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Abstract Linear Temporal Logic (LTL) is extensively used
in formal methods, in particular in runtime verification (RV)
and in model checking. Its propositional version was shown
by Wolper [45] to be limited in expressiveness. Several ex-
tensions of propositional LTL, which promote the expres-
sive power to that of Büchi automata, have therefore been
proposed; however, none of which, by and large, have been
adopted for formal methods. We present an extension of
propositional LTL with rules, that is as expressive as these
aforementioned extensions. We then show a similar defi-
ciency in the expressiveness of first-order LTL and present
an extension of it with rules, which parallels the proposi-
tional version. In our work on runtime verification we focus
on execution traces which consist of events that carry data,
where a first-order version of LTL is needed, and in particu-
lar on past time versions of first-order LTL. In previous work
we provided an algorithm for past time first-order LTL that
uses BDDs to represent relations over data elements, and im-
plemented it as a tool called DEJAVU. In this paper we pro-
pose a monitoring algorithm for the extension of past time
first-order LTL with rules. This is implemented as an exten-
sion of DEJAVU, and experimental results are provided.
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1 Introduction

Runtime verification (RV) [6, 29] refers to the use of rig-
orous (formal) techniques for processing execution traces
emitted by a system being observed. The purpose is typically
to evaluate the behavior of the observed system. We focus on
specification-based runtime verification, where an execution
trace is verified against a formal specification, and in partic-
ular where the specification logic is a variant of past time
first-order Linear Temporal Logic (LTL). This paper first in-
troduces new theoretical results related to full LTL, includ-
ing future time as well as past time operators. For runtime
verification, it then narrows in on the past time first-order
case and presents extensions to existing algorithms. One of
these extensions is then implemented in the DEJAVU tool.

LTL is a common specification formalism for reactive
and concurrent systems. It is often used in model check-
ing and runtime verification. Another formalism that is used
for the same purpose is finite automata, often over infinite
words. This includes Büchi, Rabin, Street, Muller and Par-
ity automata [44], all having the same expressive power. In
fact, model checking [14] of an LTL property is usually per-
formed by first translating the property into a Büchi automa-
ton [22]. The automata formalisms are more expressive than
LTL; a classical example by Wolper [45] shows that it is
not possible to express in LTL the property that every even
state in a sequence satisfies some proposition p. We will use
this example several times throughout the paper to demon-
strate a weakness of different versions of temporal logic, and
suggest extensions to these versions, where this weakness is
repaired.

Several extensions of LTL were proposed, in or-
der to achieve the same expressive power as Büchi au-
tomata: Wolper’s ETL [45, 46] uses right-linear gram-
mars, Sistla’s QLTL extends LTL with dynamic (i.e.,
state-dependent, second-order) quantification over proposi-



tions [43], and the PSL standard [39] extends LTL with reg-
ular expressions. However, these and other extensions have
not been largely used for RV.

We present here an alternative extension of propositional
LTL with rules, named RLTL, which is suited for RV. These
rules use auxiliary propositions, not appearing in the model
itself; these propositions obtain their values in each state as
a function of the prefix of the execution, up to and includ-
ing that state, expressed as a past time temporal formula.
This extension conforms easily and naturally with existing
RV algorithms that use incremental summaries of prefixes,
e.g., the classical algorithm [30] for past time LTL (de-
noted here PLTL), maintaining also its linear time complex-
ity (in the length of the trace and the size of the formula). In
fact, our extension of the logic is inspired by that RV algo-
rithm. The logic RLTL is shown to be expressive-equivalent
to QLTL and its restriction to past properties, RPLTL, is
expressive-equivalent to Büchi automata and second order
monadic logic.

Another dimension for expressiveness lies within the
difference between propositional logic, which is based on
Boolean propositions, and first-order logic, which allows
quantification over data. First-order LTL is referred to here
as FLTL. We show that the weakness of propositional LTL,
as demonstrated by Wolper’s property, can be lifted to a re-
lated property that is inexpressible in the first-order FLTL.
Further, we show that this latter logic also lacks the power
to express the transitive closure of temporal relations over
events. We then introduce two alternative ways of extending
the expressive power of FLTL, corresponding, respectively,
to the propositional logics QLTL and RLTL. The first alter-
native adds quantification over relations of data, obtaining a
logic referred to as QFLTL. The second extension adds rules
for the first-order case, and is referred to as RFLTL. Both of
these extended logics can express Wolper’s property, rela-
tivized to the first-order case, and also the transitive closure
of temporal relations. We show that, in contrast to the propo-
sitional case, where the extension of RLTL of LTL with rules
is as expressive as the extension QLTL with dynamic quan-
tification, in the first-order case, the extension RFLTL with
rules is less expressive than the extension QFLTL with dy-
namic quantification.

In our work on runtime verification, we focus on the past
time versions of LTL, which express safety properties [1],
where a violation can be detected and demonstrated after a
finite prefix of the execution. We refer to the logic PLTL for
the propositional case and to PFLTL for the first-order case;
these past logics also enjoy elegant RV algorithms, based
on the ability to compute summaries of the observed pre-
fixes [27, 30], as opposed to future temporal logics [8].

We extend the algorithm in [30] for propositional past
time LTL with rules to the logic RPLTL (the past part
of RLTL). The structure of the rules blends well with the

RV algorithm. In fact, the definition of the rules are inspired
by the RV algorithm, in particular the summary, and conse-
quently the extension of the algorithm is simple. Our main
result, the RV algorithm for past time first-order LTL ex-
tended with rules, RPFLTL (the past part of RFLTL), natu-
rally extends the RV algorithm for past time first-order LTL,
PFLTL, presented in [27].

We describe the corresponding extension of the RV tool
DEJAVU [26, 27, 28], available at [16], which monitors
past time first-order LTL (PFLTL) to include rules (i.e., to
RPFLTL). The DEJAVU tool allows runtime verification of
past time first-order temporal logic over infinite domains
(e.g., integers, strings, etc.). It achieves efficiency by using
a unique BDD representation of the data part; BDDs cor-
respond to relations over enumerations of the input data,
where each enumeration is represented as a Boolean vec-
tor. This is a use of BDDs that is different from the classi-
cal model checking representation of sets of Boolean states;
e.g., in [10], BDDs are used to represent sets of program
locations, and sets of data elements are represented symbol-
ically as formulas.
Related work. Several linear temporal logics for RV, sup-
porting data parameterization, have been developed over the
past two decades. Our work differs by augmenting first-
order LTL with rules, and by representing data with BDDs.
An RV algorithm for the first-order linear temporal logic
MFOTL was presented in [8], and implemented in the MON-
POLY tool, based on two alternative approaches. In the first
one, negation can appear unrestricted within the temporal
formula, and relations are represented as regular sets and,
subsequently, automata. In the second one, negations are re-
stricted and relations are represented explicitly as sets of
tuples and are subjected to database operators (e.g., join).
MFOTL also supports aggregation operators (e.g., sum and
average) [7], increasing the expressiveness of the logic.

MOP [36] offers several data parametric specification
formalisms as separate plugins, including past and future
temporal logics, regular expressions, state machines, gram-
mars, etc. The logics, however, are separated in the sense
that any property is expressed in one of the logics. The
parameterization is based on slicing and offers a some-
what limited expressiveness. The QEA system [40] is an
automaton-based approach, which improves the expressive-
ness of the slicing approach. A system for monitoring first-
order future time LTL using an SMT solver is described in
[15]. Formalisms based on formula rewriting are used in
BEEPBEEP [23], which is based on future time linear tem-
poral logic, and DAUT [24], an internal Scala DSL for pro-
gramming monitors in a combination of rule systems and
state machines. The MESA system [42] is an actor-based RV
system utilizing concurrency to improve monitoring perfor-
mance, using DAUT as its temporal logic. STL (Signal Tem-
poral Logic) [34] is an extension of metric temporal logic
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with numerical predicates, allowing to express mixed-signal
properties over real valued variables as well as Boolean val-
ued variables. R2U2 [21] offers the metric temporal logic
MTL, which adds time bounds to LTL’s temporal opera-
tors. R2U2 is implemented on dedicated FPGA hardware,
enabling it to monitor the health status of e.g., Unmanned
Aerial Systems (UAS). Although the logic can be classified
as propositional, suitable for hard real-time constraints, it al-
lows propositions to be Boolean expressions over monitored
variables.

