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Abstract. In this 45 Years of Formal Methods review we first delineate
what we mean by method, formal method, computer science, computing
science, software engineering, and model-oriented and algebraic meth-
ods. Based on this we shall characterise a spectrum from specification-
oriented methods to analysis-oriented methods. Then we shall provide an
Overview: which are the ‘prerequisite works’ that have enabled formal
methods; and which are, to us, the, by now, classical formal Specification
and Analysis Methods. We then ask ourselves the question: A Success
Story ? Have formal methods for software development, in the sense of
this paper been successful ? Our answer is a guarded yes. At the start
of More Personal Observations, we relate, in The DDC Ada Story, a
1980–1984 formal methods success story. We motivate the guarded an-
swer by discussing Some Obstacles to Formal Methods in university
research and education as well as in industry practice. Finally we discuss
current programming language developments in a Next 10 Years per-
spective. Although their recent emergence has occurred in parallel with
formal methods development, and seemingly independent thereof, we do
see some convergence.

Introduction

The subject of this review is that of methods for developing trustworthy software.
That is: software for which we can provide reasonably convincing arguments that
they meet customer expectations and are correct wrt. some form of specification.

We see software development as (1) beginning, ideally, with a domain de-
scription, i.e., a specification of the application domain void of any reference to
requirements let alone software, (2) proceeding to a requirements prescription,
(3) moving to the specification of a software design, and (4) finally code. Typ-
ically, however, the first phase, domain engineering, is omitted. Each of these
phases may involve both synthesis and analysis: creating and analysing a speci-
fication. We review such specification and analysis methods which are based on
mathematics.

⋆ The research by this author was carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and
Space Administration (80NM0018D0004).
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Some Delineations

By a method we shall understand a set of principles for selecting and applying
techniques and tools for synthesizing and/or analyzing an artefact. In this pa-
per we shall be concerned with methods for synthesizing and analysing software
artefacts. We consider the software code to be a mathematical artefact. That is
why we shall only consider such methods which we call formal methods. By a
formal method we shall understand a method whose techniques and tools can
be explained in mathematics. If, for example, the method includes a specifica-
tion language, then that language has a formal syntax, a formal semantics, and
a formal proof system. The techniques of a formal method help construct a
specification, and/or analyse a specification, and/or transform (refine) one (or
more) specification(s) into a program. The techniques of a formal method, (be-
sides the specification language) are typically supported by software. A central
concern in the development of software, is to reason about properties of what is
being developed. Among such properties are correctness of program code with
respect to requirements and computing resource usage. Either some software is
developed systematically [some arguments are made, but they are not necessar-
ily formal, although they are in a form such that they can be made formal], or
it is developed rigorously [some arguments are made and they are formal], or it
is developed formally [all arguments are formal]. Boundary lines are, however,
fuzzy. By computer science we shall understand the study of and knowledge
about the mathematical structures that “exist inside” computers. By computing
science we shall understand the study of and knowledge about how to construct
those structures. The term programming methodology is here used synonymous
with computing science. Software engineering is the actual pursuit of software
development based primarily on computing science insight. By engineering we
shall understand the design of technology based on scientific insight and the
analysis of technology in order to assess its properties (including scientific con-
tent) and practical applications. Software engineering, to us, ideally entails the
engineering of domain descriptions [9] (D), the engineering of requirements
prescriptions (R), the engineering of software designs [and code] (S), and the
engineering of informal and formal relations between domain descriptions and
requirements prescriptions: R is a model of D, and domain descriptions, require-
ments prescriptions and software designs: S can be proved correct with respect
to R in the context of D. Our delineation of software engineering is based (i) on
treating all specifications as mathematical structures, and, in addition to these
programming methodological concerns, (ii) by also considering more classical
engineering concerns. In preparation for two examples of formal specifications
we narrate, i.e., informally specify, in Example 0, the data structure concept of
a stack.

