order Temporal Logic Monitoring with BDDs 9

(a) BDD for “ab”: 000 (b) BDD for “de”: 001 (c) BDD for “af”: 010

(e) BDD for the set
(d) BDD for “fg”: 011 {“de”, “af”}: 001 or 010

Fig. 1: BDDs for the observed values ‘“ab”, “de”, “af”, “fg” in the trace:
p(éiab’7)'p(é‘de’7).p(i‘af’7)'q(6‘fg7’)'

the hash table will be used to return its assigned enumeration. If a appears in this state
for the first time, lookup(a) will assign to it a new enumeration, and add to the hash
table a link from a to this enumeration value. We can use a counter (per variable) to
enumerate in ascending order, incrementing the counter each time a new value for
that variable is seen, and use the binary representation of the counter value as the new
enumeration.

The function build(x,A) returns a BDD that represents the set of assignments
where x is mapped to (the enumeration of) v for v € A. This BDD is independent
of the values assigned to any variable other than x, i.e., they can have any value.
For example, assume that we use three bits xg, x; and x, for representing enumer-

10 Havelund, Peled, Ulus

ations over x (with xo being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 011, and lookup(x,») = 001. Then build(x,A) is a BDD representa-
tion of the Boolean function —x; A xg.

Union and intersection of sets of assignments are translated simply into disjunc-
tion and conjunction of their BDDs representation, respectively, and complementa-
tion becomes negation. We will denote the Boolean BDD operators as and, or and
not. To implement the existential (universal, respectively) operators, as in the in-
terpretation of Jx @, we use the BDD existential (universal, respectively) operator
over the bits that represent (the enumeration of) values of x. Thus, we translate Jx,
where x is represented using the bits xg, x,...x;,—; into Ixg...3x;_;. We denote
by exists({xo, ...,xx—1),bdd) the BDD function to perform existential quantification
over the bits xg . ..x;_1. Finally, BDD(0) and BDD(1) are the BDDs that always re-
turn O or 1, respectively.

The algorithm uses standard BDD operators, and is almost a direct translation
of the semantics using sets of assignments. The structure of the algorithm is similar
to that of [18]]. Namely, there are only two vectors (arrays) of values indexed by
subformulas: for the current state (now) and for the previous state (pre). However,
while in [18]] the vectors contain Boolean values, here the vectors contain BDDs. The
algorithm follows.

. Initially, for each subformula @, now(¢) = BDD(0).

. Observe a new state (as set of ground predicates) s as input.

. Let pre := now.

. Make the following updates for each subformula. If @ is a subformula of y then

now(@) is updated before now ().
— now(true) = BDD(1).

- now(p(a)) =if p(a) € s then BDD(1) else BDD(0).

ow(p(x)) = build(x,A) where A = {a | p(a) € s}.

= now((¢Ay)) = and(now(¢),now(y)).
(
(
(

AW N =

|
>

— now(—@) = not(now(®)).

ow((¢ S y)) = or(now(y),and(now (), pre((¢ S)))).
- now (6 @) = pre(@).
— now(3x @) = exists({xg,...,xx_1),now(®)).

5. Goto step 2.

|
>

We select the number of BDD bits k per variable to be large enough such that no more
than 2* different values are anticipated. For example, if k = 20, this will allow more
than a million different values.

For infinite domains, we maintain an enumeration that represents all the values
that were not seen so far in the input. To see why this is necessary, consider the case
where all 2% enumerations are used (i.e., they were seen in the execution so far) for
predicate g(x). Then P g(x) will be represented as BDD(1), returning constantly a 1.
Thus, =P g(x) will be calculated to BDD(0) (false). Now, 3x—P g(x) will be trans-
lated into Jxp3x; ... 3x,—;BDD(0), and will also return BDD(0). However, checking
Ix—Pg(x) should have returned BDD(1) (true), since it states that there are values
that did not occur so far within a g predicate; indeed, for an infinite domain we could
have never seen all the possible values during a finite execution.

First-Order Temporal Logic Monitoring with BDDs 11

We achieve that there is at least one value representing all the values not seen so
far by reserving for this purpose the largest possible enumeration 11...11. Thus, if
we use k bits, we do not allow enumerating beyond 2% — 1. The algorithm presented
above will preserve the following invariant: if we did not use the enumerations be-
tween some m and 2%, then all these enumerations are related to the other enumera-
tions in all BDDs representing subformulas as representing values not seen before.
This can be shown by a simple induction on the length of temporal formulas and
the input sequence. This trivially holds for the subformulas rue, p(a) and p(x), and
is preserved by the application of the logical operations, quantification and also the
updates performed upon the arrival of new states.

