

Autonomica: Ontological Modeling and Analysis of
Autonomous Behavior

Maged Elaasar, Nicolas Rouquette, Klaus Havelund,

Martin Feather, Saptarshi Bandyopadhyay and Alberto Candela
{maged.e.elaasar, nicolas.f.rouquette, klaus.havelund,

martin.s.feather, saptarshi.bandyopadhyay, alberto.candela.garza}@jpl.nasa.gov
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

Abstract. Model-based system autonomy is a complex integration of planning from high-level goals
to low-level command sequences whose execution controls a system. The need for autonomy has
accelerated in recent years to enable complex missions in automotive, space, and defense. During
system development, understanding the relationship between system autonomy and the physical
environment (including hardware) is critical to supporting trade studies, developing concepts of
operations, characterizing risk, and performing testing. This paper describes the initial results of
developing Autonomica, an ontology-based methodology and a framework for autonomous behavior
modeling and analysis. This methodology formalizes an architectural pattern for specifying model-
based autonomy as a vocabulary with description logic semantics and provides authoring and analysis
capabilities (reasoning, querying, and simulation) for the architectures. The framework implements
the methodology in an integrated workbench. A running example of a hypothetical spacecraft mission
to a small space body illustrates the ideas.

1. Introduction
Autonomy is the ability of a system to achieve goals while operating independently of external
control (Fong et al, 2018). The need for autonomy is increasing in many domains. In the automotive
setting, an autonomous car navigates between two locations, without the control of a human driver,
on roads along with vehicles, pedestrians, and other obstacles. In aerospace, a robotic spacecraft
operates independently of ground-based control, with time delays and limited communication
windows. In defense, an autonomous drone flies without a pilot in hostile airspace tracking its targets
while avoiding being attacked. In all these cases, the system operates in challenging and dynamic
environments characterized by large amounts of risk and uncertainty. The system resources (e.g.,
power, sensors, memory) may also be limited or degraded due to the harshness of the operating
environment. Autonomy becomes increasingly critical to improve productivity, increase robustness,
and eventually reduce cost.

Architecting autonomous behavior is a complex endeavor that requires careful specification of the
control system, the system under control (the hardware and operating environment), and their
interactions. Within the control system, it involves specifying the autonomy functions of planning,
scheduling, execution, and monitoring, in addition to traditional functions of estimation and control.
Such specifications need a well-defined methodology that helps systems architects think about
relevant details, make decisions, and document them in a coherent way that supports efficient analysis
for consistency, completeness, and correctness.

State Analysis (SA) (Ingham et al, 2005) is an architectural pattern that was developed over a decade
ago. It provides a useful vocabulary for specifying model-based autonomy (planning, scheduling,
and execution), specifically putting emphasis on a clear definition of state and a clean separation of
estimation and control. It defines the boundaries of the system under control and the control system
and defines the interfaces between them. However, the
pattern has not been formalized, nor has it been
incorporated into a modeling methodology. In
addition, the semantics of SA has not been formalized.
We think that addressing these issues would allow SA
to form the basis for an approach to autonomy
modeling and analysis.

This paper describes Autonomica, a logical modeling
and analysis methodology for an abstract control
strategy for autonomous systems.. The methodology
adopts SA as an architectural pattern and formalizes it
as an ontological vocabulary in the Ontological
Modeling Language (OML) [openCAESAR], which
has description logic (DL) semantics. This allows SA
models to be easily checked for consistency using an
off-the-shelf DL reasoner. It also allows encoding the
well-formedness rules of SA using the SPARQL query
language (SPARQL). Moreover, the SA vocabulary
builds on a small set of foundational vocabularies for
systems engineering called IMCE (Integrated Model
Centric Engineering) [IMCE], which have been used
in some NASA space mission development (Europa
Clipper, Psyche, Sample Return Lander). The
methodology also identifies and facilitates the steps of
using the SA vocabulary. Finally, the Autonomica framework supports the methodology by
integrating some tools, including openCAESAR (openCAESAR 2023) for ontological modeling and
analysis, MEXEC (Verma et al, 2016) for task planning, scheduling, execution and monitoring, and
Python/Matlab for simulation.

The rest of this paper is structured as follows. Section 2 overviews technologies used in this work. A
running example used to illustrate the ideas is presented in Section 3. Section 4 describes the
Autonomica methodology, including its usage to model all the relevant levels of autonomy. The
Autonomica framework that implements the methodology is discussed in section 5. Section 6
overviews related works. Finally, Section 7 concludes and outlines future work.

2. Background
State Analysis. State Analysis (SA) (Ingham et al, 2005, Wagner et al, 2009) is an architectural
pattern, illustrated in Figure 1 (from (Wagner et al, 2009)), for designing a Control System (CS) that
controls a System Under Control (SUC). The SUC is typically hardware and/or a physical
environment but can include software. The state analysis pattern promotes the following three main
design principles. (1) State as a first-order consideration: The CS maintains a representation of (best
estimate of) the state of the SUC with the concept of state variables that have two timelines: an intent
timeline that gives the projected future values of the state based on planned goals, and a knowledge
timeline that gives the past and current values based on evidence collected from the SUC
(measurements, and commands) and the CS (goals). Note the important distinction between a state
variable in the CS and the corresponding physical state of the SUC that it estimates. (2) Separation
of estimation and control: this separation helps avoid design mistakes where control decisions are