Temporal logics have been defined using recursion. EA-
GLE [4] was one of the first systems to provide a temporal
logic supporting data parameterized events. It implements
a recursive calculus with past and future time operators.
DETECTER [3] implements a future time data parametric
Hennessy-Milner logic with recursion for monitoring ER-
LANG programs. Previous work includes purely rule-based
systems, e.g., RULER [5], and later LOGFIRE [25], which
offers an internal SCALA DSL, the implementation of which
is based on the classical Rete algorithm [19] for rule sys-
tems, augmented with handling of events for RV. These sys-
tems, however, do not focus on temporal logics, although
limited temporal logics were defined and mapped into these
rule systems.

A different branch of formalisms include those sup-
ported in stream-based systems, such as LOLA [2] and
COPILOT [38]. The COPILOT specification language is an
embedded HASKELL DSL from which monitors in C are
generated for monitoring hard real-time reactive systems. It
supports a past time linear temporal logic and a bounded
future time temporal logic, both mapped into stream expres-
sions. It supports data parameterization, which, however, is
bounded due to the real-time constraints requiring statically
bounded execution time and memory usage. One must, e.g.,
put a bound on for how long a monitor should remember the
value of a variable. The stream processing makes COPILOT

more expressive than LTL.
Paper outline. The structure of the paper reflects our step-
wise approach by first exploring the problem in the propo-
sitional case to form a basic understanding and then by
addressing the more interesting first-order case. Section 2
describes a limitation of propositional LTL pointed out by
Wolper, and proposes a rule-based extension of proposi-
tional LTL. Section 3 proposes an RV algorithm for mon-
itoring the past time subset of the rule-based extension of
propositional LTL. Section 4 introduces first-order LTL, and
shows a similar limitation of its expressiveness. We extend
the logic in two directions, one with dynamic quantification
and one with rules. Section 5 proposes an RV algorithm for
monitoring the rule-based extension of past time first-order
LTL. Section 6 presents the implementation of the latter al-
gorithm in the DEJAVU tool and shows some experimental
results. Finally Section 7 concludes the paper.

Fig. 1: Logics defined and discussed in this paper: P = Past,
F = First-order, Q = Quantified, R = Rules. DEJAVU imple-
ments the logics RPFLTL, PFLTL, RPLTL and PLTL.

Conventions. As already outlined above, we present sev-
eral versions of LTL. We name the different versions by
prefixing LTL with the following letters. ‘P’ : restricted
to Past-time temporal operators; ‘F’ : allowing First-order
(static) quantification over data assigned to variables; ‘Q’ :
adding second-order (dynamic) Quantification over propo-
sitions/predicates; and finally ‘R’ : adding Rules, our main
contribution. The set of logics studied in this paper appear in
Figure 1, each arrow represents inclusion: an arrow from a
logic X to a logic Y indicates that X is more expressive than
Y when interpreted on infinite traces.

2 Propositional LTL

Linear temporal logic [35] has the following syntax:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ | ©ϕ |(ϕ U ϕ) | 	ϕ |(ϕ S ψ)

where p is a proposition from a finite set of propositions
P, and the temporal operators ©, U, 	, S stand for next-
time, until, previous-time and since, respectively. A model
of an LTL formula is an infinite sequence of states, also re-
ferred to as a trace, of the form σ = σ[1]σ[2],σ[3] . . ., where
σ[i]⊆ P for i≥ 1. A state consists of the subset of the propo-
sitions, which hold in it. LTL’s semantics is defined as fol-
lows, where i≥ 1 denotes a position in the trace:

– (σ, i) |= true.
– (σ, i) |= p if p ∈ σ[i].
– (σ, i) |= (ϕ∧ψ) if (σ, i) |= ϕ and (σ, i) |= ψ.
– (σ, i) |= ¬ϕ if (σ, i) 6|= ϕ.
– (σ, i) |=©ϕ if (σ, i+1) |= ϕ.
– (σ, i) |= (ϕU ψ) if for some j, j ≥ i, (σ, j) |= ψ, and for

each k, i≤ k < j, (σ,k) |= ϕ.
– (σ, i) |=	ϕ if i > 1 and (σ, i−1) |= ϕ.
– (σ, i) |= (ϕS ψ) if there exists j, 1 ≤ j ≤ i, such that

(σ, j) |= ψ and for each k, j < k ≤ i, (σ,k) |= ϕ.
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We write σ |= ϕ when (σ,1) |= ϕ. We can use the follow-
ing abbreviations: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ),
(ϕ→ ψ) = (¬ϕ∨ψ), (ϕ↔ ψ) = ((ϕ→ ψ)∧ (ψ→ ϕ)),
3ϕ = (trueU ϕ) (eventually ϕ), 2ϕ =¬3¬ϕ (always in the
future ϕ), ♦− ϕ= (true S ϕ) (previously ϕ) and � ϕ=¬♦− ¬ϕ

(always in the past ϕ).
The expressive power of different versions of proposi-

tional LTL is often compared with finite automata over in-
finite words (Büchi, Street, Muler, Parity) and to monadic
first and second-order logics1. Accordingly, LTL is equiv-
alent to monadic first-order logic, and counter-free2 Büchi
automata. For an overview of logic and automata see [44].
Restricting the temporal operators to the future operators U
and© (and the ones derived from them 2 and 3) maintains
the same expressive power.

An important subset of LTL, called here PLTL, allows
only past temporal operators: S , 	 and the operators de-
rived from them, � and ♦−. The past time logic is interpreted
over finite sequences, where σ |= ϕ when (σ, |σ|) |= ϕ. It is
also a common practice, in particular in RV, to use a PLTL
formula, prefixed with a single 2 (always) operator; in this
case, each of the prefixes has to satisfy ϕ. This latter form
expresses safety LTL properties [1]. For safety (past) prop-
erties, we henceforce assume this interpretation and will not
explicitly prefix the formulas with a 2. When PLTL is inter-
preted over finite sequences, its expressive power is the same
as counter-free finite automata and first-order monadic logic
over finite words. A failure to satisfy a safety property in an
execution sequence (a model) can be detected after observ-
ing a finite prefix.

Wolper [45] demonstrated that the expressive power of
LTL is lacking using the following example property.

Wolper’s property:
All the states with even indexes in a sequence satisfy
some proposition p.

Note that this is different from stating that p alternates be-
tween true and false on consecutive states, which can be
expressed in LTL.

We now present two extensions of LTL, each enabling
the formulation of Wolper’s property; first a known ex-
tension using quantification, and then our contribution us-
ing rules, better suited for RV. In both cases new auxiliary
propositions can be defined to hold in selected execution se-
quence positions, and used to define the property. The dif-
ference between the two approaches concerns the manner in

1 The logics are called monadic since they allow relations with one
parameter that explicitly represents the time; hence instead of occur-
rences of a proposition p in the temporal logic formulas, the monadic
logics have a relation p where p(i) stands for p holds at time i. First
order monadic logic allows quantifying over the time variables, while
second order logic allows quantifying over the relations.

2 For a counter-free language, there is an integer n such that for all
words x, y, z and integers m ≥ n we have that xymz ∈ L if and only if
xynz ∈ L.

which we define the positions where the auxiliary proposi-
tions hold.

Extending LTL with dynamic quantification. Adding
quantification over propositions, suggested by Sistla in [43],
allows writing a formula of the form ∃∃qϕ, where ∃∃q repre-
sents existential quantification over a proposition q that can
appear in ϕ. Informally, the property says that there exists a
set of execution trace positions (states) where q is true, such
that ϕ is true. Wolper’s property can e.g., be expressed as:

∃∃q � ((q↔	¬q)∧ (q→ p)) (1)

Since 	ϕ is interpreted as false in the first state of any se-
quence regardless of ϕ, the truth value of q is false in the
first state. Subsequently q alternates between even and odd
states.

To define the semantics, let X ⊆ P and denote σ \X =

(σ[1] \X)(σ[2] \X . . ., where σ \X denotes projecting out
the propositions in X . The semantics is defined as follows:

– (σ, i) |= ∃∃qϕ if there exists σ′ such that σ′ \{q}= σ and
(σ′, i) |= ϕ.

Universal quantification is defined as ∀∀qϕ = ¬∃∃q¬ϕ. This
type of quantification is considered to be dynamic, since the
quantified propositions can have different truth values de-
pending on the states. It is also called second-order quantifi-
cation, since the quantification establishes the set of states in
which a proposition has the value true. Extending LTL with
dynamic quantification, the logic QLTL has the same ex-
pressive power as full Büchi automata and monadic second-
order logic. In fact, it is sufficient to restrict the quantifica-
tion to existential quantifiers that appear at the beginning of
the formula to obtain the full expressiveness of QLTL [44].
Restricting QLTL to the past modalities, one obtains the
logic QPLTL. Property (1) above is expressed in QPLTL.
QPLTL has the same expressive power as regular expres-
sions and finite automata.