Example 0: Stacks
Entities:

1. There are stack (s : S) and element (e : E) entities;
2. there is an is empty predicate; and
3. there are empty, push, pop and top operations.
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Properties:
4. creating an empty stack creates an is empty stack;
5. popping a stack which can be understood as a stack, s,
on which is pushed an element, e, yields that stack s;

6. inquiring as to the top element of a stack which can
be understood as as a stack, s, on which is pushed an
element, e, yields that element e.

By an algebraic specification, see Example 1, we shall understand one whose
data types, called carrier sets, are abstract, i.e., their elements are considered
nullary operations, and whose postulated operations are defined in terms of their
signatures and axioms over the operations.

Example 1: An Algebraic Specification of Stacks
types

E, S
operation signatures

is empty: S → Bool
empty: S, push: E × S → S, pop: S

∼→ S, top: S
∼→ E

axioms ∀ e : E, s : S •
is empty(empty) = true
pop(push(e,s)) = s
top(push(e,s)) = e

By a model-oriented specification, see Example 2, we shall understand one
whose data types are concrete, such as numbers, sets, Cartesians, lists and maps,
and whose operations are defined in terms of functions over these concrete data
types.

Example 2: A Model-oriented Specification of Stacks
types
E, S = E∗

operation signatures
is empty: S → Bool
empty: S, push: E × S → S, pop: S

∼→ S, top: S
∼→ E

definitions ∀ e : E, s : S •
is empty(s) ≡ s = ⟨⟩
empty ≡ ⟨⟩
push(e,s) ≡ ⟨e⟩̂s
pop(s) ≡ tail s pre ¬ is empty(s)
top(s) ≡ head s pre ¬ is empty(s)
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Overview

What are the origins of formal methods ? Here we should like to briefly mention
some of the giant contributions which form a foundation. See Table 1.

Table 1: Giant Contributions

– John McCarthy[83, 84]: Recursive Functions of Symbolic Expressions and
Their Computation by Machines andTowards a Mathematical Science of
Computation.

– Peter John Landin and Rodney Martineau [Rod] Burstall [80, 20]: The
Mechanical Evaluation of Expressions, and Programs and their Proofs: an
Algebraic Approach.

– Robert W Floyd [43]: Assigning Meanings to Programs.
– John Charles Reynolds[103]: Definitional Interpreters for Higher-order Pro-

gramming Languages.
– Dana Stewart Scott and Christopher S. Strachey[107]: Towards a Mathe-

matical Semantics for Computer Languages.
– Edsger Wybe Dijkstra [36]: A Discipline of Programming.
– Charles Anthony Richard Hoare[62, 63]: An Axiomatic Basis for Computer

Programming and Proof of Correctness of Data Representations.

Finally there are the concepts of abstract interpretation and partial evaluation.
Beginning with the work of [33, 30, 28, 31, 32, 29, Cousot & Cousot] abstract in-
terpretation is at the foundation of not only static program analysers but well-
nigh any form of program interpretation. The work of Neil Jones et al., [74],
beautifully illustrates the power of considering programs as formal, mathemati-
cal objects.

Some monographs or text books “in line” with formal development of pro-
grams, but not “keyed” to specific notations, are listed in Table 2.

Table 2: Seminal Text Books

– Knuth: The Art of Programming [77].
– Dijkstra: A Discipline of Programming [36].
– Gries: The Science of Programming [47].
– Reynolds: The Craft of Programming [104].
– Hehner: The Logic of Programming [60].

Specification and Analysis Methods

Early formal methods focused primarily on specification writing, and less on
machine assisted analysis. Later formal methods, such as theorem provers and
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model checkers, gave analysis high priority. A representative list is shown in
Table 3.