3.3 Extensions

Dynamic Expansion of the BDDs. In case we did not allocate in advance enough
bits, it is possible to extend the number of bits we use for representing values for
a variable. As explained above, the enumeration 11...11 of length k represents for
every variable “all the values not seen so far in input the sequence”. Consider the
following two cases:

— When the added (most significant) bit has the value 0, the enumeration still rep-
resents the same value. Thus, the updated BDD needs to return the same values
that the original BDD returned without the additional 0.

— When the added bit has the value 1, we obtain enumerations for values that were
not seen so far in the input. Thus, the updated BDD needs to return the same
values that the original BDD gave to 11...11.

Suppose we have three variables, x, y and z, represented using three BDD bits each,
i.e., X0, X1, X2, Y0, Y1, Y2, 20, 21, 22, and we want to add a new most significant bit
Ynew for representing y. Let B be the BDD before the expansion. The case where the
value of yy,, is O is the same as for a single variable. For the case where y,, is 1,
the new BDD needs to represent a function that behaves like B when all the y bits are
set to 1. Denote this by B[yg \ 1,1 \ 1,2 \ 1]. This function returns the same Boolean
values independent of any value of the y bits, but it may depend on the other bits,
representing the x and z variables. Thus, to expand the BDD, we generate a new one
as follows:

((B/_'ynew) \ (B[,YO\layl \ laYZ\l] /\ynew))

The generalization of this formula to any number of variables is clear.

Finite Domains. We now show how to deal with the case of variables that are
defined over finite domains. Say we have a BDD over enumerations of variables
x, y and z, where y has a domain of size m. Then we need k = [log,(m)] bits,
Yo,-.-Yk—1, for representing y. We need to relativize the use of existential quanti-
fier to m. For finite domains we do not need to reserve a special enumeration for “all
other values”. We can encode a fixed BDD function smaller(y,t) that expresses that
the bits that represent y have a binary value that is smaller than the binary repre-
sentation of . Assuming that we start enumerating from 00...00, we check smaller
rather than smaller or equal). For example, if we use two BDD bits yg and y; then

12 Havelund, Peled, Ulus

smaller(y,3) = —(yo Ay1), as any binary number smaller than 3 will have at least
yo =0 or y; = 0. Now, we need to replace each subformula of the form Jx ¢ where x
appears free in @ by Jx (smaller(x,m) A ¢). This limits the quantification on the bits
that represent x to values that are in the finite domain with m values. We implement
universal quantification Vx ¢ using negation (twice) and existential quantification,
obtaining Vx (smaller(x,m) — @).

Quantifying over Values Seen so Far. We can also extend our logic with a con-
struct seen(y) for a variable y. This construct will be translated, in a similar way as
explained in the previous paragraph, into a BDD that encodes the binary values of the
bits representing y that are no bigger than the maximal enumeration used (seen) so
far for the variable y. We saw earlier that 3x —P g(x) should always return frue in an
infinite domain, as it says that there is a value in the domain of x that did not appear
within a g predicate name. However, we may intend to mean that the existential quan-
tification is restricted to be only over the values that were seen. In this case, we can
write 3x (seen(x) A =P g(x)). This can be true if there is some value for the variable
x that appeared in the execution so far within a predicate name other than g, but not
within g.

3.4 A Characterization of Sets of Assignments for QTL

We describe a mathematical representation of the sets of assignments that satisfy
(sub)formulas of QTL. It provides an additional intuition and motivation for the BDD
representation. This subsection can be safely skipped without affecting readability of
the rest of the paper.

Consider as an example the QTL property N = P (¢(x) V r(y)), where the do-
main of both x and y are the naturals N, after observing a sequence of states p =
{q(1)}.{r(3)}. The infinite set of satisfying assignments is denoted by {[x — u,y —
v u=1vv=3}

Definition 1 Let A;, for 1 <i <nbe afinite subset of the domain D;. Then Dp, . a, =
ApU{eo} x ... x AyU{eo}. A bounded semi-finite set Sp, __a, is a subset of Da, . a,-
The symbol o in the ith position of a vector in Dy, . a, corresponds to any ele-
ments in D; \ A;. Accordingly, define elem(Sa,....a,) as {[vi,...,va] | Iwi,..., w,] €

SAp ity St for 1< i <n, (wi # 00— vi =w;) A (w; =0 = v; € D;\ A;) }; this is the
set of vectors over Dy X ... X Dy, that is represented by Sa,...A,-

We can represent the set of assignments satisfying M after the input p as the
bounded semi-infinite set {[1,],[1,3],[e0,3]}{1} {3 and the assignments satisfying

—n after p as {[°°7°°]}{1}-{3}'

Lemma 1 Foreach 61,62 € Dy, .. a, =A1U{eo} X ... X A,U{oo}, either elem({c })
elem({c,}) or elem({c,}) Nelem({c,}) = 0.

Proof. Because for bounded semi finite sets the values represented by o from D; and
the values in A; are disjoint. a

First-Order Temporal Logic Monitoring with BDDs 13

Theorem 1 Applying the set operators U (union), N (intersection) and complemen-
tation on Bounded semi-finite sets correspond to applying the same operators on their
sets of elements.