Extending LTL with rules. We introduce another exten-
sion of LTL, which we call RLTL. As will be shown in Sec-
tion 3, this extension is natural for runtime verification. In-
stead of using quantification as in QLTL, we define the truth
of each auxiliary proposition in different sequence positions
as a function of past observations. We partition the propo-
sitions P into auxiliary propositions A = {a1, . . . ,an} and
basic propositions B. Only basic propositions can appear in
the observed execution sequence.

Definition 1 An RLTL property η has the following form:

ψ where a j := ϕ j : j ∈ {1, . . . ,n} (2)

where each a j is a distinct auxiliary proposition from A, ψ

is an LTL property and each ϕ j is a PLTL property; proposi-
tions from A can only occur within the scope of a previous-
time (	) operator.
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We refer to ψ as the statement of η. The statement is the
main property. Each a j := ϕ j called a rule (in text, rules will
be separated by commas). The rules are used to define the
truth values of the auxiliary propositions that are used in the
statement η: in each state, each auxiliary variable a j has a
truth value that is defined using the past property ϕ j, based
on the prefix of the sequence, up and including the current
state. Wolper’s property can be written in RLTL as follows:

2(q→ p) where q :=	¬q (3)

where A = {q} and B = {p}. The auxiliary proposition q is
used to augment the input sequence such that each odd state
will satisfy ¬q and each even state will satisfy q.

Definition 2 The semantics can be defined as an extension
to the above LTL semantics (page 3), where for each rule
a j := ϕ j we define,

– (σ, i) |= a j if (σ, i) |= ϕ j.

The constraint that auxiliary propositions appearing in the
formulas ϕi must occur within the scope of a 	 operator
is required to prevent conflicting rules, as in a1 := ¬a2 and
a2 := a1.

Lemma 1 (Well foundedness of auxiliary propositions)
The values of the auxiliary propositions of an RLTL formula
η are uniquely defined in a state by the prefix of the execution
up to and including that state.

Proof. Let η be the RLTL formula ψ where a j := ϕ j :
j ∈ {1, . . . ,n}. Let σ be a model with states over B. Then
there is a unique model σ′ such that σ′|A = σ: the proof is
by induction on the length of prefixes of σ′. The value of
each auxiliary proposition a j at the ith state of σ′ is defined
via a rule a j := ϕ j, where ϕ j is a PLTL formula. Hence it
depends on the values of the propositions B in the ith state
of σ, and on the values of A∪B in the previous states of σ′.

ut

Theorem 1 The expressive power of RLTL is the same as
QLTL.

Proof sketch. Each RLTL formula η, as defined in (2), is
expressible using the following equivalent QLTL formula:

∃∃a1 . . .∃∃an(ψ∧2
∧

1≤ j≤n

(a j↔ ϕ j))

For the other direction, one can first translate the QLTL
property into a second-order monadic logic formula, then to
a deterministic Muller automata [44] and then construct an
RLTL formula that holds for the accepting executions of this
automaton. The rules of this formula encode the automata
transitions, with each rule encoding the value of a proposi-
tion in the next state based on the values of the propositions

in the previous state. The statement describes the acceptance
condition of the Muller automaton. ut

We define RPLTL as the past version of RLTL, i.e., by
disallowing the future time temporal operators in RLTL. As
before, every top level formula is interpreted as if implicitly
being prefixed with a 2 operator, i.e., needs to hold in ev-
ery prefix. This results in a formalism that is equivalent to
Büchi automata, where all the states except one are accept-
ing and where the non-accepting state is a sink. We can use a
related, but simpler construction than in Theorem 1 to prove
the following:

Lemma 2 The expressive power of RPLTL is the same as
QPLTL.

3 RV for Propositional Past Time LTL and its Extension

Runtime verification of temporal logic specifications is of-
ten restricted to concentrate on past time properties. When
monitoring past time specifications, one can distinguish a vi-
olation after observing a finite prefix of an execution, i.e., in
finite time. For an extended discussion of the issue of moni-
torability, see e.g., [9, 18]. The RV algorithm for PLTL, pre-
sented in [30], is based on the observation that the semantics
of the past time formulas	ϕ and (ϕS ψ) in the current state
is defined in terms of the semantics of its subformula(s) in
the previous state. To demonstrate this, we rewrite the se-
mantic definition of the S operator in a form that is more
directly applicable for runtime verification.

– (σ, i) |= (ϕS ψ) if (σ, i) |= ψ or, i > 1 and (σ, i) |= ϕ and
(σ, i−1) |= (ϕS ψ).

The semantic definition is recursive in both the length of
the prefix and the structure of the property. Thus, subfor-
mulas are evaluated based on smaller subformulas, and the
evaluation of subformulas in the previous state. The algo-
rithm shown below uses two vectors of values indexed by
subformulas: pre, which summarizes the truth values of the
subformulas for the execution prefix that ends just before
the current state, and now, for the execution prefix that ends
with the current state.

The summary of a property η after some finite sequence
of states σ is the collection of values pre(ϕ) and now(ϕ)

for the subformulas ϕ of η calculated by the RV algorithm.
It is called a summary, since it summarizes the information
that the RV algorithm requires to remember after observing
a prefix of an execution path.

1. Initially, for each subformula ϕ of η, now(ϕ) := false.
2. Observe a new event (as a set of propositions) s as input.
3. Let pre(ϕ) := now(ϕ) for each subformula ϕ.
4. Make the following updates for each subformula. If ϕ

is a subformula of ψ then now(ϕ) is updated before
now(ψ).
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– now(true) := true.
– now(p) := (p ∈ s)
– now(ϕ∧ψ) := (now(ϕ)∧now(ψ)).
– now(¬ϕ) := ¬now(ϕ).
– now(ϕSψ) := (now(ψ)∨ (now(ϕ)∧pre(ϕSψ))).
– now(	 ϕ) := pre(ϕ).

5. If now(η) = false then report a violation, otherwise goto
step 2.

Runtime verification for RPLTL. For RPLTL, we need to
add to the above algorithm the calculations of now(a j) and
now(ϕ j) for each rule of the form a j := ϕ j. The correspond-
ing pre entries will be updated as in step 3 above. Because
the auxiliary propositions can appear recursively in RPLTL
rules, the order of calculation of now is subtle. To see this,
consider for example Formula (3). It contains the definition
q := 	¬q. We cannot calculate this bottom up in the way
we did for PLTL, since now(q) is not computed yet, and we
need to calculate now(	¬q) in order to compute now(q).
However, notice that the calculation is not dependent on the
value of q to calculate 	¬q; in Step 4 above, we have that
now(	 ϕ) := pre(ϕ) so now(	¬q) := pre(¬q).

We use a mixed evaluation order, where one calculates
now as part of Step 4 of the above algorithm in the following
order:

a. Calculate now(δ) for each subformula δ that appears in
ϕ j of a rule a j := ϕ j, but not within the scope of a 	
operator (observe that now(	γ) is set to pre(γ)).

b. Set now(a j) to now(ϕ j) for each j.
c. Calculate now(δ) for each subformula δ that appears in

ϕ j in a rule a j := ϕ j within the scope of a 	 operator.
d. Calculate now(δ) for each subformula δ that appears in

the statement ψ using the calculated now(a j).

4 First-Order LTL

We study now a family of first-order temporal logics, which
allow specifying the properties of sequences with data. The
presentation follows the same high level structure used to
study the propositional logics in the previous sections, start-
ing with the basic logic and its extensions, followed by RV
algorithms.

Assume a finite set of infinite domains3 D1,D2, . . ., e.g.,
integers or strings. Let V be a finite set of variables, with
typical instances x, y, z. An assignment over the set of vari-
ables V maps each variable x ∈ V to a value from its asso-
ciated domain domain(x). For example [x→ 5,y→ “abc”]
assigns the values 5 to x and the value “abc” to y.
Syntax. The grammar of FLTL is defined as follows, where
p denotes a relation, a denotes a constant and x denotes a
variable:

3 Finite domains are handled with some minor changes, see [27].

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) | ¬ϕ | ©ϕ | (ϕ U ϕ) |
	 ϕ | (ϕ S ϕ) | ∃x ϕ

Additional operators are defined as in the propositional
logic. We also define ∀x ϕ = ¬∃x¬ϕ. Restricting the modal
operators to the past operators (S , 	 and the ones derived
from them) forms the logic PFLTL. The syntax suggests the
use of monadic (i.e., arity 1) relations. This is only done in
order to simplify the presentation: all the syntactic and se-
mantic definitions of the first-order logics that we present
here, and the specifications handled by the tool DEJAVU,
can use relations with arbitrary (finite) arities.
Semantics. A first-order model σ is a sequence σ =

σ[1]σ[2] . . ., where for each i ≥ 1, σ[i] is a set of relations.
The relations in all the states have the same types, i.e., ari-
ties and domains. The relation p in the ith state σ[i] of σ is
σ[i](p), hence σ[i](p)(a) means that p(a) holds in σ[i].