Figure 1. State Analysis Architectural Pattern

made on the basis of measurements instead of state estimates, resulting in complex and brittle control
systems. Instead, estimators update knowledge timelines on the basis of all available evidence: goals,
sensor measurements, and control commands, whereas controllers query knowledge timelines as
needed to know when to issue commands. The asymmetry in estimation vs. control reflects a common
observation among feedback system designers where the crux of the complexity typically occurs in
estimation instead of control. (3) Goal-directed operation: operator intent is expressed as goals rather
than concrete commands (at the top level). A goal is a constraint on one or more timelines: what the
values should be over a certain time period. This may optionally be augmented with additional quality
and performance measures. Goals are elaborated into a schedule (a process also referred to as
planning and scheduling), ultimately resulting in commands issued to the SUC and measurements
obtained from the SUC for monitoring progress toward the eventual achievement of the goals. Goals
can be control goals (to initiate control, usually referring to intent timelines) or estimation goals (to
initiate estimation, usually referring to knowledge timelines). State Analysis requires a single
attribution of estimation and control: each knowledge timeline is updated by a single estimator in the
CS; and each actuator in the SUC receives commands from a single controller in the CS.

OML. The Ontological Modeling Language (OML) is used for describing knowledge as semantic
ontologies with description logic (DL) semantics. OML allows defining two kinds of ontologies:
vocabularies that define terms (concepts, properties, and relations) and inference rules of a given
domain, and descriptions that use vocabularies to assert knowledge. One can think of a vocabulary
as a language, e.g. a Domain-Specific Language (DSL), and a description as a model/program
expressed in that language. Both vocabularies and descriptions have graphical and textual
representations. OML ontologies can be checked for logical consistency using DL reasoners, which
can also generate logical entailments from them. A dataset made of assertions and entailments can
be loaded to a database and queried using the SPARQL (SPARQL) query language. In section 4, we
use OML to formalize the SA vocabulary, then use that vocabulary to describe the autonomous
behavior of the running example. We then analyze that behavior for consistency, query it to check
well-formedness and gain insights, and generate Python/Matlab skeleton code from it. We show the
SA vocabulary using OML’s graphical notation, which resembles that of UML class diagrams (or
Entity-Relation diagrams) with some variations (extra annotations). For illustration, we use OML’s
canonical textual notation to describe the running example, using the defined vocabulary.

IMCE. The Integrated Model Centric Engineering (IMCE) vocabularies (IMCE 2023) form a library
of foundational vocabularies for system engineering that is defined in OML and has been used in
several applications (Wagner et al. 2020). The library includes vocabularies like base (basic design
patterns), mission (structural design patterns), and analysis (analysis design patterns). In section 4,
we reuse these vocabularies in the definition of the SA vocabulary.

openCAESAR. The open-source project openCAESAR defines the OML specification and provides
a reference implementation for it in Java. The project also provides an Eclipse-based authoring
workbench for OML called Rosetta (OML Rosetta 2023) that allows the creation of OML
vocabularies using its textual or graphical syntaxes. It also provides the ability to author OML
descriptions. Rosetta also allows analyzing OML models for consistency and running SPARQL
queries on them. In section 5, we describe how openCAESAR is used to develop the Autonomica
framework.

MEXEC. The MEXEC (Multi-mission EXECutive) software (Troesch et al, 2020) is used for
scheduling task networks and subsequently executing the resulting schedules while monitoring their
execution. A task network is defined in terms of tasks, which at the higher levels are defined as
Boolean constraints, specifying their conditional impact on state variables (as in SA). At the lowest
level, tasks send commands to the system under control. By performing smart scheduling and
execution, it is possible to react to failures, unexpected events, and execution uncertainties. Current
conditions (values of state variables) are used to adjust the schedule based on task specifications. The

close coupling between scheduling of tasks and execution and monitoring of tasks, where the
estimators and controllers update the state variables, results in a closed-loop control that adjusts
schedules continuously.

3. Running Example: Small Body Mission

We ground our work in an example mission to a small body in space (Nesnas et al, 2021), and scope
our effort on the approach phase (Figure 2), starting when the small body becomes visible in the
spacecraft’s cameras and ending when the spacecraft starts proximity operations.

We consider some tasks within this phase of the mission. The first task is Communication with Earth
(COMM), which needs to occur on a regular schedule, predetermined by the limited availability of
ground antennas to communicate with this mission. Each communication requires orienting the
spacecraft antenna towards Earth, during which time its solar panels may be sub-optimally oriented
towards the Sun. The net effects are a draw-down of battery power (needed by the radio), a transfer
of data to Earth, and possibly an updated set of instructions from Earth. The second task is a
Trajectory Correction Maneuver (TCM), which also occurs on a regular schedule, predetermined to
be able to keep the spacecraft on course towards the small body according to on-board optical
measurements of the spacecraft's relative position and velocity with respect to the small body. A
TCM may be skipped if the calculated spacecraft trajectory changes are small enough that, if applied,
would inject undesirable noise instead of making significant progress. When a TCM is needed, it
requires the spacecraft to be oriented in the direction that will provide the thrust vector in the
appropriate direction; like a COMM, this may orient the solar panels away from the Sun. The net
effects are a draw-down of battery charge (the thrusters must be electrically heated prior to operating),
and a course correction. The third task is an Observation of the small body (SB), which is interspersed
between the COMM and TCM tasks. The approach trajectory is designed so that the Sun is
illuminating the small body from the spacecraft’s point of view. The spacecraft’s cameras face the
small body, and solar panels face back toward the Sun. The net effects are battery charging, and
accumulation of data - images of the small body - from which information about the small body (e.g.,
its spin rate) is determined.