Proof. It follows from Lemma (1 that elem(Sa, .a, NS'a,,..a,) = elem(Sa,,..a,) N
elem(S'a,,.a,) and elem(Sa,, ., US'a,...a,) =elem(Sa, ..,)Uelem(S', . a,). For

complementation, {[vy,...,v,|} is the finite set {[wy,...,wy,] | il <i<n, w; €
((AjU{eo})\ {vi})}, with both sets representing the same set of elements from D, ___a,.
Then use the fact that {G},...0,} = {61 }U...U{c,} ={o1}N...Nn{0,}. O

The bounds for the semi-finite sets used to interpret a QTL formula over a given
input is a set of values observed in the input so far per each variable. With each new
state, one of the sets A; can grow, while the other sets remain the same.

Lemma 2 Bounded semi-finite sets are closed under extending any set A; by an ele-
ment of D; \ A;.

Proof. Let w A;. Then Sa, a1 AU{WEA1Ar = SAL A1 A A 180 Y
{vivicnwviet,] [V Ve 1,90,V 1 Vil € SA L AL AL B -
O

Note that if we extend A; with a new value w, then oo appearing in the ith compo-
nent of a vector does not represent anymore the value w.

For the above sequence p = {g(1)}.{r(3)}, we start with A| = A, = 0. Then, after
observing the value 1 in ¢(1) (for the variable x), we have A; = {1} and A, =0, and
after observing the value 3 in r(3) for y, we have A; = {1} and Ay = {3}.

Theorem 2 The set of assignments that satisfy a QTL formula ¢ over the variables
x1: D1,...x, : Dy after a finite sequence of states can be represented as a bounded
semi-finite set S, ... A,-

Proof. Using induction on the length of the input and on the size of the formula.
For an empty input, all bounded semi-infinite sets are empty, and the bounds are also
empty. Consider an event p(a) that appears in the input (this can be easily generalized
to an event with multiple arguments). We show how to calculate the bounded semi-
finite sets representing the assignments for a given subformula in several cases:

— For p(x;), where x; : D;, the set of assignments is represented using the following
bounded semi-finite set: {[vi,...,vi—1,a,Vys1,...Vn] | for 1 < j<mst j#i:
vj € AjU{eo}}. If a appears for the first time in a ground predicate, then A; is
expanded first to include a.

— For ©¢, the assignments after the current nonempty input is the same as the as-
signments for ¢ before the last event.

— For (¢ V v) we take the union of the corresponding semi-finite sets for ¢ and y
after the current input. Intersection is handled similarly.

— For —@, we take the complementation of the bounded semi-finite set representing
o.

— For Jx@, x : D;, where Sy, .. a, represents the set of assignments satistying @, we
obtain {[vi,...,Vic1,W,Vigt,--Val | [VIseo s Viso o V] € Sa,a, AW € AjU{eo}}.

14 Havelund, Peled, Ulus

O
To represent bounded semi-finite sets using BDDs, we can assign a fixed number
of bits per each component domain D; in the product domain. Encoding values using
a fixed number of bits requires to give an a priori bound on the size of values. We enu-
merate the different values, and keep a hash table that maps values to enumerations.
This is in particular appealing for runtime verification, where we may not be given
in advance the exact set of values that will appear in the monitored event stream, but
perhaps a rough bound on the number of different values. Using enumerations instead
of actual values for the BDD may also contribute to minimizing the BDD represen-
tation. The Boolean representation needs to reserve, per each component domain Dj,
at least one (enumeration of a) value that represents oo, i.e., all values in D; \ A;. For
that we use 11...11, as explained in section[3.2]

4 Implementation

We implemented a monitoring tool for the QTL logic, called DEJAVU. We assume
that each state contains oneE] ground predicate, called an event. Let E be the type of
events, and the B be the type of Boolean values. The implementation of the monitor-
ing algorithm presented in Section consists of a program translate : Spec — (E* —
B*), which, when provided a specification generates a monitor program; the monitor
takes as input a trace, and returns a verdict, effectively a Boolean value per each new
event in the trace. In the following we outline the format of the generated monitor
program. The tool is implemented in SCALA, using the standard approach where a
parser parses the specification and produces an abstract syntax tree, which is then tra-
versed and translated into the monitor program. The parser is written using SCALA
parser combinators. The generated monitor program uses the JavaBDD package [[19]
for generating and operating BDDs. Log files in CSV format are parsed using the
Apache Commons CSV (Comma Separated Value format) parser. The tool can be
used for online monitoring (observing a program as it executes) as well as for offline
monitoring (analyzing log files). We shall illustrate the monitor generation using an
example. Consider the following variation of the first property from Section [I] (using
syntax supported by the implementation):

prop p: forall f . close(f) — exists m. P open(f,m)