Let free(ϕ) be the set of free (i.e., unquantified) variables
of a subformula ϕ. Let ε be the empty assignment (with no
variables). Let γ [x 7→ a] be the overriding of γ with the bind-
ing [x 7→ a]. (γ,σ, i) |= ϕ is defined where γ is an assignment
over a set of variables that includes free(ϕ), and i≥ 1:

– (γ,σ, i) |= true.
– (γ,σ, i) |= p(a) if σ[i](p)(a).
– (γ[x 7→ a],σ, i) |= p(x) if σ[i](p)(a).
– (γ,σ, i) |= (ϕ∧ψ) if (γ,σ, i) |= ϕ and (γ,σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |=©ϕ if (γ,σ, i+1) |= ϕ.
– (γ,σ, i) |= (ϕ U ψ) if for some j, j≥ i, (γ,σ, j) |= ψ and

for each k, i≤ k < j, (γ,σ,k) |= ϕ.
– (γ,σ, i) |=	ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some j, 1≤ j ≤ i, (γ,σ, j) |= ψ

and for each k, j < k ≤ i, (γ,σ,k) |= ϕ.
– (γ,σ, i) |= ∃xϕ if there exists a ∈ domain(x) such that
(γ [x 7→ a],σ, i) |= ϕ.

For an FLTL (PFLTL) formula with no free variables, we let
σ |= ϕ denote (ε,σ,1) |= ϕ. We will less formally, use the
same symbols both for the relations (semantics) and their
representation in the logic (syntax). Note that the letters
p,q,r, which were used for representing propositions in the
propositional versions of the logic in previous sections, will
represent relations in the first-order versions. The quantifica-
tion over values of variables, denoted by ∃ and ∀, is static, in
the sense that they are independent of the state in the execu-
tion. We demonstrate that the lack of expressiveness carries
over from LTL (PLTL) to FLTL (PFLTL).

Example 1 [A generalization of Wolper’s property] The
following is a generalization of Wolper’s property (page 4)
to the first-order case. Let p and q be unary relations. The
property that we want to monitor is that for each value a,
p(a) appears in all the states where q(a) has appeared an
even number of times so far (for the odd occurrences, p(a)
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can also appear, but does not have to appear). To show that
this is not expressible in FLTL (and PFLTL), consider mod-
els where only one data element a appears. Assume for
the contradiction that there is an FLTL formula ψ that ex-
presses this property. We recursively replace in ψ each sub-
formula of the form ∃xϕ by a disjunction over copies of ϕ,
in which the quantified occurrences of p(x) and q(x) are
replaced by pa and qa, respectively, or by false; false rep-
resents the Boolean value of p(x) and q(x) for any x 6= a,
since only p(a) and q(a) appear in the model. For exam-
ple, ∃x(q(x) S p(x)) becomes ((qa S pa)∨ (falseS false)),
which can be simplified to (qa S pa). Similarly, subformulas
of the form ∀xϕ are replaced by conjunctions. This results
in an LTL (i.e., propositional) formula that holds in a model,
where each p(a) is replaced by pa and each q(a) is replaced
by qa, iff ψ holds for the original model. Assume further
that q(a) holds everywhere (in fact, the relation q was added
only to make the example more interesting). Then the fact
that Wolper’s property (page 4) is not expressible in LTL
contradicts the assumption that such a formula exists.

Parametric automata, used as a specification formalism
in [20, 29, 36, 40], can express this property, where for each
value a there is a separate automaton that counts modulo 2
the number of times that q(a) has occurred.

Example 2 [Transitive closure] Consider the following
property: report(y,x,d) appears (holds) in a state in a se-
quence, denoting that process y sends some data d to a pro-
cess x, only if there has been a chain of process spawns
spawn(x,x1), spawn(x1,x2) . . . spawn(xl ,y) holding in past
states of that sequence. i.,e., y is a descendent process of
x. The required property involves the transitive closure of
the relation spawn. But the transitive closure of a relation
property cannot be expressed in FLTL. To see this, note
that FLTL can be translated, in a way similar to the stan-
dard translation of LT L, into monadic first-order logic [44],
with explicit occurrences of time variables over the Natu-
rals and the linear order relation < (or ≤) between them.
The relations will be written with an additional time param-
eter, and the temporal operators are replaced with first-order
quantification as in the propositional case. For example,
2∀x(p(x)→3q(x)) will be translated into ∀x∀t (p(x, t)→
∃t ′ (t ≤ t ′ ∧ q(x, t ′))). However, a classical theory of first-
order logic4 says that the transitive closure of spawn cannot
be expressed in the first-order setting.

Extending FLTL with dynamic quantification. Relations
play in FLTL a similar role to propositions in LTL. Hence,
in correspondence with the relation between LTL and QLTL,
we extend FLTL (PFLTL) with dynamic quantification over
auxiliary relations, which do not appear in the model, ob-
taining QFLTL (and the past-restricted version QPFLTL).

4 This theory is based on the compactness theory of first-order logic,
see [17] Chap. 4.

The syntax includes ∃∃pϕ, where p denotes a relation. We
also use ∀∀p ϕ = ¬∃∃p¬ϕ. The semantics is as follows.

– (γ,σ, i) |= ∃∃qϕ if there exists σ′ such that σ′ \ {q} = σ

and (γ,σ′, i) |= ϕ.

Note that quantification here is dynamic (as in QLTL and
QPLTL) since the relations can have different sets of tuples
in different states. As an example, consider a formalization
of the property in Example 1:

∃∃r∀x((r(x)→ p(x))∧ (r(x)↔ (q(x)↔	¬r(x)))) (4)

The formula introduces an auxiliary unary relation r over
the same type of argument as p and q. For each value a,
r(a) flips its truth value when q(a) holds. Note that (r(x)↔
¬q(x)) in σ[1] since 	¬r(x) is false in that state.

Extending FLTL with rules. We now extend FLTL into
RFLTL in a way that is motivated by the propositional ex-
tension of LTL (PLTL, respectively) to RLTL (RPLTL, re-
spectively) that was shown in Section 2.

Definition 3 An RFLTL property has the following form:

ψ where r j(x j) := ϕ j(x j) : j ∈ {1, . . . ,n} (5)

such that,

1. ψ, the statement, is an FLTL formula with no free vari-
ables,

2. ϕ j are PFLTL formulas with a free variable5 x j,
3. r j is an auxiliary relation over the same type as x j. An

auxiliary relation r j can appear within ψ. It can also ap-
pear in ϕk(xk) of a rule rk(xk) := ϕk(xk), but only within
the scope of a previous-time operator 	.

We extend the semantics of FLTL to RFLTL by adding a
definition of the following form, per each rule of the form
r j(x j) := ϕ j(x j):

– (γ[x 7→ a],σ, i) |= r j(x) if (γ[x 7→ a],σ, i) |= ϕ(x).

Lemma 3 Each RFLTL formula of the form (5) can be ex-
pressed using the following QFLTL property:

∃∃r1 . . . ∃∃rn (ψ∧2
∧

j∈{1,...,n}
(r j(x j)↔ ϕ j(x j)) (6)

The logic RPFLTL is obtained by restricting the temporal
modalities of RFLTL to the past ones: S and 	, and those
derived from them.

Lemma 4 (Well foundedness of auxiliary relations) The
auxiliary temporal relations of an RFLTL formula at state i
are uniquely defined by the prefix of the execution up to and
including that state.

5 Again, the definition can be extended to any number of variables.
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Proof. By a simple induction on the length of prefixes, sim-
ilar to Lemma 1. ut

The following formula expresses the property described
in Example 1, which was shown not to be expressible using
FLTL.

∀x(r(x)→ p(x)) where r(x) = (q(x)↔	¬r(x)) (7)

The property that corresponds to Example 2 can be ex-
pressed as:

∀x∀y∀d (report(y,x,d)→ spawned(x,y))
where spawned(x,y) = ((	spawned(x,y)∨ spawn(x,y))∨
∃z(	spawned(x,z)∧ spawn(z,y)))

It also appears as the property spawning in Figure 5 in the
implementation section 6.

Theorem 2 The expressive power of RPFLTL is strictly
weaker than that of QPFLTL.

The proof of Theorem 2 will be given in the next section,
since it will use a recursive argument that is easier to explain
given the RV algorithm.