In the approach phase of the mission, the spacecraft needs to manage resources carefully: First, the
Battery State of Charge must be kept above a minimum threshold; once the battery is fully charged,
excess power is automatically shunted to a radiator to dissipate it as heat. Second, the Data Storage
Space reflects the accumulation of small body observations and the release of storage space during
communication windows when observations are downlinked. If the storage is getting full, a policy
determines which data to discard. Third, Attitude Control reflects the exclusive nature of the
spacecraft’s attitude direction requirements: towards the Sun for optimal power generation, towards
Earth for communication, and towards the small body for observation. As described, a COMM, a
TCM, and an SB each need attitude control, and the orientations they need are incompatible with one
another. This means that those three kinds of tasks are mutually exclusive at any point in time.

Figure 2. Small Body Mission Concept

Figure 3 shows a scenario, highly simplified for ease of presentation here. Time flows from left to
right. The colored segments denote tasks scheduled for execution. Each TCM and COMM task starts
at a fixed time (indicated by the pushpins), and each depletes the battery at some rate. Each SB starts
after a COMM (which may finish ahead of time if there is little information to convey), and continues
until the next TCM starts, during which time the battery is replenished, if possible up to its capacity
(100%). The blue line indicates the projected state of charge of the battery, the green line the progress
towards the small body, which is sped up by TCMs. Execution may not follow this projection exactly,
and may deviate significantly in the event of a failure (e.g., failure of a solar panel). With this
scenario, we could e.g. investigate how the spacecraft is approaching the small body under variations
of the length and frequency of these tasks, and how they make changes to the relative distance from
the spacecraft to the small body.

4. Autonomica Methodology

In this section, we describe the Autonomica methodology for modeling and analyzing autonomous
behavior. The methodology adopts a refinement of SA as an architectural pattern and formalizes it
with an OML vocabulary. The vocabulary allows describing the four layers of the pattern (Figure 4):
the Mission Operations, (MO, section 4.1), the Deliberative Subsystem, (DS, section 4.2), the
Reactive Subsystem, (RS, section 4.3) and the System Under Control (SUC, section 4.4). The
combination of the DS and RS corresponds to the CS shown in Figure 1. However, following SA
principles, it is important to distinguish between the CS functions in the two subsystems. In the DS,
planning, scheduling, and monitoring of goals are performed (at a lower frequency), while in the RS,
estimation and control functions are performed (at a higher frequency). These fundamental
differences in the performed functions motivate splitting the single Control System into two
functionally distinct layers: DS & RS - Figure 4.

Figure 3. Example a task network of the running example and its impact on key state

Figure 4. Autonomica Architecture

Inter-layer interactions are depicted as vertical exchanges in Figure 4 (interactions with the mission
operations are shown as horizontal exchanges). In each subsection below, we present relevant parts
of the SA vocabulary. We show how the vocabulary is used to describe corresponding aspects from
the running example. We discuss some of the possible analyses that can be run on the models of each
layer. These analyses are enabled thanks to the DL semantics of the SA vocabulary and the ability to
query using SPARQL. We also discuss how a skeleton implementation of each layer is generated
from the OML descriptions that could be completed and used for simulation.

4.1. Modeling the Mission Operations

Vocabulary. Figure 5 shows the subset of the State Analysis vocabulary (in OML’s graphical
notation) supporting modeling Mission Operations. We discuss it below while italicizing the
vocabulary terms we use. Note that this figure (and other OML figures in section 4) shows reuse of
some terms from the IMCE vocabularies (base, mission, analysis, and project).

In this step, we formalize the scenarios a Mission performs as Task Networks, which invoke a set of
Tasks performed by the autonomous system. A TaskInstance is a concrete Task that specifies a step
in the scenario and may optionally instantiate (inherit a reusable set of specifications from) a
TaskTemplate, which is like an abstract task. A Task is specified with a priority, a start range, an end
range, a preferred start time, and a preferred duration. A Task is also specified in terms of a set of
Constraints and/or Impacts it has on Timelines. A Timeline can be of kind State (assigned a value),
Atomic (representing a single resource that can be deemed in use), Claimable (representing portions
of a resource which can deemed in use), Cumulative (assigned a value or deemed to be in use), or
Cumulative Rate (assigned a value, deemed to be in use, or changed at a rate). A Task’s Constraint
is a (pre, maintenance, or post) condition that a Timeline’s value meets at the start, throughout, or at
the end of the Task. An Impact specifies a value to set, a delta to add, or a rate to add periodically
to a Timeline relative to (pre: at the beginning, maintenance: during, or post: end of) a Task. An
Impact is used by the DS to estimate the future values of Timelines. A Task can be specified to invoke
sub Tasks (hierarchically) and can be constrained to precede (have temporal dependency on) other
Tasks.

Description. We use this subset of the SA vocabulary to describe the approach scenario of the case
study mission (Figure 3) as shown in Table 1. We specify the scenario as a task network that consists
of two task instances: TCM1, which instantiates the TCM (Trajectory Correction Maneuver) task
template, and SBO1, which instantiates the SBO (Small Body Observation) task template and
precedes TCM1. Both task instances specify maintenance impacts on a SC_SB_rel_distance

Figure 5. Subset of State Analysis vocabulary for Mission Operations

(spacecraft to small body relative distance) timeline with values in the range 0% to 100%. (Notice
that “ci X : Y” means concept instance X is of type Y).