It states that if a file f is closed, it should have been opened in the past with some
access mode (read, write, . ..). The generated monitor relies on an enumeration of the
subformulas of the original formula in order to evaluate the subformulas bottom up
for each new event. Figure 2| (right) shows the decomposition of the original formula
into subformulas (an Abstract Syntax Tree - AST), indexed by numbers from O to 5,
satisfying the invariant that if a formula @, is a subformula of a formula @, then @;’s
index is bigger than @,’s index. The monitor generated from the property is shown in
Figure [2] (left). Specifically two arrays are declared, indexed by subformula indexes:
pre for the previous state and now for the current state. As previously explained, a

3 This restriction from the theory and algorithm presented above is made because our experience shows
that this is by far the most common case.

First-Order Temporal Logic Monitoring with BDDs 15

class Formula p extends Formula { | 0 : forall f . close(f) -> exists m . P open(f,m) |
var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False) l

var tmp: Array[BDD] = null
val var_f :: var_m :: Nil = declareVariables("£f", "m")

override def evaluate(): Boolean = { / \

now(5) = build("open")(V("£"),V("m")) | 2 : close(f) | | 3 : exists m . P open(f,m) |
now(4) = now(5).or(pre(4))
now(3) = now(4).exist(var_m)
(
¢

| 1 : close(f) -> exists m . P open(f,m) |

now(2) = build("close")(V("f"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll(var_f)
tmp = now; now = pre; pre = tmp
I1tmp(0).isZero

4 : P open(f,m)

5 : open(f,m)

Fig. 2: Monitor (left) and AST (right) for the property.

BDD represents a predicate on bit strings, effectively representing a set of bit strings
(those for which the BDD evaluates to true). Actual values in the trace are uniquely
mapped to such bit strings, and the BDD therefore indirectly represents a set (set
membership function) of the actual values.

In each step the evaluate function re-computes the now array from highest to
lowest index, and returns true (ok) iff now(0) is not BDD(0). Assume for example
that an event close(out) is observed. At the leaf node 2 representing the close(f)
event, the function call build("close")(V("£")) builds a new BDD for out unless one
has previously been computed, in which case that is used. At composite subformula
nodes, BDD operators are applied. For example for subformula 4, the new value is
now(5).or(pre(4)), which is the interpretation of the formula P open(f,m) according to
the relation P ¢ = (¢ V& P ¢). Quantification is solved by performing quantification
over the relevant BDD bits corresponding to the variable in question.

4.1 Example Monitor Execution

We shall briefly evaluate the example formula on a trace. Assume that each variable f
and m is represented by three BDD bits. Consider the input trace, consisting of three
event

open(input,read).open(output,write).close(out)

When the monitor evaluates subformula 5 (subformulas here are numbered according
to Figure [2)) on the first event open(input,read), it will create a bit string composed

4 Traces accepted by the tool are concretely in CSV format. For example the first event is a single line
of the form: open, input, read.

16 Havelund, Peled, Ulus

(a) B; @ 5and 4 (b)B, @5 (c)B; @4
after open(input,read) after open(output,write) after open(output,write)

(d)By @2 (e)Bs @3 f)Bs @ 1
after close(out) after close(out) after close(out)
Fig. 3: Selected BDDs, named By, ..., B, computed after each event at various sub-

formula nodes, indicated by BDD B; @ node (see Figure[2), during processing of the
trace: open(input,read).open(output,write).close(out).

of a bit string for each variable f and m. As previously explained, bit strings for each
variable are allocated in increasing order: 000, 001, 010.,..., hence the first bit string
representing the assignment | f — input, m — read] becomes 000000 where the
three rightmost bits represent the assignment of input to f, and the three leftmost bits
represent the assignment of read to m. Figure [3a] shows the corresponding BDD Bj.
Recall that most significant bits are implemented lower in the BDD, and that for each
bit (node) in the BDD, the dotted arrow corresponds to this bit being 0 and the full
drawn arrow corresponds to this bit being 1. In this BDD all bits have to be zero in
order to be accepted by the function represented by the BDD. We will not show how
all the tree nodes evaluate, except observe that node 5 assumes the same BDD value

First-Order Temporal Logic Monitoring with BDDs 17

as node 4 (all the seen values in the past), and conclude that since no close(...) event
has been observed, the top-level formula (node 0) is true at this position in the trace.

Upon the second open(output,write) event, new values (output,write) are observed
as arguments to the open event. Hence a new bit string for each variable f and m
is allocated, in both cases 001 (the next unused bit string for each variable). The
new combined bit string for the assignments satisfying subformula 5 then becomes
001001, forming a BDD representing the assignment [f — output, m — write], and
appearing in Figure [3b|as B,. The computation of the BDD for node 4 is computed
by now(4) = now(5).or(pre(4)), which results in the BDD Bj, representing the set of
the two so far observed assignments (B3 = or(B;,B3)).