5 RV for Past Time First-Order LTL and its Extension

In runtime verification of FLTL, the input consists of a se-
quence of events σ[1]σ[2] . . .. An event is a finite set of re-
lations, each being a finite set of tuples of data values. A
typical use of runtime verification restricts each event σ[i] to
contain a single relation containing a single tuple. We shall
often just refer to the tuple (labelled with the relation name)
as the event.

Set semantics. We provide an alternative set semantics for
the logic RPFLTL, which is equivalent to the above defini-
tion. Set semantics is more directly related to the calculation
of the summary values in the RV algorithm that will be pre-
sented below. Under set semantics, introduced in [27] for
PFLTL, and extended here for RPFLTL, I[ϕ,σ, i] denotes a
set of assignments such that γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ,
where γ is an assignment over a set of variables that con-
tain the free variables in ϕ. We fix a set of variables V that
includes all the variables that appear in the formula ϕ, and
denote by AV the set of all possible assignments of domain
values to the variables V . Assuming an order between the
variables in V , we treat sets of assignments over V as re-
lations, hence allow applying the operators

⋃
(set union)

and
⋂

(set intersection) on sets of assignments. The operator
hide(Γ,W ) replaces each assignment (tuple) γ in the relation
Γ with the set of assignments that have any possible domain
value for the variables in W . Thus, hide has the effect of
projecting out from Γ the values of the variables W and then
completing the assignments to these variables arbitrarily. In

set semantics, we define I[ϕ,R , i]⊆ AV by structural recur-
sion. To simplify the definitions, we add a dummy position
σ[0] for sequence σ (which starts with σ[1]), where every
formula is interpreted as an empty set. Observe that the val-
ues /0 and AV , behave as the Boolean constants 0 and 1, re-
spectively. The set semantics is defined as follows, where
i≥ 1.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = AV .
– I[p(a),σ, i] = if σ[i](p)(a) then {ε} else /0.
– I[p(x),σ, i] = {γ[x 7→ a] | γ ∈ AV ∧σ[i](p)(a)}.
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[¬ϕ,σ, i] = AV \ I[ϕ,σ, i].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−

1]).
– I[	ϕ,σ, i] = I[ϕ,σ, i−1].
– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],{x}).
– I[r(x),σ, i] := I[ϕ(x),σ, i].

The semantics of (ϕ S ψ) reflects the following equivalence:
(ϕ S ψ)≡ψ∨ (ϕ∧	(ϕ S ψ)). The last item in the semantic
definition is related to rules of the form r j(x j) = ϕ j(x j).

Runtime verification algorithm for PFLTL. We start by
describing an algorithm for monitoring PFLTL properties,
presented in [27] and implemented in the tool DEJAVU. The
basic idea is to represent a set of assignments of data to vari-
ables as relations. We enumerate data values appearing in
monitored events, as soon as we first see them. We represent
enumerations as bit-vectors (i.e., Binary) encodings and rep-
resent the relations over the (bit-vector) enumerations rather
than data values themselves, where bit vectors for differ-
ent values are concatenated together. The relations are then
represented as BDDs [11]. BDDs were featured in model
checking because of their ability to frequently achieve a
highly compact representation of Boolean functions. Based
on set semantics, our algorithm for the first-order logic is
conceptually similar to the propositional case, but where the
Boolean values in the summaries are replaced by relations
represented as BDDs. The extensive work done on BDDs
allowed us to use an optimized public BDD package.

Since we want to be able to deal with infinite domains
(where only a finite number of elements may appear in a
given observed prefix) and maintain the ability to perform
complementation, unused enumerations represent the values
that have not been seen yet. In fact, it is sufficient to use one
enumeration representing these values per each variable of
the LTL formula. We guarantee that at least one such enu-
meration exists by reserving for that purpose the enumer-
ation 11 . . .11. We present here only the basic algorithm.
For versions that allow extending the number of bits used
for enumerations and garbage collection of enumerations,
see [26].
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When a ground predicate p(a) is observed in the moni-
tored execution, matched with p(x) in the monitored prop-
erty, a call to the procedure lookup(x,a) returns the enumer-
ation of a, based on a lookup in the hash table. If this is the
first occurrence of a, then a will be assigned a new enumera-
tion, which will be stored under a. We can use a counter, for
each variable x, counting the number of different values ap-
pearing so far for x. When a new value appears, this counter
is incremented and converted to a binary (bit-vector) rep-
resentation6. The function build(x,C) returns a BDD that
represents the set of assignments where x is mapped to (the
enumeration of) a for a ∈ C. This BDD is independent of
the values assigned to any variable other than x, i.e., they
can have any value.

For example, assume that the runtime-verifier sees the
input events open(“a”), open(“b”), open(“c”), and assume
that it encodes the argument values with 3 bits7.

We use x1, x2, and x3 to represent the enumerations, with
x1 being the least significant bit. Assume that the value “a”
gets mapped to the enumeration x3x2x1 = 000 (Natural num-
ber 0) and that the value “b” gets mapped to the enumeration
x3x2x1 = 001 (Natural number 1). Then, lookup(x,a)= 000,
and lookup(x,b) = 001; build(x,C) is a BDD that repre-
sents the set of values C = {“a”,“b”}, and is equivalent to
the Boolean function (¬x2 ∧¬x3), which returns 1 for 000
and 001.

Intersection and union of sets of assignments are trans-
lated simply into conjunction and disjunction of their
BDD representation, respectively; complementation be-
comes BDD negation. We will denote the Boolean BDD
operators as and, or and not. To implement the existential
(universal, respectively) operators, we use the BDD existen-
tial (universal, respectively) operators over the Boolean vari-
ables that represent (the enumerations of) the values of x.
Thus, if Bϕ is the BDD representing the assignments satisfy-
ing ϕ in the current state of the monitor, then exists(x,Bϕ) =

∃x1 . . .∃xkBϕ is the BDD that represents the assignments
satisfying ∃xϕ in the current state. Finally, BDD(⊥) and
BDD(>) are the BDDs that return always 0 or 1, respec-
tively.

For the RV algorithm, We use a summary, consisting of
pre(ϕ) and now(ϕ) for each subformula ϕ of the checked
property η. For first-order temporal logic, these elements are
BDDs representing relations. The algorithm for monitoring
a formula η is as follows.

1. Initially, for each subformula ϕ of η, now(ϕ) :=
BDD(⊥).

6 Other enumeration generation schemes are possible. Our imple-
mentation allows a garbage collection mechanism that can reuse enu-
merations that are no longer needed.

7 With k bits, we can store 2k enumerations. It is possible to extend
the number of bits used on the fly.

2. Observe a new state (as a set of ground predicates) σ[i]
as input.

3. Let pre(ϕ) := now(ϕ) for each subformula ϕ.
4. Make the following updates for each subformula. If ϕ

is a subformula of ψ then now(ϕ) is updated before
now(ψ).

– now(true) := BDD(>).
– now(p(a)) := if σ[i](p)(a) then BDD(>)

else BDD(⊥).
– now(p(x)) := build(x,{a | σ[i](p)(a)}).
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) :=

or(now(ψ),and(now(ϕ),pre((ϕ S ψ)))).
– now(	 ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(x,now(ϕ)).

5. If now(η) = BDD(⊥) then report a violation, otherwise
goto step 2.

Example 3. Consider a satellite with several radios on
board, over which telemetry data are transmitted to ground
(Earth). Consider the property that asserts that when
telem(x,d) appears in a state, denoting that telemetry data
d are transmitted over radio x, then radio x has been opened
in the past for communication with some frequency f , and
not closed since. This property can be stated as follows in
PFLTL:

∀x(∃d(telem(x,d))→∃ f (¬close(x) S open(x, f ))) (8)

As previously explained, the subformulas of this formula
are evaluated bottom up, with the subformulas of a for-
mula being evaluated before the formula itself. Figure 2
illustrates how this formula is broken down into enumer-
ated subformluas by the DEJAVU tool, effectively an Ab-
stract Syntax Tree (AST). For each event these subfor-
mulas are then evaluated in the following order: 8, 7,
6, 5, 4, 3, 2, 1, 0. We shall illustrate the BDDs gen-
erated for subformula 5: (¬close(x) S open(x, f )) dur-
ing evaluation of a trace with the following prefix:
{open(A,145)},{open(B,440)},{telem(A,42)}.