Table 3: Some Formal Methods and Tools

– 1974 VDM [Vienna Development Method ] model-oriented [12, 13, 73, 41,
42] [en.wikipedia.org/wiki/Vienna Development Method#Extern-

al links].
– 1977 Z [Z: Zermelo] model-oriented [114, 109, 58] [zuser.org].
– 1980 SPIN/Promela model checker [65] [spinroot.com/spin].
– 1980s B [B: Bourbaki ] model-oriented with emphasis on proof [1]

[methode-b.com].
– 1989 Coq [Galina] type-theoretic theorem prover [66, 6] [coq.inria.fr].
– 1986/1990 Isabelle/HOL [Higher Order Logic ] classical logic theorem prover

[94] [isabelle.in.-tum.de].
– 1992 RAISE [Rigorous Approach to Ind. SE ] model- and property-oriented

[46, 8]
– 1990 ASM [Abstract State Machines] model-oriented, classical mathematics

[48–50, 101]
– 1990 PVS [Prototype Verification System] classical logic theorem prover [97,

98] [pvs.csl.sri.com].
– Mid 1990s ACL2 [A Comp. Logic for [Appl.] Common Lisp] classical logic

theorem prover [76]
– 1994 STeP [Stanford Temporal Prover ] temporal logic for reactive systems,

theorem prover [82, 15].
– 1995 Uppaal [Uppsala/Aalborg ] timed automata, model-checker [45, 5].
– 1997 Alloy model-oriented[69, 68], incorporates a satisfiability tool.
– 2000 [nu]SMV [Symbolic Model Verifier ] symbolic model-checker [22].
– 2004 Astrée anstract interpretation [17], a code analyzer.
– 2008 Z3 [Zermelo] [91, 16], is a satisfiability modulo theories tool.
– 2009 Event B [2], incorporates a theorem prover and is embedded in the

Rodin development platform.

Yuri Gurevitch’s Abstract State Machines [48, 49, 101] (ASM), also known as
‘Evolving Algebras’, was developed as a theory for computation, and did not
have a fully formal syntax and was not tool supported. This work can be seen as
advocating the use of mathematics for specifying systems. AsmL (Abstract State
Machine Language) [50] was later developed with full formal syntax and tool
support [archive.codeplex.com/?p=asml], and used successfully at Microsoft
for model-based testing. In a similar vein, Wolfgang J. Paul [100, 92, 99, 26] has
advocated using mathematics as a specification language.

Shallow program analysis is provided by a number of static analysis tools
– such as Semmle [semmle.com], Coverity [coverity.com], CodeSonar [gram-

matech.com/codesonar] and KlocWork [klocwork.com]. These static analysers
scale to large programs, are automated, and are, from an industrial point, very
useful. However, this is at the prize of the limited properties they can check;
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they can usually not check functional properties: that a program satisfies its
requirements.

Satisfiability Modulo Theories [SMT] solving has become a major develop-
ment in formal methods, used in many development tools. Z3 is such an SMT
analysis tool, and appears to be a leading tool with 24,000 downloads in 2017
and 5,000+ citations of [16]. SMTLIB provides a common input language for
SMT solvers and standard rigorous descriptions of background theories used in
SMT systems [smtlib.cs.uiowa.edu]. The SMTLIB initiative is remarkable in
having united very many researchers and developers of SMT systems around one
notation.

The foremost property-oriented (algebraic) formal methods (alphabetically
listed) are listed in Table 4.

Table 4: Some Algebraic Specification Languages

– 1996 Maude [88, 87, 23] [maude.cs.illinois.edu/w/index.php/The Mau-

de System].
– 1997 CafeOBJ [44] [cafeobj.org].
– 1998 CASL [Common Algebraic Spec. Language] [25] [informatik.uni-

-bremen.de/cofi].

The definitive text on algebraic semantics is

– Sanella & Tarlecki’s Foundations of Algebraic Semantics and Formal
Softw. Devt. [105].

It is a characteristic of algebraic methods that their specification logics are anal-
ysis friendly, usually in terms of rewriting.

A special category of systems is that of reactive systems. A reactive system
consists of a collection of individual components executing independently, in par-
allel, while exchanging messages. Some formal notations for describing reactive
systems are listed in Table 5.

Table 5: Reactive Systems Languages

– CSP [Communicating Sequential Processes] [64] [wotug.org].
– CCS [Calculus of Communicating Systems] for modelling concurrence [89]

[en.wikipedia.org/wiki/Calculus of communicating systems].
– DC [Duration Calculus] [117] for modelling time-continuous properties

[en.wikipedia.org/wiki/Duration calcul̄us].
– MSC [Message Sequence Charts] [67] for graphically modelling message com-

munication between simple processes [itu.int/rec/T-REC-Z.120].
– Petri Nets [102] for modelling arbitrary synchronisation of multiple

processes [http://www.informatik.uni-hamburg.de/TGI/PetriNets/-
index.php].
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– Statecharts [51] for modelling hierarchical systems [statecharts.git-
-hub.io].