Upon the third close(out) event, a new value out for f is observed, and allocated
the bit pattern 010, represented by the BDD B4 for subformula 2. At this point node 4
still evaluates to the BDD B3 (unchanged from the previous step), and the existential
quantification over m in node 3 results in the BDD Bs, where the bits 3, 4 and 5 for
m have been removed, and the BDD compacted. Node 1 is computed as or(not(B),
Bs), which results in the BDD Bg. This BDD represents all bit patterns for f that are
not 010, corresponding to the value: out. So for all such values the formula is true.
This means, however, that the top-level formula in node 0 is not true (violated by bit
pattern 010), and hence the formula is violated on the third event.

5 Evaluation

DEJAVU’s performance is evaluated by comparing against MONPOLY, the tool that
seems to have most similarities to DEJAVU as previously discussed. We specifically
evaluated six temporal properties, formalized in QTL in Figure[d} on different sizes of
traces, while for DEJAVU varying the number of bits allocated to represent variables
in BDDs. The properties were encoded in MONPOLY in a 1-1 manner. These proper-
ties have the following intuitive meaning. The ACCESS property states that if a file f
is accessed by a user u, then the user should have logged in and not yet logged out,
and the file should have been opened and not yet closed. The FILE property states
that if a file is closed, then it must have been opened (and not yet closed) with some
mode m (e.g. read or write). The FIFO property is a conjunction of four subformulas
about data entering and exiting a queue. The first two subformulas state that a datum
can at most enter and exit once. The third subformula states that a datum can only
exit if it has previously been entered. The last subformula states the FIFO principle of
queues.

The next three properties concern the acquisition and release of locks by concur-
rently executing threads. The LOCKING property concerns the safe use of locks and
is composed of three subformulas. The first subformula states that a thread going to
sleep must have released all acquired locks before then. The second subformula states
that if a thread acquires a lock, no thread may prior have acquired the lock and not
yet released it. The third subformula states that a thread cannot release a lock without
having acquired it and not yet released it. The DEADLOCK property states that any
two threads are not allowed to acquire any two locks in opposite order. That is, if a
thread #; acquires a lock /1, and then before releasing it, acquires a lock I, then an-

18 Havelund, Peled, Ulus

prop access :
forall u . forall f . access(u,f) — [login(u),logout(u)) & [open(f), close(f))

prop file :
forall f . close(f) — exists m. @ [open(f,m),close(f))

prop fifo :
forall x .
(enter (x) — ! @ P enter(x)) &
(exit(x) — ! @ P exit(x)) &
(exit(x) — @ P enter(x)) &
(forall y . (exit(y) & P (enter(y) & @ P enter(x))) —
@ P exit(x))

prop locking :
forall t . forall 1 .
(
(sleep(t) — ![acq(t,1),rel(t,1))) &
(acq(t,l) — ! exists s . @ [acq(s,l),rel(s,1))) &
(rel(t,1) — @ [acq(t,1),rel(t,1)))
)

prop deadlock :
forall t1 . forall t2 . forall 11 . forall 12 .
(@ [acq(tl,11),rel(t1,11)) & acq(tl,12)) —
(! @ P (@ [acq(t2,12),rel (12,12)) & acq(t2,11)))

prop datarace :
forall t1 . forall t2 . forall x .
((P (read(tl,x) | write(tl,x))) & (P write(t2,x))) —
exists 1 .
(H ((read(tl,x) | write(tl,x)) — [acq(tl,1),rel(tl,1))) &
H ((read(t2,x) | write(t2,x)) — [acq(t2,1),rel(t2,1))))

Fig. 4: Evaluation properties in DEJAVU’s QTL logic.

other thread 1, is not allowed to first acquire [, and then, before releasing it, acquire
/1. Following this discipline prevents cyclic deadlocks. Note that a violation of this
property in a trace only indicates that the monitored application has a potential for
deadlocking, not necessarily an actual deadlock. See [8] for a graph algorithm that
detects such deadlock potentials in the general case of N threads and N locks. Finally,
the DATARACE property similarly captures data race potentials. A data race occurs
when two threads access (read or write) the same shared variable simultaneously, and
at least one of the threads writes to the variable. The property states that in this case
there must exist a lock, which both threads hold whenever they access the variable.
See [26] for an algorithm that detects potential data races.