After the first event, open(A,145), the data values A and
145 are first mapped to enumerations. Each variable x and
f is enumerated separately and hence the same enumeration
can in principle be used for representing a value for x as well
as for f . We use the enumerations suggested by the imple-
mentation of our algorithm. In this case, this is the binary
110 (the Natural number 6) for both the enumeration for A
as well as for 145. We name the BDD variables for x as x1,
x2, and x3 (recall that x1 is the least significant bit), and the
BDD variables for f as f1, f2, and f3. Then the BDD rep-
resenting the assignment [x 7→ A, f 7→ 145] becomes the one
shown in Figure 3.
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0 : Forall x . (Exists d . telem(x,d)) -> (Exists f . (!close(x) S open(x,f)))

1 : (Exists d . telem(x,d)) -> (Exists f . (!close(x) S open(x,f)))

2 : Exists d . telem(x,d) 4 : Exists f . (!close(x) S open(x,f))

3 : telem(x,d) 5 : !close(x) S open(x,f)

6 : !close(x) 8 : open(x,f)

7 : close(x)

Fig. 2: Abstract Syntax Tree (AST) for the first-order
telemetry property (8), showing its breakdown into sub-
formulas. Nodes (subformulas) are numbered, with higher
numbers lower in the tree, suggesting the bottom up evalua-
tion from node 8 to node 0. The top node, corresponding to
the complete formula, is colored red.

Each node in the BDD represents one of the Boolean
variables (bits) x1, x2, x3, f1, f2, or f3. The leaf nodes 1 and
0 represent true respectively false. Note that least significant
bits, x1 and f1, appear towards the top of the BDD, and the
most significant bits appear last, just before a leaf. Recall
that in BDDs, a bit may not appear in a path, in the case that
the truth value for the path will be the same independent of
this bit. The BDD defines the valid assignments of 0 and 1
values to the six Boolean variables as follows. From each
non-leaf node, a dotted-line arrow represents the Boolean
value 0 and a thick-line node represents the Boolean value
1. A path from the top node x1 to the leaf-node 1 represents
one valid assignment. In this case the assignment: x1 = 0,
x2 = 1, x3 = 1, f1 = 0, f2 = 1, and f3 = 1, corresponds to
the bit vector x3x2x1 f3 f2 f1 = 110110; the enumeration 110
is assigned to x as well as to f .

At the second event open(B,440) we again assign enu-
merations to x and f representing the values B and 440,
this time the binary enumeration 101 (Natural number
5) for each one of them. At this point the subformula
now(¬close(x) S open(x, f )) is the BDD shown in Figure
4, which represents the set of assignments: {[x 7→ A, f 7→
145], [x 7→ B, f 7→ 440]}. In this BDD the leftmost path from
x1 to leaf-node 1 is the path from Figure 3. The new path is
the rightmost path representing the bit pattern: x3x2x1 f3 f2 f1
= 101101. Stated differently, the set of assignments {[x 7→

0 1

x1

x2

x3

f1

f2

f3

Fig. 3: The BDD for now(¬close(x) S open(x, f )) after the
first event, corresponding to the assignment x3x2x1 f3 f2 f1 =
110110.

A, f 7→ 145], [x 7→ B, f 7→ 440]} is now represented by a
BDD corresponding to the Boolean expression: (¬x1∧ x2∧
x3∧¬ f1∧ f2∧ f3)∨ (x1∧¬x2∧ x3∧ f1∧¬ f2∧ f3).

When processing the third event telem(A,42), also here
we need to assign an enumerations to A and 42. It turns out,
however, that A has already been assigned the enumeration
110 in processing of the first event, so we only need to assign
a new enumeration for 42. Note, however, that the subfor-
mula telem(x,d) of the original formula only stores a BDD
representing this single assignment in the current step. It is
forgotten when we move on to the next event since that sub-
formula does not occur under a temporal past time operator.

RV algorithm for RPFLTL We extend now the algorithm
to capture RPFLTL. The auxiliary relations r j extend the
model, and we need to keep BDDs representing now(r j)

and pre(r j) for each relation r j. We also need to calculate
the subformulas ϕi that appear in a specification. One sub-
tle point is that the auxiliary relations r j may be defined in
a rule with respect to a variable x as in r(x) := ϕ(x) (this
can be generalized to any number of variables), but r can be
used as a subformula with other parameters in other rules or
in the statement e.g., as r(y). This can be resolved by a BDD
renaming function rename(r(x),y) where the BDD bits of x
are renamed to the BDD bits of y. We then add the following
updates to step 4 of the above algorithm.

For each rule r(x) := ϕ(x):
calculate now(ϕ);
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0 1

x1

x2 x2

x3 x3

f1

f2

f3

f1

f2

Fig. 4: The BDD for now(¬close(x) S open(x, f )) af-
ter the second event, corresponding to the assignments
x3x2x1 f3 f2 f1 = 110110 and x3x2x1 f3 f2 f1 = 101101.

now(r) := now(ϕ);
now(r(y)) := rename(r(x),y);
now(r(a)) := if now(r)(a) then BDD(>) else BDD(⊥)

As in the propositional case, the evaluation order cannot be
simply top down or bottom up, since relations can appear
both on the left and the right of a definition such as r(x) :=
(p(x)∨	r(x)); we need to use the mixed evaluation order,
described in Section 3.

Complexity. BDDs were first introduced to model check-
ing [12] since they can often (but not always) allow a very
compact representation of states. In our context, each BDD
in pre or now represents a relation with k parameters, which
summarizes the value of a subformula of the checked PFLTL
or RPFLTL property with k Boolean variables over the pre-
fix observed so far. Hence, it can grow up to a size that is
polynomial in the number of values appearing in the pre-
fix, and exponential in k (with k being typically very small).
However, the combination of BDDs and Boolean enumer-
ation can be quite compact, since collections of adjacent
Boolean enumerations tend to compact well.

We return now to the proof of Theorem 2. For that, we
use the following Lemma.

Lemma 5 Let η be some RPFLTL formula, and σ, σ′ be two
sequences of states (or events) such that the summary of η

after σ is the same as after σ′. Then for each sequence of
states (events) ρ, the summary of η after σρ is the same as
after σ′ρ.

Proof. By a simple induction on the length of ρ. ut

Proof sketch of Theorem 2. The proof of this theorem in-
cludes encoding of a property that observes sets of data el-
ements, where elements with value a, appears separately,
i.e., one per state (or event), as v(a), in between states
where some event c appears (c is a constant, i.e., a re-
lation with arity 0). The domain of data elements is un-
bounded. The set of a-values observed in between two con-
secutive c’s is called a data set. The property asserts that
no data set appears twice. This property can be expressed
in QPFLTL. We use two auxiliary 0-ary (i.e., constant) rela-
tions p and q to mark two different data sets that appeared
in the past. The property that expresses that there exists in
the past a data set where each state satisfies p is as follows:
∃∃p(¬pS((c∧¬p)∧	((p∧¬c)S(c∧H¬p)))). The prop-
erty for q is obtained by replacing p by q. Our property as-
serts that H¬(p∧ q) (p and q do not happen together), and
(∀xPv(x)∧ p)↔ P(v(x)∧q), which expresses that the data
sets annotated by p and by q have the same elements.

We use a combinatorial argument to show by contradic-
tion that one cannot express this property using any RPFLTL
formula ϕ. Let D of size m be a set of m values, and consider
all the finite sequences consisting each of datasets without
repetition. There are 2m possible data sets, and 22m

sets of
datasets. Thus o(22m

) such sequences (note that this is a
lower bound, in fact, a much larger number of sequences
exist, since the different datasets can be permuted in any
order). A summary for the RPFLTL monitoring RV algo-
rithm is bounded by O((m+1)N), where N is the maximal
number of parameters in a relations in the property. We use
m + 1 rather than m, since there is one representation for
all the values not used (corresponding to the enumeration
11 . . .11). But in order to distinguish between o(22m

) possi-
bilities of sets of datasets, we need memory of size o(2m).
This means that with large enough m, each RPFLTL formula
ϕ over the models of this property can have two sequences
with the same summary, where one of them has some data
set that the other one does not. We now extend these two
prefixes with that distinguishing dataset. But according to
Lemma 5, both of these extended sequences will satisfy or
both will falsify ϕ, a contradiction to the assumption that ϕ

satisfies the required property. ut

6 Implementation

DEJAVU is implemented in the SCALA programming lan-
guage. It takes as input a specification file containing one
or more properties, and synthesizes the monitor as a self-
contained SCALA program. This program takes as input the
trace file and analyzes it. The tool uses the JavaBDD library
for BDD manipulations [32].
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prop telemetry1 : Forall x .
closed (x) -> !telem(x) where

closed (x) := toggle (x) <-> @!closed(x)

prop telemetry2 : Forall x .
closed (x) -> !telem(x) where

closed (x) :=
(!@true & !toggle (x)) |
(@closed (x) & !toggle (x)) |
(@open(x) & toggle(x)) ,

open(x) :=
(@open(x) & !toggle (x)) |
(@closed (x) & toggle(x))

prop spawning : Forall x . Forall y . Forall d .
report (y,x,d) -> spawned(x,y) where

spawned(x,y) :=
@spawned(x,y) |
spawn(x,y) |
Exists z . (@spawned(x,z) & spawn(z,y))

prop commands : Forall c .
dispatch (c) -> ! already_dispatched (c) where

already_dispatched (c) := @ [ dispatch (c) , complete(c) ) ,
dispatch (c) := Exists t . CMD_DISPATCH(c,t),
complete(c) := Exists t . CMD_COMPLETE(c,t)

Fig. 5: Properties stated in DEJAVU’s logic.