Table 1. The mission operations in the running example
description <http://MO1#> as MO1 { uses <http://mds.jpl.nasa.gov/sa/state-analysis#> as SA
 ci SC_SB_rel_distance : sa:Timeline [sa:hasTimelineKind “State” sa:hasValidRange [sa:hasMinValue 0; sa:hasMaxValue 100]]
 ci TCM : sa:TaskTemplate
 ci TCM1 : sa:TaskInstance [sa:instantiates TCM]
 ri TCM1.impact : sa:HasImpact [from TCM1; to RS2:SC_SB_rel_distance; sa:hasLifecycle “Maint”; sa:hasValueKind “Rate”; sa:hasValue -3]
 ci SBO : sa:TaskTemplate
 ci SBO1 : sa:TaskInstance [sa:instantiates SB; sa:precedes TCM1]
 ri SBO1.impact : sa:HasImpact [from SB1; to RS2:SC_SB_rel_distance; sa:hasLifecycle “Maint”; sa:hasValueKind “Rate” sa:hasValue 1]
 ci Approach : sa:TaskNetwork [mission:invokes SB1; mission:invokes TCM1]
 ci SB_Mission : sa:Mission [mission:performs Approach]
}

4.2. Modeling the Deliberative Subsystem

Recall (from Figure 4) that a DS is the CS subsystem that receives from Mission Operations a task
network to execute. It plans, schedules and executes those tasks by sending goals (on state variable
values) to be achieved by the RS. It then monitors their achievement, detects any failures, and handles
them by replanning. The following subset of the methodology helps model the DS.

Vocabulary. Figure 6 shows the subset of the State Analysis vocabulary supporting the two steps of
the Autonomica methodology pertaining to modeling the DS. We discuss them below:

Step 1 involves defining Goals, functional capabilities of the RS, invoked by the DS via Tasks. A
Goal specifies which Timelines it impacts and can be characterized with a set of Parameters. A Goal
is either a KnowledgeGoal, which is about improving the knowledge of some Timeline, or a
ControlGoal, which is about influencing the value of some Timeline.

Step 2 involves defining which Goals of the RS are invoked by Tasks of the DS when they are
executed. If a Goal has parameters, its invocation involves specifying values as Arguments bound to
each Parameter. A Goal is invoked when its Task’s preconditions are met, after which the DS
monitors its achievement (execution), through the Task’s maintenance and post conditions, and
handles detected failures by replanning (we omit describing this for brevity).

Figure 6. Subset of the State Analysis vocabulary for Deliberative
Subsystem

Description. We use the above described subset of the vocabulary to specify in Table 2 the DS in
the running example (Figure 3) and the RS Goals sent by each DS Task. We define four goals: a pair
of knowledge and control goals on the distance to the small body, and a knowledge and control goal
on the trajectory. (Notice that keyword ref refers to previously defined instances).

Table 2. The deliberative subsystem in the running example
description <http://DS1#> as DS1 { extends <http://MO1#> as MO1
 ci DS : sa:DeliberativeSubsystem [mission:performs MO1:TCM1, MO1:SBO1]
 ref ci MO1:SB [sa:sends KnowDistance, ReduceDistance, KnowTrajectory, ImproveTrajectory]
 ref ci MO1:TCM [sa:sends KnowTrajectory; sa:sends ImproveTrajectory]
 ci KnowDistance : sa:KnowledgeGoal [sa:impacts MO1:SC_SB_rel_distance]
 ci ReduceDistance : sa:ControlGoal [sa:impacts MO1:SC_SB_rel_distance]
 ci KnowTrajectory : sa:KnowledgeGoal [sa:impacts MO1:SC_SB_rel_distance]
 ci ImproveTrajectory : sa:ControlGoal [sa:impacts MO1:SC_SB_rel_distance]
}

Analysis. The subset of the SA vocabulary for describing the DS also allows answering some
analytical questions. For example, one audit checks that there are no instances of Timelines that are
impacted by Tasks are also specified to be impacted by Goals invoked by those Tasks. This check
can be done by running the SPARQL query shown in Table 3.

Table 3. A SPARQL query to find timelines impacted by tasks but no goals defined on them
PREFIX base: <http://imce.jpl.nasa.gov/foundation/base#> PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#>
SELECT DISTINCT ?task ?timeline WHERE {
 ?task a sa:Task ; sa:hasImpact [analysis:characterizes ?timeline] ; sa:sends ?goal .
 FILTER NOT EXISTS { ?goal sa:impacts ?timeline }
}

Code Generation. The SA model of the DS layer allows generation of an implementation skeleton
in some executable language. In the running example, a Python implementation that uses the MEXEC
planner (running as a ROS node) is generated. MEXEC uses an XML format for task networks that
can directly be generated from the OML description (Table 1). Moreover, the description (in Table
2) can be used to generate Goal and Task classes. Task classes create Goal instances and publish
them on ROS topics, subscribed to by the RS, and also subscribe to Timeline updates, published by
the RS, to use them for monitoring.

4.3. Modeling the Reactive Subsystem

Figure 7. Subset of State Analysis vocabulary for Reactive Subsystem

Recall (from Figure 4) that an RS is the subsystem of the CS that interfaces with the DS subsystem
to achieve the sent goals in a (relatively slow) closed loop. It achieves those goals by interfacing with
the system under control (SUC) to perform estimation and control functions in (relatively fast) closed
loops. This subset of the methodology is for modeling an RS.

Vocabulary. Figure 6 shows a subset of the State Analysis vocabulary supporting the 3 steps of the
Autonomica methodology pertaining to RS modeling.