Table [1| shows the results of the evaluation, which in part were performed on a
Mac laptop, with the Mac OS X 10.10.5 operating system, on a 2.8 GHz Intel Core

First-Order Temporal Logic Monitoring with BDDs 19

Property Trace length MONPOLY DEJAVU

min bits 20 bits 40 bits | 60 bits

ACCESS 11,006 1.2s 0.9s [13] 0.9s 1.0s 1.0s

110,006 6m12.9s 2.1s [16] 2.0s 2.8s 3.1s

1,100,006 | 16h14m16s* 15.5s [19] 14.1s 22.5s 31.8s

FILE 11,004 35.1s 0.9s [13] 0.9s 0.9s 0.9s

110,004 85m42.4s 1.9s [17] 1.9s 1.9s 2.1s

1,100,004 DNF* 8.6s [20] 8.6s 9.6s 10.8s

FIFo 5,051 2m9.4s 22.7s [13] | 2m22.7s OOM -

10,101 14m28.8s | 4m22.9s [14] OOM - -

LOCKING 10,401 2.1s 1.2s [10] 1.6s 3.5s 23.5s

105,001 0.4s 2.1s [13] 2.0s 2.1s 2.6s

1,050,126 29.6s 7.7s [08] 10.2s 14.8s 20.9s

DEADLOCK 9,608 1.1s 1.8s [10] 7.0s 27.3s 54.3s

100,008 6.9s 1.5s [13] 1.6s 1.8s 1.7s

1,050,008 23.7s 14.2s [07] 47.7s | 1m55.0s | 4ml.1s

DATARACE 10,005 NMO 1.0s [06] 1.2s 1.5s 1.8s

100,005 NMO 2.1s [10] 2.6s 3.0s 4.5s

1,050,005 NMO 6.7s [09] 6.8s 7.8s 8.5s

Table 1: Evaluation of DEJAVU and MONPOLY. Time values are provided in minutes
and seconds. For DEJAV U four time values are provided for each trace: the time using
the minimal number of bits possible (number of bits in square brackets [...]), and for
20, 40 and 60 bits respectively. Numbers in bold indicate a tool being superior on the
particular trace, and bit count in the case of DEJAVU.

FORALL t1 . FORALL t2 . FORALL x .
(((ONCE (read(t1,x) OR write(tl,x))) AND (ONCE write(t2,x))) IMPLIES
EXISTS 1. (
(PAST_ALWAYS ((read(tl,x) OR write(t1,x)) IMPLIES (NOT rel(t1,]) SINCE acq(t1,1))))
AND
(PAST_ALWAYS ((read(t2,x) OR write(t2,x)) IMPLIES (NOT rel(t2,1) SINCE acq(t2,1))))
)
)

Fig. 5: The DATARACE property in MONPOLY’s logic.

17 with 16 GB of memory. Two of the MONPOLY verifications, marked with * were
performed on a desktop UNIX machine in order to allow for long uninterrupted exe-
cution times. The properties were evaluated with each tool on traces of sizes spanning
from (approximately) 5 thousand to 1 million events (see table for exact numbers).
Traces have the general form that initially numerous opening events (login, open,
enter, acq) occur, in order to accumulate a large amount of data stored in the monitor,
after which a smaller number of corresponding closing events (logout, close, exit,
rel) occur. In addition, for each trace we applied DEJAVU with four different sizes
of bit vectors: the minimal number of bits possible, 20 bits, 40 bits, and 60 bits, the
latter three corresponding to the ability to store respectively approximately a million,
a trillion, and a quintillion different values for each variable (the latter two are not
needed for these traces). The following abbreviations are used: OOM = Out of Mem-

20 Havelund, Peled, Ulus

ory, DNF = Did Not Finish (during 16 hours), and NMO = Not Monitorable in the
logic. Any number in bold font in the table indicates a monitor execution time for
a tool that is less than the opponent tool’s execution time for the same property and
trace.

From Table[TJone can observe the following. For the first two properties ACCESS
and FILE, DEJAVU clearly outperforms MONPOLY. For the ACCESS property on the
shortest trace, the tools are comparable. However, for the two larger traces of the AcC-
CESS property, DEJAVU is faster by factors 178 and 3,771 respectively, and for the
two smaller traces of the FILE property, DEJAVU is faster by factors 39 and 2,707.
For the FILE property the MONPOLY tool had not finished on the largest trace after
16 hours. For the FIFO property the picture depends on how many bits are allocated
in DEJAVU for variables. When running DEJAVU with the minimum number of bits,
DEJAVU outperforms MONPOLY with factors 3 to 6. However, when running DE-
JAVU with 20 bits, the results are similar for the shortest trace and on the largest trace
DEJAVU runs out of memory, whereas MONPOLY finishes in over 14 minutes. This
property is the most challenging of the properties examined. The complexity lies in
the last of the four subformulas in the conjunction, the actual FIFO property. For the
LOCKING and DEADLOCK properties, the results are mixed, with wins on each side
with factors in the smaller end of the scale.

The DATARACE property, with its MONPOLY syntax version shown in Figure [3
stands out in the sense that it is not monitorable in MONPOLY due to need for this
formula to compute infinite sets of assignments, caused by the occurrence of certain
combinations of operators, such as e.g. NOT and OR. See [7l17] for an elaboration
of monitorability of MONPOLY formulas. This illustrates the additional expressive
power of DEJAVU caused by the use of BDDs as internal data structure, and in par-
ticular the use of the bit pattern 11...11 (all 1’s) to represent the infinite set of all
values not yet seen in the trace.