Example properties. Figure 5 shows four properties in the
input ASCII format of the tool. The first three of these are re-
lated to the examples in Section 4, which are not expressible
in (P)FLTL. That is, these properties are not expressible in
the original first-order logic of DEJAVU, presented in [27].
The last property illustrates the use of rules to perform con-
ceptual abstraction. The ASCII version of the logic uses @
for	, | for ∨, & for ∧, and ! for ¬. Not shown in Figure 5 are
the derived operators ♦− and �, which in ASCII format are
written as P (Previously) and H (History) respectively. The
first property telemetry1 is a variation of the radio-telemetry
property (8) in Example 3. It uses a rule, as in (7), to express
a first-order version of Wolper’s example property (see Ex-
ample 1). In this case we consider a radio on board a space-
craft, which communicates over different channels (quanti-
fied over in the formula) that can be turned on and off with a
toggle(x); they are initially off. Telemetry can only be sent to
ground over a channel x with the telem(x) event when radio
channel x is toggled on.

The second property, telemetry2, expresses the same
property as telemetry1, but in this case using two rules, re-
flecting how we would model this using a state machine with
two states for each channel x: closed(x) and open(x). The
rule closed(x) is defined as a disjunction between three al-
ternatives. The first alternative of this predicate is true if we
are in the initial state (the only state where @true is false),
and there is no toggle(x) event. The next alternative states

that closed(x) was true in the previous state and there is no
toggle(x) event. The third alternative states that in the pre-
vious state we were in the open(x) state and we observe a
toggle(x) event. The rule for open(x) is similar.

The third property, spawning, expresses a property about
threads being spawned in an operating system. We want to
ensure that when a thread y reports some data d back to an-
other thread x, then thread y has been spawned by thread
x either directly, or transitively via a sequence of spawn
events. The events are spawn(x,y) (thread x spawns thread y)
and report(y,x,d) (thread y reports data d back to thread x).
For this we need to compute a transitive closure of spawning
relationships, here expressed with the rule spawned(x,y).

The fourth property, commands, concerns a realistic
log from the Mars rover Curiosity [37]. The log con-
sists of events (here renamed) CMD_DISPATCH(c,t) and
CMD_COMPLETE(c,t), representing the dispatch and sub-
sequent completion of a command c at time t . The property
to be verified is that a command, once dispatched, is not dis-
patched again before completed. The already_dispatched(c)
rule is expressed using the abbreviation [p,q) = !q S p.
Rules are used to break down the formula to conceptually
simpler pieces. This property can be expressed without the
use of rules, but the result will be harder to comprehend.

Example Execution. We shall briefly illustrate how prop-
erty telemetry1 is evaluated on a trace. Figure 6 (generated
by DEJAVU) shows the AST of the formula, as it is repre-
sented internally by DEJAVU. The reader may compare it
to the AST in Figure 2 for the first-order property (8). The
AST (stored in now and pre) contains all the nodes needed
for evaluation of the property. Two new kinds of nodes oc-
cur, compared to Figure 2, namely (purple) arrow shaped
nodes (2 and 9) representing rule calls, and a (blue) node
(5), with an additional small “file folder” extension on top
of it, representing the body of the rule. A dotted arrow from
a rule call (nodes 2 and 9) leads to the body (node 5) of the
rule that is called. This has the meaning that the “calling”
(arrow-shaped) node will denote the same BDD value as the
“called” node.

The property-specific part of the synthesized monitor8

is shown in Figure 7. This function is called for each new
event. The function operates on the two arrays holding
BDDs, indexed by the subformula number: pre for the pre-
vious state and now for the current state. For each observed
event, the function evaluate() computes the now array, eval-
uating any subformula before any formula containing it. It
returns true (the property is satisfied in this position of the
trace) iff now(0) is not BDD(⊥), which effectively means
that it is BDD(>) since the top-level formula contains no
free variables. The evaluation uses the mixed evaluation or-

8 An additional 900+ lines of mostly property independent boiler-
plate code is generated.
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0 : Forall x . closed(x) -> !telem(x)

1 : closed(x) -> !telem(x)

2 : closed(x) 3 : !telem(x)

5 : toggle(x) <-> @ !closed(x) 4 : telem(x)

6 : toggle(x) 7 : @ !closed(x)

8 : !closed(x)

9 : closed(x)

Fig. 6: Abstract Syntax Tree (AST) for the first-order prop-
erty telemetry1 in Figure 5, illustrating the use of a rule. Two
new kinds of nodes occur, compared to the AST in Figure 2,
namely purple arrow shaped nodes (2 and 9) representing
rule calls, and a blue node 5, with an additional small “file
folder” extension on top of it, representing the body of the
rule. A dotted arrow from a rule call (nodes 2 and 9) leads
to the body (node 5) of the rule that is called. This has the
meaning that the “calling” (arrow-shaped) node will denote
the same BDD value as the “called” node.

der according to steps (a)-(d) below. One can compare it
to the bottom-up evaluation order, as in the PFLTL case, in
Figure 2.

(a) Evaluate subformulas of the rule body, which are not
within the scope of a 	 operator (nodes 7, 6). Observe
that now(	γ) is set to pre(γ).

(b) Evaluate the top level rule body (node 5).
(c) Evaluate each subformula that appears in the rule body

within the scope of a 	 operator (nodes 9, 8).
(d) Finally, evaluate the main formula (nodes 4, 3, 2, 1, 0).

At composite subformula nodes, BDD operators are ap-
plied. For example for subformula 1, the new value is
now(2).not().or(now(3)), which is the interpretation of the
formula (closed(x) -> ! telem(x)) using the Boolean equiva-
lence (p→ q)≡ (¬p∨q).

override def evaluate(): Boolean = {
// a. formulas in rule rhs not below @:
now(7) = pre(8)
now(6) = build("toggle")(V("x"))

// b. rule body
now(5) = now(6).biimp(now(7))

// c. formulas in rule rhs below @:
now(9) = now(5)
now(8) = now(9).not()

// d. main formula:
now(4) = build("telem")(V("x"))
now(3) = now(4).not()
now(2) = now(5)
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var_x.quantvar)

// Calculate result and move now to pre:
val error = now(0).isZero
tmp = now; now = pre; pre = tmp
! error

}

Fig. 7: Monitor evaluation function for property telemetry1.

As an example of how a trace is processed consider
the following simple (correct) trace containing three events:
{toggle(L)},{toggle(H)},{telem(L)}. This represents turn-
ing on low (L) and high (H) frequency channels (recall that
they are initially off), and sending telemetry on channel L.
Upon encountering the first event toggle(L), the value L is
assigned the enumeration 110 (the Natural number 6) in
node 6, and is represented as the BDD in Figure 8a. We
represent each enumeration for the variable x with three
Boolean variables (bits) x1, x2, and x3. Hence x3x2x1 = 110
for the first event. The BDD represents all assignments to the
Boolean variables x1, x2, and x3 that lead to the leaf-node 1
(true). Recall that in our implementation, the top node cor-
responds to the least significant bit, hence BDD bits appear
in a path from the root to the leaf node 1 in the order 011.

Figure 8b shows the BDD assigned to node 5. This is
the BDD corresponding to negating the BDD from node 6,
reflecting that all radios are closed, except for (the enumera-
tion corresponding to) L. Note that the path 011 leads to leaf-
node 0, in contrast to Figure 8a (negating a BDD is achieved
by just flipping the 0 and 1 leaf-nodes). To see this, observe
that node 7 is BDD(⊥), since initially @!closed(x) (node 7)
is BDD(⊥) in the first state, and using the Boolean equiva-
lence (B ↔ f alse)≡ ¬B .