– TLA+ [Temporal Logic of Actions] [79] for modelling temporal properties
[lamport.azurewebsites.net/tla/tla.html].

An abundance of regular workshops, symposia and conferences have grown up
around formals methods. See Table 6.

Table 6: Regular Events

– VDM and FME [FM Europe ] symposia [10].
– Z, B, ZB, ABZ, etc. meetings, workshops, symposia, conferences, etc. [18].
– SEFM [Softw.Eng. and Formal Methods] [78].
– ICFEM [Intl.Conf. of Formal Engineering Methods] [37].
– IFM [Integrated Formal Methods] [75].

Although some of these conferences started out as specification-oriented, today
they are all more or less analysis-oriented. The main focus of research today is
analysis. See Table 7 for highly analysis-oriented events:

Table 7: Regular Analysis-focused Events

– CAV [Computer Aided Verification].
– TACAS [Tools and Algorithms for the Construction and Analysis of Sys-

tems].
– CADE [Conference on Automated Deduction].

Table 8 lists major formal methods journals.

Table 8: Formal Methods Journals

– Formal Aspects of Computing
[link.springer.com/journal/165],

– Formal Methods in System Design
[link.springer.com/journal/10703] and

– Software Tools for Technology Transfer
[www.springer.computer/swe/journal/10009];

Integrated Formal Methods

Formal methods are sometimes complemented by some of “the related” formal
notations. The RAISE Specification Language, RSL, includes CSP and some re-
stricted notion of object-orientedness and a subset of RSL has been extended
with DC[56, 57]. VDM and Z has each been extended with some (wider) notion
of object-orientedness: VDM++ [38], respectively object Z [113, 34]. A gen-
eral shortcoming of all the above-mentioned formal methods is their inability to
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express continuity in the sense, at the least, of first-order differential calculus.
The IFM conferences [75] focus on such “integrations”. Haxthausen [56] outlines
integration issues for model-oriented specification languages. Hybrid CSP [59,
116] is CSP + differential equations. A recent development is that of rTiMo
[115], a variant of CSP with real Time and Mobility !

A Success Story ?

With all these books, publications and conferences can we claim that formal
methods have become a success — an integral part of computing science and
software engineering ? and established in the software industry ? Our answer is
now a qualified yes ! In 2014 [11] it was no ! Although formal methods have yet to
become an integral part of computing science, software engineering and software
industry, it is easier today to say that progress has been made. The next sections
put forward some of the qualifications of the yes.

Personal Observations

There are different possible ways to analyze the situation of formal methods and
their adoption by industry. These include (a) comparing the various methods,
holding them up against one another, (b) evaluating which application areas
they are suited for, (c) identifying gaps in them, and (d) focusing on “soft”
topics such as educational, psychological, and process oriented issues. Rather
that going into technicalities, we shall in the following discuss a higher level of
abstraction “hindrances to formal methods” which seems common to all formal
methods, and focus mostly on (d) and to some limited extent (c). But first a
small “detour” !