Step 1 involves defining StateVariables, which on one hand are used to derive Timelines in the DS
and on the other hand, represent estimated values of PhysicalStates in the SUC. Note that not all
PhysicalStates in the SUC need to be estimated by the RS; only those that need to be consulted for
control functions. Each PhysicalState is estimated by at most one StateVariable.

Step 2 involves defining the Achievers of the RS and which Goals they achieve. Achievers receive
Goals from the DS and achieve them via closed-loop behavior that involves consulting
StateVariables. One kind of Achiever is an Estimator which achieves KnowledgeGoals, and the other
kind is Controller, which achieves ControlGoals.

Step 3 involves defining the interface between the RS and the SUC layers. This involves specifying
which PhysicalStates estimates are held in which StateVariables, and how the estimation and control
functions use them. Specifically, Estimators update StateVariables based on receivesEvidence on
PhysicalStates such as Measurements from SUC Sensors and Commands from SUC Actuators.
Similarly, Controllers try to influence PhysicalStates by sendsCommands to SUC Actuators.

Table 4. The state variables in the running example
description <http://RS1#> as RS1 { extends <http://MO1#> as MO1
 ci Camera.fieldOfView : sa:StateVariable
 ci Thruster.torque : sa:StateVariable
 ci Spacecraft.traj : sa:StateVariable
 ci Spacecraf-SB.rel_traj : sa:StateVariable
 ri Spacecraft-SB.rel_traj.projection : sa:ProjectsTo [from Spacecraft-SB.rel_traj to MO1:SC-SB.rel_distance]
 ri Spacecraft-SB.rel_traj.derivation : sa:Derives [from Camera.fieldOfView, Thruster.torque, Spacecraft.traj to Spacecraft-SB.rel_traj]
}

Table 5. The intent state variables and goals in the running example
description <http://RS2#> as RS2 { extends <http://RS1#> as RS1, <http://DS#> as DS
 ci RS : sa:ReactiveSubsystem [mission:performs DistanceE, DistanceC, TrajectoryE, TrajectoryC]
 ci DistanceE : sa:Estimator [RS; sa:achieves DS:KnowDistance; sa:updates RS1:Spacecraft-SB.rel_traj; sa:consults RS1:Spacecraft.traj]
 ci DistanceC : sa:Controller [sa:achieves DS:ReduceDistance; sa:consults RS1:Spacecraft-SB.rel_traj]
 ci TrajectoryE : sa:Estimator [sa:achieves DS:KnowTrajectory; sa:updates RS1:Spacecraft.traj]
 ci TrajectoryC : sa:Controller [sa:achieves ImproveTrajectory; sa:consults RS1:Spacecraft.traj]
}

Table 6. The achievers in the running example
description <http://RS3#> as RS3 { extends <http://RS2#> as RS2, <http://RS1#> as RS1, <http://SUC1#> as SUC1
 ref ci Camera.fieldOfView [sa:estimates SUC1:Camera.fieldOfView]
 ref ci Thruster.torque_thrust [sa:estimates SUC1:Thruster.torque_thrust]
 ref ci Spacecraft.traj [sa:estimates SUC1:Spacecraft.traj]
 ref ci DistanceE [sa:receivesEvidence SUC1:Camera.Image]
 ref ci DistanceC [sa:sendsCommand SUC1:Thruster.cmd]
 ref ci TrajectoryE [sa:receivesEvidence SUC1:Trajectory.data, SUC1:Thruster.cmd]
 ref ci TrajectoryC [sa:sendsCommand SUC1:Thruster.cmd]
}

Description. We further elaborate on the example of Sec. 4.2 using the RS vocabulary defined above.
Table 4 shows the results of the methodology’s 1st step. For example, we define StateVariables
Camera.fieldOfView, Thruster.torque, Spacecraft.traj and Spacecraft-SB.rel-traj. We then specify

that the last variable projects to the SC-SB.rel_distance Timeline, and the first three variables together
derive the last variable. Notice the use of relation instances (ri) for saying this. In the 2nd step, Table
5 defines the Achievers (Estimators and Controllers) of the RS, which KnowledgeGoals and
ControlGoals they achieve, and which StateVariables they consult / update. Table 6 shows the results
of the methodology’s third step which defines the PhysicalStates (Camera.fieldOfView,
Thruster.torque_thrust, and Spacecraft.traj) estimated by the StateVariables defined above. It also
describes how the Achievers estimate them and influence them through Measurements and
Commands (as Evidences).

Analysis. The SA vocabulary for describing the RS supports answering analytical questions. For
example, an Autonomica methodology audit checks that every physical state that is (directly or
indirectly) controlled must also be estimated. Table 7 shows the SPARQL query for this audit.

Table 7. A SPARQL query to find all states that are controlled but not estimated
PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#>
SELECT ?state ?controller WHERE {
 ?controller a sa:Controller ; sa:sendsCommandTo/sa:affects ?state .
 FILTER NOT EXISTS { ?state sa:isEstimatedBy/sa:isUpdatedBy ?estimator . }
}

Code Generation. The RS models allow generation of an implementation skeleton in a similar way
to the DS (section 4.2) models. Table 8 shows a skeleton for a Matlab class of the Trajectory estimator
whose function takes arguments according to all the evidence involved.