Upon encountering the second event toggle(H), the
value H is assigned the binary enumeration 101 (the Natu-
ral number 5). Figure 8c shows the BBD assigned to node 6
for the second value H, corresponding to the enumeration
x3x2x1 = 101. Figure 8d shows the BDD representing the
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rule closed(x) in node 5 after these two events. Since chan-
nels L and H, corresponding to enumerations x3x2x1 = 110
and x3x2x1 = 101, are now open, this BDD represents all the
other enumerations. That is, in this BDD all enumerations,
except x3x2x1 = 110 and x3x2x1 = 101, lead to leaf-node 1,
whereas the two mentioned enumerations themselves both
lead to leaf-node 0.

Upon the arrival of the third event telem(L), the previ-
ously generated enumeration x3x2x1 = 110 for L is looked
up and assigned to node 4. Its negation, equivalent to the
BDD in Figure 8b, is stored in node 3. Node 1 is computed
as now(2).not().or(now(3)). Since node 2 represents all enu-
merations different from x3x2x1 = 110 and x3x2x1 = 101,
now(2).not() represents exactly those enumerations. Node 1
therefore is the union of those enumerations and all enumer-
ations different from x3x2x1 = 110, effectively yielding all
enumerations, represented as BDD(>), which then also be-
comes the BDD of node 0, and the property is satisfied.

Experiments. In [27, 28] we performed experiments with
DEJAVU without the rule extension, comparing with the
MONPOLY tool [7], which supports a logic close to DE-
JAVU’s. In [26] we experimented with DEJAVU’s garbage
collection capability. In this section we present experiments
with the rule extension for the four properties in Figure 5 on
seven traces, named T1,. . .,T7, of various lengths and com-
plexity. Table 1 shows the analysis time (excluding time to
compile the generated monitor) and maximal memory usage
in MB (megabytes) for different traces (format is: ‘trace-id’
‘trace length’ : ‘time in seconds’ ‘(events per millisecond)’
‘memory use’). The evaluation was performed on a Mac lap-
top, with the Mac OS X 10.10.5 operating system, on a 2.8
GHz Intel Core i7 with 16 GB of memory.

The traces T1,...,T6 are created with log genera-
tion programs specifically for stress testing the properties
telemetry1, telemetry2, and spawning. The last event of each
of these traces violates the property. The trace T7 is a real
log produced by the MSL rover [37]. The telemetry1 and
telemetry2 properties (alternative formulations of the same
property) are each verified against three traces T1, T2, and
T3, of increasing lengths. These traces are produced by a
trace generator F(r,c, t) with the following meaning. Re-
peat r times the following: toggle c channels to be open,
send telemetry t times on each channel, toggle the c chan-
nels back to being closed. Finally add an event violating
the property (sending telemetry on a closed channel). This
yields r ∗ (c+(c ∗ t)+ c)+ 1 events. The traces are gener-
ated with the following calls: T1 = F(100,1000,10) yielding
1,200,001 events, T2 = F(1000,100,50) yielding 5,200,001
events, and T3 = F(1000,100,100) yielding 10,200,001
events.

The spawning property is verified against the traces T4,
T5, and T6 of increasing lengths. These traces are pro-

duced by a trace generator G(t,r) with the following mean-
ing: spawn t threads from a main thread, let them each
report back once to the main thread, repeat r times: each
newly spawned thread in the previous iteration spawns a new
thread, which then reports back to the main thread. Finally
an event is inserted which violates the property (the main
thread reports to itself). This yields t + t + r ∗ (t + t) + 1
events. The traces are generated with the following calls:
T4 = G(49,100) yielding 9,899 events, T5 = G(99,100)
yielding 19,999 events, and T6 = G(99,200) yielding 39,799
events.

Figure 9 illustrates events processed per millisecond for
each combination of property and trace (short trace, medium
trace, long trace), while Figure 10 illustrates maximal mem-
ory use in Megabytes. As can be seen, the spawning property
performance, measured in processed events per ms, is worse
than the properties telemetry1 and telemetry2. This is due in
part to the need to store the transitive closure of the spawn-
ing operator, illustrated by the memory use in Figure 10. The
commands property, applied to the MSL log, also performs
worse than the telemetry properties. One observation is that
the less well performing rules (spawning and commands)
apply existential quantification in the rule bodies. Further-
more, the commands property has the most rules (three) of
the properties. However, whether these are the actual rea-
sons for the lower performance remains to be understood.
One may conclude that the performance of the rule-based
implementation is greatly dependent on property and trace.

DEJAVU is associated with an open source test suite con-
sisting of 231 tests, focusing on functional correctness; 49
of these tests, involving 13 properties, target the rule-based
extension. The traces for these functional correctness tests
are usually small, focusing on function rather than perfor-
mance. Schneider et. al. [41] performed randomized differ-
ential testing of DEJAVU as well as of their own MONPOLY

tool. Using the Isabelle/HOL theorem prover, they devel-
oped a proven correct version of MONPOLY, named VE-
RIMON. They generated 1000s of formulas automatically
for MONPOLY as well as for DEJAVU, generated 1000s of
traces influenced by the formulas, and then compared MON-
POLY’s and DEJAVU’s results against those of VERIMON’s,
applied on those formulas and traces. In this exercise no al-
gorithmic errors were detected in DEJAVU (a benign parsing
error was detected for a corner case), whereas two algorith-
mic errors were detected in MONPOLY. Discrepancies, by
design, were detected in DEJAVU’s semantics and in VERI-
MON’s semantics.

7 Conclusion

Propositional linear temporal logic (LTL) and automata
are two common specification formalisms for software and
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Fig. 8: Selected BDDs from trace evaluation.

Property Short traces Medium traces Long traces
telemetry1 T1 1,200,001 : 2.6s (462/ms) 194 MB T2 5,200,001 : 5.9s (881/ms) 210 MB T3 10,200,001 : 10.7s (953/ms) 239 MB
telemetry2 T1 1,200,001 : 3.8s (315/ms) 225 MB T2 5,200,001 : 8.7s (598/ms) 218 MB T3 10,200,001 : 16.6s (614/ms) 214 MB
spawning T4 9,899 : 29.5s (0.3/ms) 737 MB T5 19,999 : 117.3s (0.2/ms) 1,153 MB T6 39,799 : 512.5s (0.1/ms) 3,513 MB
commands T7 49,999 : 1.5s (33/ms) 169 MB N/A N/A

Table 1: Experiments - traces (T1,...,T7), trace lengths, analysis time in seconds, events per millisecond, and maximal mem-
ory use.

Fig. 9: Performance measured in events per millisecond for
the four properties telemetry1, telemetry2, spawning, and
commands on the seven traces T1,...,T7. The graph visual-
izes the events/ms numbers in Table 1. For each property
(except the command property) is shown the performance
on the three traces of increasing lengths that it was applied
to (the darker the column the longer the trace). The com-
mand property was applied to one (realistic) trace.

hardware systems. While temporal logic has a more declar-
ative flavor, automata are more operational, describing how
the specified system progresses.

Several extensions of propositional LTL have been pro-
posed by others to increase its expressive power to that of
related automata formalisms. We proposed here a simple ex-

Fig. 10: Maximal memory use in MB for the four proper-
ties telemetry1, telemetry2, spawning, and commands on the
seven traces T1,...,T7. The graph visualizes the MB numbers
in Table 1. For each property (except the command property)
is shown the performance on the three traces of increasing
lengths that it was applied to (the darker the column the
longer the trace). The command property was applied to one
(realistic) trace.

tension for propositional LTL, which adds auxiliary propo-
sitions that summarize the prefix of the execution based on
rules written using past time temporal formulas. This exten-
sion puts the logic, conceptually, in between propositional
LTL and automata, as the additional variables can be seen as
representing the state of an automaton that is synchronized
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with the temporal property. It is shown to have the same
expressive power as Büchi automata. It is in particular ap-
pealing for runtime verification of past temporal properties,
which already are based on summarizing the value of sub-
formulas over observed prefixes. Hence extending existing
RV algorithms accordingly is simple and requires no addi-
tional complexity.

We demonstrated that first-order linear temporal logic
(FLTL), which can be used to express properties about sys-
tems with data, also has expressiveness deficiencies, and
similarly extended it with rules that define relations that
summarize prefixes of the execution. We proved that for the
first-order case, unlike the propositional case, this extension
is not identical to the addition of dynamic (i.e., state depen-
dent) quantification.

We presented a monitoring algorithm for propositional
past time temporal logic with rules, extending a classical al-
gorithm, and similarly presented an algorithm for first-order
past temporal logic with rules. Finally we described the im-
plementation of this extension based on the DEJAVU tool
and provided experimental results. The code and many more
examples appear at [16]. Future work includes making fur-
ther comparisons between the different version of first or-
der LTL logics and to other formalisms, in particularly, for-
malisms that are based on automata. We intend to study fur-
ther extensions, exploring the space between logic and pro-
gramming.
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