The DDC Ada Success Story
In 1980 a team of six just-graduated MScs started the industrial development
of a commercial Ada compiler. Their (MSc theses) semantics description (in
VDM+CSP) of Ada were published Springer [14]. The project took some 44 man
years in the period 1 Jan. 1980 to 1 Oct. 1984 – when the US DoD, in Sept. 1984,
had certified the compiler. The six initial developers were augmented by 3 also
just-graduated MScs in 1981 and 1982. The “formal methods” aspects of the
development approach was first documented at ICS’77 [7]. The project staff
were all properly educated in formal semantics and compiler development in
the style of [7], [12] and [13]. The completed project was evaluated in [24]
and in [96]. Now, 35 years later, mutations of that 1984 Ada compiler are
still around ! From having taken place in Denmark, a core DDC Ada compiler
product group was moved to the US in 1990 [Cf.DDC-I Inc., Phoenix, Arizona
http://www.ddci.com/] — purely based on marketing considerations. Several
versions of Ada has been assimilated into the 1981–1984 design. Several genera-
tions of less ‘formal methods’-trained developers have worked and are working
on the DDC-I Inc. Legacy Ada compiler systems. For the first 10 years of the
1984 Ada compiler product less than one man month was spent per year on
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corrective maintenance – dramatically below industry “averages” ! The DDC
Ada development was systematic: it had roughly up to eight (8) steps of “re-
finement”: two (2) steps of domain description of Ada (approx. 11.000 lines),
via four (4) steps of requirements prescription for the Ada compiler (approx.
55.000 lines), and two (2) steps of design (approx. 6.000 lines) and coding of
the compiler itself. Figure 1 reflects the Ada compiler development graph.

– A The theory of the contents of the triplet of top left boxes is covered by
McCarthy, Scott and Strachey [83, 84, 107].

– B The use of CSP in due to Hoare [64].

– C The ’First Order Semantics’ of is dealt with in Landin and Reynolds[80,
103].

– D The ’Imperative Stack and Macro-expansion Semantics’ ideas, originated
with Bekič[72].

– E The ’A Code’ to ’Compiling Algorithm’ idea, was that of McCarthy &
Painter[85].

The whole transgression A–E was reported in 1977 [7]. The newly grad-
uated students were well-versed in these papers. Throughout the emphasis
was on formal specification. No attempt was really made to express, let alone
prove, formal properties of any of these steps nor their relationships. The for-
mal/systematic use of VDM resulted in less than 1% of the original development
costs being spent between 1985 and today on error-correction, and must hence
be said to be an unqualified formal methods success story.

• • •

The following personal observations can be seen in the context of the more than
35 years old DDC Ada compiler project.

Formal Method Challenges

We remind the reader of our characterization of what constitutes a formal
method scenario. At its core, we have two artifacts, an abstract specification,
A, and a more concrete implementation, C, the latter purported to be an im-
plementation of the former. That entails the verification, e.g. by formal testing,
model checking, or formal proof, that C correctly implements A. An example is
a program about which we wish to verify some assertions.

• Creating Multiple Specifications Take Time Developers may consider it
too time consuming to produce a formal specification A (say a formal require-
ments prescription) in addition to the implementation C. This is in particular
the case if specification A is written in a different language than the implemen-
tation C. There have been success stories with this approach. The first author
has e.g. had good experiences with this approach during the afore mentioned
development of the Ada compiler, which was formalized in VDM before being
implemented. There is also the use of TLA+ at Amazon Web Services [93], which
is considered a successful attempt in this direction. One may also observe that
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Fig. 1. The DDC Ada compiler development graph

theoretical computer scientists do use mathematics to develop theories before
these theories are implemented in code. These formalisations are, however, usu-
ally written in free style mathematical notation (targeted for publications), and
not in formal languages. There have also been successful applications of formal
methods to analyze existing systems [52, 54], exposing otherwise very hard to
find bugs. In general, though, it is probably fair to say, that these formalisations
beyond the code are few and far in between, and that industrial developers sel-
dom write formal stand-alone specifications (except for assertions in the code).
Even formal methods people usually do not write specifications in formal ma-
chine checked languages (beyond the free style theories) before they develop
code. The main “problem” is that the distance between specification and im-
plementation is relatively small compared to other engineering disciplines, and,
as we shall illustrate below, it is getting smaller and smaller as programming
languages evolve. We are not judging “right or wrong”, but rather observing
behavior patterns.

• Proofs Take Time It is a fact, that proving that an implementation im-
plements a specification usually cannot be fully automated. Although model
checking is automated, it does not scale to large systems. In deductive theorem
proving the main problem is loop invariants, invariants which a user has to in-
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vent, like lemmas in a proof. SMT solving has been a big advance in formal
methods, but still does not solve the loop invariant discovery problem.