Table 8. Generated Matlab class representing the definition of a goal achiever
classdef TrajectoryE
 methods
 function obj = receivesEvidence(obj, Spacecraft, Trajectory, Thruster)
 % TODO: write estimation algorithm here
 % inputs Thruster.cmd (or null if no data); Trajectory.data (or null if no data)
 % output: may update Spacecraft.traj
end end end

4.4. Modeling the System Under Control

 Figure 8. Subset of State Analysis vocabulary for System Under Control

Vocabulary. Figure 8 shows a subset of the State Analysis vocabulary supporting the three steps of
the Autonomica methodology that pertain to SUC modeling. We discuss those steps while
referencing this figure.

Step 1 involves defining the PhysicalObjects contained in the SUC, which are being controlled by
the CS, and which typically include the hardware components of the system along with their
contained Sensors and Actuators. We also identify other objects contained in the SUC whose state
directly or indirectly affects or is affected by that of the former set of objects. These objects may
either be other hardware components or objects in the physical (operational) environment.

Step 2 involves identifying the PhysicalCharacteristics that characterize the identified
PhysicalObjects. It also involves specifying which PhysicalCharacteristics directly affect others
(i.e., may change when they change). Two kinds of PhysicalCharacteristics can be defined: a
PhysicalMode is a discrete property of an object that can be changed instantly with an Action (e.g., a
switch being on or off), whereas a PhysicalState, is a property that can change over time (e.g., a
battery charge level). Note that all the PhysicalModes define an interface (of Actions that can modify
those modes) presented by the SUC to mission operations. The SUC can also send to mission
operations a snapshot of the current characteristics of the object. Such an interface allows mission
operations to manipulate the SUC during simulation (e.g. a test engine can call those actions to
challenge a CS, a feature that we plan to leverage in future works.)

Step 3 involves defining the interface between the SUC and the RS (Figure 4). Specifically, this
involves defining the Measurements that the Sensors in the SUC can occasionally send to the RS. It
also involves the Commands that Actuators in the SUC occasionally receive from the RS.

Table 9. The physical objects in the running example
description <http://SUC1#> as SUC1 {
 ci SUC : sa:SystemUnderControl
 ci Environment : sa:PhysicalObject [base:isContainedIn SUC]
 ci SB : sa:PhysicalObject [base:isContainedIn Environment]
 ci Spacecraft : sa:PhysicalObject [base:isContainedIn SUC]
 ci Camera : sa:Sensor [mission:isPerformedBy Spacecraft]
 ci Trajectory : sa:Sensor [mission:isPerformedBy Spacecraft]
 ci Thruster : sa:Actuator [mission:isPerformedBy Spacecraft]
}

Table 10. The physical states in the running example
description <http://SUC2#> as SUC2 { extends <http://SUC1#> as SUC1
 ci Camera.FieldOfView : sa:PhysicalState [analysis:characterizes SUC1:Camera]
 ci Thruster.torque_thrust : sa:PhysicalState [analysis:characterizes SUC1:Thruster; sa:affects Spacecraft.traj]
 ci Spacecraft.traj : sa:PhysicalState [analysis:characterizes SUC1:Spacecraft; sa:affects Spacecraft-SB.rel_traj]
 ci Spacecraft-SB.rel_traj : sa:PhysicalState [analysis:characterizes SB; sa:affects Camera.FieldOfView]
}

Table 11. The physical interfaces in the running example
description <http://SUC3#> as SUC3 { extends <http://SUC2#> as SUC2; extends <http://SUC1#> as SUC1
 ci Camera.Image : sa:Measurement [sa:measures SUC2:Camera.FieldOfView; sa:isSentBySensor SUC1:Camera]
 ci Trajectory.data : sa:Measurement [sa:measures SUC2:Spacecraft.traj; sa:isSentBySensor SUC1:Trajectory]
 ci Thruster.cmd : sa:Command [sa:modifies SUC2:Spacecraft.traj; sa:isReceivedByActuator SUC1:Thruster]
}

Description. With the vocabulary subset defined above, we can model a simplified version of the
navigation domain aspects of the Approach scenario of Figures 3. Table 9 shows the results of the
first sub step, separating the description of the SUC between the Environment (limited to the small
body, SB, in this example) and the Spacecraft with its sensors and actuators. Scoping the physical
objects help designers identify the relevant physical characteristics and their affects relationships as

described according to the 2nd sub step in Table 101. Next, designers can shift to defining the
interfaces between the SUC and the RS in terms of measurements and commands as described in
Table 11 according to the methodology’s 3rd step.

Analysis. The subset of the SA vocabulary for describing the SUC allows for answering some
analytical questions. For example, it allows querying for all the PhysicalStates that could directly or
indirectly be affected by PhysicalModes. Table 12 shows a SPARQL query that encodes this.

Table 12. A SPARQL query to find all physical states potentially affected by physical modes
PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#>
SELECT ?mode ?state WHERE {
 ?mode a sa:PhysicalMode ; sa:affects ?state .
 ?state a sa:PhysicalState .
}

Code Generation. While the OML description models above capture the structure of the SUC, the
behaviors of how the physical states change over time can be modeled in a computational
implementation language like Matlab. The methodology supports this paradigm via code generation
of Matlab Object Oriented classes corresponding to PhysicalObjects, and of Matlab class method
signatures corresponding to the causality of the effects relationships among PhysicalStates and
PhysicalModes of PhysicalObjects. For example, Table 13 shows a Matlab function signature
generated for computing the Camera.FieldOfView physical state.