Increasing the number of bits allocated per variable in DEJAVU can have impact
on execution times, in some cases more than in others. The average slow-down fac-
tor between using lowest number of bits and 60 bits is 5.7. However, in most cases
the factor is 2 or less. The properties FIFO, LOCKING, and DEADLOCK show some
higher slow-down factors up to 30. In the case of the FIFO property increasing the bit
numbers cause out of memory exceptions. It is somewhat unfair to compare MON-
PoLY against DEJAVU using minimal bits. The minimal number of bits required by
DEJAVU for analyzing a trace is unknown up front. However, even if one compares
with 20+ bit results from DEJAV U, the overall result is largely the same, except for
the FIFO property and the largest trace for the DEADLOCK property. In both cases
the minimal number of bits are required in order to perform better than MONPOLY.

We further investigated our monitoring procedure by profiling various BDD pa-
rameters for the six properties. We specifically focused on two BDD parameters: the
node count and the sat count. The node count denotes the number of nodes in a BDD
and is the most important performance parameter as the complexity of operations on
BDDs directly depends on the number of BDD nodes of the operand. On the other
hand, the sat-count denotes the cardinality of the set of all satisfying assignments
for the Boolean function that the BDD represents. The ratio of sat count and node
count is often used to measure how much the BDD representation is compressing the

First-Order Temporal Logic Monitoring with BDDs 21

800000

700000

600000

500000

400000

Node Count
Sat Count

300000

200000

100000

0
200000 400000 600000 800000 1000000 1200000 200000 400000 600000 800000 1000000 1200000

Event nr. Event .

(a) FILE node count (b) FILE sat count

45000 le?

Node Count
Sat Count

2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Event nr. Event .

(¢) FIFO node count (d) FIFO sat count

Fig. 6: BDD profiling (node and sat counts) for the FILE and FIFO properties.

underlying Boolean function. The charts in Figure [6]illustrate the evolution of these
parameters during monitoring of the properties FILE and FIFO, for selected subfor-
mulas. These properties are cases where we performed well (FILE) and not-so-well
(FIFO).

For the FILE property, the node count for the subformula [open(f,m),close(f)),
which is equivalent to (!close(f) S open(f,m)), grows logarithmically as new open-
events continuously arrive up to the 800,000” event and stays constant around 60
nodes until the 900,000” event. This suggests that the standard encoding and our
enumeration scheme leads to very compact BDDs for one of the most common types
of formulas even under a data-intensive input trace. For the FIFO property, however,
we see that the sat count for the subformula (P (enter(y) & @ P enter(x))) quadrati-
cally grows as this subformula needs to store a set of assignments that contains a con-
junction of each enter event seen so far and every enter event seen in its past. In other
words, we need to represent a set isomorphic to the set {(i,) | i < jand i, j € 0..N}
where N is the number of distinct enter events. Note that the number of satisfying
assignments reaches 50 million (10000?/2) for N = 10000 in the plot. Although
the BDD representation manages to compress such sets considerably, the amount of
compression is simply not enough and the node count continues to grow in a linear
fashion, reaching 40,000 nodes. This fact increasingly slows down the monitoring
process and we will eventually run out the resources.

22 Havelund, Peled, Ulus

Overall, however, the results clearly demonstrate that BDDs are promising for
representing observed data in runtime verification, augmenting efficiency of the mon-
itoring algorithm as well as expressiveness of logic at the same time.

6 Conclusion

We described a BDD based runtime verification algorithm for checking the execution
of a system against a first-order past time temporal logic property. The challenge is to
provide a compact representation that will grow slowly and can be updated quickly
with each incremental calculation that is performed per each new monitored event,
even for very long executions.

We used a BDD representation of sets of assignments for the variables that appear
(free) in the monitored property. Each value observed in the trace is represented by
a BDD that encodes the value’s enumeration in appearance order. While the size of
the BDD can grow linearly with the number of represented values, it is often much
more compact, and the BDD functions of a standard BDD package are optimized
for speed. Our representation allows assigning a redundantly large number of bits for
representing the encoding of values, so that even extremely long executions can be
monitorable. For example, if the encoding for each variable uses 64 bits, the BDD
can hold up to 264 different values for each variable. Alternatively, we showed how
to dynamically expand the BDD when the number of values exhausts the allocated
size.

Our experiments provide an optimistic view on the benefit of using BDDs. The
implementation was written in SCALA, an object-oriented and functional program-
ming language with active garbage collection. We expect that using a programming
language such as C will result in even faster runtime verification monitors.