• A “Lack of Formal Methods Research and Education” Obstacle There is
not enough research into and teaching of formal methods. Just because a formal
method may be judged to not yet be industry-scale is no hindrance to it being
researched and — we must prepare our students properly. This obstacle is of
“history-of-science-and-engineering” nature.

• A “No Standards” Obstacle It seems to be a fact that industry will not
use a formal method unless it is standardised. Most formal method specification
languages were conceived and developed by small groups of usually university
researchers. This basically stands in the way of preparing for standards and for
developing and later maintaining tools.

• An “Intra-Departmental” Obstacle There are two facets to this obstacle.

♢ We find that core courses in computing science and software engineering
are often not explained to students in terms of mathematics and formal methods.

♢ And we find that scientific papers on methodology are either not writ-
ten, or, when written and submitted are passed over by referees who do not
understand the difference between computer science and computing science.

It is claimed that the teaching and research staff of departments of computer
science and software engineering are generally unaware of the science & engineer-
ing aspects of each others’ individual sub-fields. That is, we often see software
engineering researchers and teachers unaware of the disciplines of, for example,
Mathematical Logic , Recursive Function Theory , and Abstraction and Modelling
(eg., Formal Methods) — with the unawareness manifesting itself in the lack of
use of cross-discipline techniques and tools. Such a lack of unawareness of intra-
department disciplines seems rare among mathematicians. Physicists freely avail
themselves of most forms of classical mathematics; and so do engineering re-
searchers and engineers.

• A “Slide in Professionalism” Obstacle: There is an “Education Gap” in
the software industry: between many “newly” graduated programmers and the
“older” staff programmers. Some graduates have learned and, to some extent,
master, various aspects of formal methods, while older staff are unaware of formal
methods, and continue using “old” practices. The end result is that new staff
“fall back” on the “older” ways of software development, i.e., are basically barred
from using formal methods.

The Next 10 Years

No-one can predict the future. However, we shall point out some trends that we
are observing, trends that on the one hand are easy to observe, but, on the other
hand, deserve to be highlighted.

Among the earlier mentioned obstacles, we mentioned developers’ resistance
to formulate artifacts numerous times and in different languages, and we men-
tioned the challenging verification effort. If everything is performed within the
same language framework, perhaps these obstacles could be torn down.
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We see two somewhat independent trends, which together potentially can
change the way formal methods are used. The first trend is the emergence of
new programming languages with high-level features that are similar to those
found in specification languages. The second trend is the emergence of verifi-
cation tools for programming languages. One can say that the programming
language community and the formal methods community are converging to-
wards a point of singularity , where specification and programming can be done
within the same language. These two trends together may break down the barrier
for programmers to write specifications. We start by summarizing the desirable
characteristics of early specification languages.

Early Specification Languages: VDM, its object-oriented extension VDM++, and
RSL are so-called wide-spectrum specification languages, including specification
constructs as well as programming constructs. Specification constructs include
design-by contract concepts such as pre- and post-conditions and (class) invari-
ants (predicates that must hold on a collection of variables). Furthermore, types
can be defined as set comprehensions (predicate sub-types), e.g. natural numbers
can be defined as a sub-type of integers. A key feature is general predicate logic,
allowing e.g. universal and existential quantification over infinite as well as finite
sets, and the “creation” of infinite sets.

Other more programming oriented abstractions include the e.g. the merge of
object-oriented and functional programming, algebraic data-types, also referred
to as “rich enumeration types” where alternatives in an enumerated type can
carry data, and pattern matching over such in e.g. switch statements, collections,
such as sets, lists and maps, and iterators over such, allowing e.g. for loops over
elements in a collection, and comprehension expressions, corresponding to set
comprehension in set theory. In addition to these linguistic concepts, deductive
verification systems for these languages were developed, although very manual
and low level of nature, if mechanized at all.