Table 13. Excerpts of Matlab classes for computing the camera’s field of view of the small body
01
02
03
04
05
06
07
08
09

classdef Camera
 properties
 fieldOfView
 end
 methods
 function obj = compute_fieldOfView(obj, SB)
 % TODO: write the Camera.FieldOfView calculation as a function of the inputs.
 % inputs: SB.rel_traj
end end end

classdef SB
 properties
 rel_traj
end end

5. Autonomica Framework
In section 4, we described the Autonomica methodology and its SA vocabulary that we designed with
OML. In this section, we briefly give an overview of the Autonomica Framework, a set of tools that
we package in a modeling workbench to help autonomy designers apply the Autonomica
methodology for modeling their architecture (section 5.1), analyze it for consistency (section 5.2),
run queries on it (section 5.3), and generate an implementation skeleton from it (section 5.4).

5.1 Modeling Support
Thanks to SA being formalized as an OML vocabulary, the modeling of an autonomous mission,
including its MO, DSL, RS and SUC layers can also be done using OML descriptions (ontologies).
We used an Eclipse-based workbench, called OML Rosetta (Rosetta 2023), provided by the
openCAESAR project to author the OML ontologies, both the SA vocabulary and the case study
descriptions. OML Rosetta provides an OML text editor that can be used to author both. However,
the workbench also provides a diagram viewpoint for OML that we used to visualize the vocabularies
(shown in the figures above). It also provides a framework (called Sirius) to develop custom UI
viewpoints for OML descriptions. We used that framework and developed some custom UIs for
modeling with the SA vocabulary that we do not show here for lack of space.

1 Abbreviations: traj = trajectory (attitude, angular velocity, position and velocity); rel_traj = relative trajectory.

5.2 Consistency Analysis
A further benefit of the SA vocabulary being formalized in OML, which has DL semantics, is that it
is possible to use a DL reasoner to check the consistency of OML descriptions. What is checked is
that the descriptions are consistent with the semantics of the vocabulary and do not contain logical
contradiction. Such a contradiction may either be asserted directly in the description or inferred by
the DL reasoner based on the semantics of the vocabulary. For example, a designer may assert that a
physical state is measured by two sensors (in the SUC), each of which sends a measurement that is
received by a different estimator (in the RS). This contradicts the SA semantics that the relationship
from an estimator to an estimated state is inverse functional. A DL reasoner can detect such a
contradiction and even provide the designer with an explanation in the form of a minimal set of
assertions and rules that lead to it.

5.3 Query Support
The Rosetta workbench allows a designer to conveniently author and run a set of SPARQL queries
on an OML description and report results back in various formats (e.g., JSON, XML). We used this
ability to author SELECT queries to extract information from the description for audits (e.g., Table
4) or insights (Table 9).

5.4 Code Generation.
We added a feature to the Rosetta workbench allowing generating the skeleton code of an
implementation architected with SA. We generate for each layer an implementation in a high-level
programming language. For the SUC and RS, we generate Matlab code that contains the expected
data flows along with stubs for functions that need to be implemented directly in Matlab. Since layers
of an SA-based architecture need to communicate with each other asynchronously via message
passing (e.g. sensors in the SUC publish measurements that are received by estimators in the RS),
we plan to make our implementations target the ROS [ROS] platform, which provides a publish-
subscribe infrastructure for message passing. Another feature of interest in ROS is that it has a global
clock that synchronizes executions across the layers.

6. Related Work
Model-based systems engineering (MBSE) (Ramos et al, 2011) promotes the formalized application
of modeling for describing systems. An example of that is the use of the Systems Modeling Language
(SysML) to specify the system’s requirements, structure, behavior, and parametrics using a set of
standard viewpoints (diagrams and tables). A subset of the language has been given execution
semantics, which helps directly simulate behavior using the model. However, the computational
expressiveness of SysML is limited compared to that of other languages like Matlab or Modelica.
Furthermore, SysML does not prescribe a particular modeling methodology. The Architecture and
Analysis Definition Language (AADL) [Feiler et al, 2013] is an industry standard language for
modeling real-time embedded systems. It is distinguished by its emphasis on strong (although semi-
formal) semantics, which has motivated its use in projects emphasizing formal methods. The
formalism supports definition of software or hardware components, with ports linked together with
communication channels. It was originally developed for embedded avionics systems, and does not
provide direct support for specification of autonomy architectures.

ROSPlan is a framework providing tools for AI Planning in a ROS system (Cashmore et al, 2015). It
has a variety of nodes which encapsulate planning, problem generation, and plan execution.
Applications include short-term human-robot interaction (Sanelli et al, 2017) and opportunistic
planning in autonomous underwater vehicle (AUV) missions (Cashmore et al, 2018). The NASA-
funded autonomous science rover project Toolbox for Research and Exploration (TREX), is

investigating techniques designed to improve operational efficiency and science yield of future lunar
rover missions. The autonomy framework is implemented in ROS. The approach employs science
hypotheses, and high-level goals provided by scientists to a rover. The rover performs domain-
specific planning and execution to modify its mission plan based on the data collected and how it
supports the goals. The framework has been deployed on an analog rover in several sites of geologic
interest in the United States. (Castano et al, 2022) investigates the problem of operations for
autonomy, that is, identifying interfaces, tools, and workflows required to effectively operate future
highly autonomous spacecraft. This work uses an ad hoc ROS environment integrated with MEXEC
to simulate an autonomous spacecraft and its operations for a flyby mission to the Neptune-Triton
system. The focus is on operations for autonomous systems rather than on developing architectures.