Acknowledgements We would like to thank Oded Maler for a discussion on representing sets using
BDDs. We also thank Eugen Zalinescu for discussions concerning monitorability of MONPOLY formulas.
Finally, we thank the reviewers of this article for their useful comments.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,
G. Sittampalam, J. Tibble, Adding Trace Matching with Free Variables to Aspect], OOPSLA 2005,
345-364.

2. B. Alpern, F. B. Schneider, Recognizing Safety and Liveness. Distributed Computing 2(3), 117-126,
1987.

3. B.D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H. B. Sipma, S. Mehrotra,
Z. Manna: LOLA: Runtime Monitoring of Synchronous Systems, TIME 2005, 166-174.

4. H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-Based Runtime Verification, VMCAI, LNCS
Volume 2937, Springer, 2004.

5. H. Barringer, K. Havelund, TraceContract: A Scala DSL for Trace Analysis, Proc. of the 17th Interna-
tional Symposium on Formal Methods (FM’11), LNCS Volume 6664, Springer, 2011.

6. H. Barringer, D. Rydeheard, K. Havelund, Rule Systems for Run-Time Monitoring: from Eagle to
RuleR, Proc. of the 7th Int. Workshop on Runtime Verification (RV’07), LNCS Volume 4839, Springer,
2007.

First-Order Temporal Logic Monitoring with BDDs 23

7. D. A. Basin, F. Klaedtke, S. Miiller, E. Zalinescu, Monitoring Metric First-Order Temporal Properties,
Journal of the ACM 62(2), 45, 2015

8. S. Bensalem, K. Havelund, Dynamic Deadlock Analysis of Multi-threaded Programs, Haifa Verifica-
tion Conference, Haifa, Israel, LNCS Volume 3875, Springer, 2006.

9. R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams, ACM Com-
puting Survety 24(3), 293-318 (1992).

10. R. E. Bryant, On the Complexity of VLSI Implementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication, IEEE Transactions on Computers 40(2): 205-213
(1991).

11. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic Model Checking: 1020
States and Beyond, LICS 1990, 428-439.

12. N. Decker, M. Leucker, D. Thoma, Monitoring Modulo Theories, Journal of Software Tools for Tech-
nology Transfer, Volume 18, Number 2, 2016.

13. J. Goubault-Larrecq, J. Olivain, A Smell of ORCHIDS, Proc. of the 8th Int. Workshop on Runtime
Verification (RV’08), LNCS Volume 5289, Springer, 2008.

14. S. Hallé, R. Villemaire, Runtime Enforcement of Web Service Message Contracts with Data, IEEE
Transactions on Services Computing, Volume 5 Number 2, 2012.

15. K. Havelund, Rule-based Runtime Verification Revisited, Journal of Software Tools for Technology
Transfer, Volume 17 Number 2, Springer, 2015.

16. K. Havelund, D. Peled, D. Ulus, First-Order Temporal Logic Monitoring with BDDs, 17th Conference
on Formal Methods in Computer-Aided Design (FMCAD 2017), 2-6 October, 2017, Vienna, Austria,
1IEEE.

17. K. Havelund, G. Reger, D. Thoma, E. Zilinescu, Monitoring Events that Carry Data, book chapter in:
Lectures on Runtime Verification - Introductory and Advanced Topics, book editors: Ezio Bartocci and
Ylies Falcone, LNCS Volume 10457, Springer, 2018.

18. K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties, TACAS 2002, 342-356.

19. JavaBDD, http://javabdd.sourceforge.net.

20. J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige, T. Rauhe, A. Sandholm, Mona:
Monadic Second-Order Logic in Practice, TACAS 1995, 8§9-110.

21. M. Kim, S. Kannan, I. Lee, O. Sokolsky, Java-MaC: a Run-time Assurance Tool for Java, Proc. of the
1st Int. Workshop on Runtime Verification (RV’01), Elsevier, ENTCS 55(2), 2001.

22. O. Kupferman, M. Y. Vardi, Model Checking of Safety Properties, Formal Methods in System Design
19(3): 291-314, 2001.

23. Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical Computer Science 83, 91-130,
1991.

24. P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An Overview of the MOP Runtime Verification
Framework, J. Software Tools for Technology Transfer, Springer, 2011.

25. G. Reger, H. Cruz, D. Rydeheard, MarQ: Monitoring at Runtime with QEA, Proceedings of the
21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2015), Springer, 2015.

26. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, Eraser: A Dynamic Data Race Detec-
tor for Multithreaded Programs, ACM Transactions on Computer Systems 15(4), 1997.

27. J. Whaley, D. Avots, M. Carbin, M. S. Lam, Using Datalog with Binary Decision Diagrams for Pro-
gram Analysis, APLAS 2005, 97-118.

	Introduction
	Syntax and Semantics
	An efficient Algorithm using BDDs
	Implementation
	Evaluation
	Conclusion