Trend 1: High-level Programming Languages: The first trend is the design
of new programming languages that adapt many of the above mentioned ab-
stractions found in early wide-spectrum specification languages. Programming
languages move towards what could be called wide-spectrum programming lan-
guages, to turn the original term wide-spectrum specification language on its
head. Early examples in this trend include the elegant (mostly) functional pro-
gramming languageML [90], combining functional and imperative programming,
its object-oriented derivative OCaml [ocaml.org], and the purely functional lan-
guage Haskell [111] [haskell.org]. These languages have, however, to a large ex-
tent unfairly been considered academic of nature, and have not hit main stream.

However, the trend has also taken place in main stream application program-
ming languages that rely on automated garbage collection. Java [108] was one
of the first programming languages to support collections such as sets, lists, and
maps, provided as part of the standard library, as well as iterators, e.g. per-
mitting for-loops over such. Python [python.org/psf] is another example of a
main stream language combining object-orientation and some form of functional
programming, as well as built-in succinct notation for sets, lists and maps, and
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iterators over these, as well as list and map comprehensions. These languages
were, however, not fully supporting concepts such as algebraic data types and
pattern matching. The next generation of programming languages offer these fea-
tures. E.g. Scala [scala-lang.org] and Swift [swift.org] are both examples
of newer garbage collected application programming languages, that generally
provide all of the above mentioned programming oriented features present of
early specification languages. The trend is also seen in systems programming,
where Rust [rust-lang.org] is probably the latest such example.

Trend 2: Verifiable Programming Languages: The second trend is an increased
focus on providing verification support for programming languages. Early the-
oretical efforts in program correctness, such as the works of Hoare [62, 63] and
Dijkstra [36], did indeed focus on correctness of programs, but this work formed
the underlying theories and did not immediately result in tools. The trend we
are pointing out is a tooling trend. It is the step-wise realization of Hoare’s
grand verification challenge [61] “the construction and application of a verifying
compiler that guarantees correctness of a program before running it”. Examples
of such program verifiers are numerous at this point. They include verifiers for
existing programming languages, including software model checkers such as Java
PathFinder (JPF) [55] [javapathfinder.sourceforge.net] and Bandera [27]
[bandera.projects.cs.ksu.edu/] for Java; and SLAM [openslam-org.git-
hub.io], CBMC [cprover.org/cbmc], and Modex [65] [spinroot.com/modex]
for C. A key trend has been deductive theorem proving systems for programming
languages, including KeY: [3] [key-project.org], based on the JML design-
by contract specification language [openjml.org] for Java; Verifast [70] [git-
hub.com/verifast], VVC [jvet.hhi.fraunhofer.de] and the general analy-
sis framework Frama-C [frama-c.com] for C; Spark for Ada [86] [adacore.com],
and Spec# for C# [microsoft.com/en-us/research/project/spec]. But lan-
guages are also being born with verification in mind, including Eiffel [eiffel.-
com], Dafny [81], Whiley [whiley.org], P [35] [github.com/p-org/P], Why3
[40] [why3.lri.fr], as well as languages supporting value dependent types (a
form of predicate subtypes), such as Agda [95] [wiki.portal.chalmers.se/-
agda/pmwiki.php] and Idris: [19] [idris-lang.org]. The ACL2 theorem prover
should be mentioned as a very early example of a verification system associated
with a programming language, namely LISP. Common for many of these lan-
guages is their support for some form of design-by contract language, including
pre- and post-conditions for example.

Some Other Trends: Although verification frameworks may be part of pro-
gramming IDEs, one must acknowledge, that proving programs correct still is a
challenge, even for the skilled formal methods expert. Testing will therefore for
a while remain to be the most practical approach to ensure the correctness of
real-sized applications. The merge of specification and programming language
fits well with the concept of agile programming where your first prototype may
be your specification, which you may refine and later use as a test oracle. Par-
ticular interesting are topics such as model-based testing [112], where formal
models are used to generate tests, and runtime verification [53, 4], where pro-
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gram executions are monitored and verified against formal specifications, e.g.
expressed in variants of temporal logic or state machines.

There are two other directions that we would like to mention: visual languages
and Domain-Specific Languages (DSLs). Formal methods have an informal com-
panion in the model-based programming community, represented for example
most strongly by UML [71] and its derivations. This form of modeling is graph-
ical by nature. UML is often criticized for lack of formality, and for posing a
linkage problem between models and code. However, visual notations clearly
have advantages in some contexts. The typical approach is to create visual arti-
facts (for example class diagrams and state charts), and then derive code from
these. An alternative view would be to allow graphical rendering of programs us-
ing built-in support for user-defined visualization, both of static structure as well
as of dynamic behavior. This would tighten connection between lexical structure
and graphical structure.

We also need powerful and simple-to-use capabilities of extending program-
ming languages with new DSLs. Such are often referred to as internal DSLs.
This will be critical in many domains, where there are needs for defining new
DSLs, but at the same time a desire to have the programming language be part
of the DSL to maintain expressive power. Racket [39] [racket-lang.org] is
an example of an extensible programming language. The point of singularity is
the point where developments in programming languages and formal methods
converge, and specification, programming and verification are performed in an
integrated manner, within the same language framework, additionally supported
by visualization and meta-programming.

In contrast to the internal DSL approach just outlined above, the Language-
Driven Engineering approach [110] advocates the use of external, typically graph-
ical, DSLs. An external DSL comes with its own syntax that is completely in-
dependent of any general purpose programming language. Actulus [21] is an
example of an external DSL for actuarians. Whereas the typical user of an inter-
nal DSL will be a programmer, a user of an external DSL may be an application
expert without programming knowledge. We see both approaches as important.

Conclusion

We have reviewed facets of formal methods, discussed obstacles to their propaga-
tion, and discussed some possible future developments. We do express optimism
that formal methods will overcome these obstacles ! Computer and computing
science research include many subfields, as mentioned in this article, which in-
teract in various ways. These include e.g. programming languages, specifica-
tion languages, theorem proving, model checking, formal testing, static analysis,
dynamic analysis, visualization, meta-programming, and domain-specific lan-
guages. We see this interaction of technologies to grow and lead to interesting
solutions. Artificial intelligence is a topic that we have not touched upon, but
which undoubtedly will have impact on the software development field.



15

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts in The-
oretical Computer Science. Cambridge University Press, Cambridge, England, 1996.

2. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, Cambridge, England, 2009.

3. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
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40. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd
European Symposium on Programming, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer, March 2013.

41. John Fitzgerald and Peter Gorm Larsen. Developing Software Using VDM-SL. Cam-
bridge University Press, Cambridge, UK, 1997.

42. John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, Cambridge, UK,
Second edition, 2009.

43. Robert W. Floyd. Assigning Meanings to Programs. In [106], pages 19–32, 1967.
44. Kokichi Futatsugi and Razvan Diaconescu. CafeOBJ Report The Language, Proof

Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST
Series in Computing – Vol. 6. World Scientific Publishing Co. Pte. Ltd., 1998.



18

45. Behrmann G., Bengtsson J., David A., Larsen K.G., Pettersson P., and Yi W. UppaaL
Implementation Secrets. In Damm W. and Olderog E.R., editors, Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 2469 of Lecture Notes in Computer
Science, pages 3–22, Berlin, Heidelberg, 2002. Springer.

46. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Steven
Hughes, Robert Milne, Claus Bendix Nielsen, Jan Storbank Pedersen, Søren Prehn,
and Kim Ritter Wagner. The RAISE Specification Language and The RAISE De-
velopment Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1992–1995.

47. D. Gries. The Science of Programming. Springer-Verlag, 1981.
48. Yuri Gurevich. Evolving Algebra 1993: Lipari Guide, in: Specification and Validation

Methods, pages 9–36. Oxford University Press, 1996. arXiv:1808.06255.
49. Yuri Gurevich. Sequential Abstract State Machines capture Sequential Algorithms.

ACM Transactions on Computational Logic, 1(1):77–111, July 2000.
50. Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantics Essence of AsmL.

Theoretical Computer Science, 343(3):370–412, October 2005.
51. David Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, 8(3):231–274, 1987.
52. Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-craft con-

troller using spin. IEEE Transactions on Software Engineering, 27(8):749–765, Aug
2001.

53. Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zălinescu. Monitoring events
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