For leads to more work on architectures for autonomous spacecraft, see (Tipaldi & Glielmo, 2017),
which surveys model-based techniques and describes operational concepts for mission planning and
execution in European space projects; and (Cividanes et al, 2019), which is a more recent and
extensive survey of spacecraft on-board planning and scheduling, listing many examples.

The autonomy architecture we use is compatible with the guidance espoused in the Framework for
Robust Execution and Scheduling of Commands On-Board, FRESCO [Amini et al, 2021]. FRESCO
specifies guiding principles, functions, interfaces, and interactions from which mission-specific
autonomous control architectures can be derived.

7. Conclusions and Future Work
This paper reports on our initial efforts to define the Autonomica methodology and implement its
framework. The methodology adopts SA as an architectural pattern and formalizes it as an OML
vocabulary with DL semantics. The result is a precise SA syntax for describing an autonomy
architecture whose logical semantics can be checked for consistency and can facilitate analysis with
SPARQL queries. We used such capabilities to formalize audits for SA that a user can run to detect
methodological issues with their autonomy description. We also developed a code generator from
SA descriptions that can produce a (canonical) implementation skeleton suitable for a developer to
manually complete in a high-level language (we used Matlab).

We plan to continue developing the Autonomica methodology and framework. Our goal is to
establish a model-driven approach for developing an operational implementation of autonomy based
on SA, where both the architecture and the implementation are version controlled in a git repo with
continuous integration (CI) scripts that check them on change. We also plan to produce architecture
views from the model as gate products to facilitate peer review. We also plan to improve the
generated code skeletons (described in section 5.4) and investigate and use of more advanced features
of the MEXEC planner to support more elaborate planning (e.g., defining contingencies). We are
also investigating adding more behavioral specifications to the SA vocabulary to be able to generate
richer code skeletons. We plan to analyze an SA-based autonomy implementation both statically and
dynamically. Static analysis of the implementation code and the OML model would extract
topological information views that should be consistent even if modeling and implementation
progress concurrently. Dynamic checking would involve testing the implementation driven by
insights from querying the SA model. We expect this to allow a test engine to focus the testing effort
and make it more efficient.

Acknowledgment
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration and funded through the
internal Research and Technology Development program.

 References

Amini, R, Fesq, L, Mackey, R, Mirza, F, Rasmussen, R, Troesch, M & Kolcio, K 2021. ‘FRESCO:

A Framework for Spacecraft Systems Autonomy’, IEEE Aerospace Conf. (pp. 1-18), 2021.
Cashmore, M, Fox, M, Long, D, Magazzeni, D, Ridder, B, Carrera, A, Palomeras, N, Hurtos, N, &

Carreras, M 2015. ‘ROSPlan: Planning in the Robot Operating System’’ Proceedings
International Conference on Automated Planning and Scheduling, ICAPS. 2015..

Cashmore, M, Fox, M, Long, D, Magazzeni, D, and Ridder, B 2018. ‘Opportunistic Planning in
Autonomous Underwater Missions’, IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 2, pp. 519-530, April 2018, doi: 10.1109/TASE.2016.2636662.

Castano, R, Vaquero, T, Rossi, F, Verma, V, Van Wyk, E, Allard, D, Huffmann, B, Murphy, EM,
Dhamani, N, Hewitt, RA, Davidoff, S, Amini, R, Barrett, A, Castillo-Rogez, J, Choukroun, M,
Dadaian, A, Francis, R, Gorr, B, Hofstadter, M, Ingham, M, Sorice, C, & Tierney, I 2022.
‘Operations for Autonomous Spacecraft’, 2022 IEEE Aerospace Conf., pp. 1-20,

Cividanes, F, Ferreira, M & Kucinskis, F 2019, ‘On-board Automated Mission Planning for
Spacecraft Autonomy: A Survey’, IEEE Latin America Transactions, 17(06), pp.884-896.

Executable UML - Semantics of a Foundational Subset for Executable UML Models, Version 1.5,
OMG. <https://www.omg.org/spec/FUML/1.5/About-FUML>, April 2021.

Feiler, PH & Gluch, DP 2013. Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language. Addison-Wesley (2013).

Fong, TW, Frank, J.D, Badger, J.M, Nesnas, I.A, and Feary, M.S 2018. ‘Autonomous systems
taxonomy’, Autonomous Systems CLT Meeting (No. ARC-E-DAA-TN56290).

IMCE. Foundation Vocabularies. 2023. <http://www.opencaesar.io/imce-vocabularies/>
Ingham, M.D, Rasmussen, R.D, Bennett, M.B & Moncada, A.C 2005. ‘Engineering complex

embedded systems with state analysis and the mission data system’, Journal of Aerospace
Computing, Information, and Communication, 2(12), pp.507-536.

Nesnas, I.A, Hockman, B.J, Bandopadhyay, S, Morrell, B.J, Lubey, D.P, Villa, J, Bayard, D.S,
Osmundson, A, Jarvis, B, Bersani, M & Bhaskaran, S 2021. ‘Autonomous Exploration of Small
Bodies Toward Greater Autonomy for Deep Space Missions’, Frontiers in Robotics and AI, 8.

OOSEM - Object-Oriented SE Method. INCOSE. <https://www.incose.org/incose- member-
resources/working-groups/transformational/object-oriented-se-method>

OML Rosetta. 20230 <https://github.com/opencaesar/oml-rosetta>.
openCAESAR, 2023. <https://www.opencaesar.io/>
Ramos, A.L, Ferreira, J.V & Barceló, J 2011. ‘Model-based systems engineering: An emerging

approach for modern systems’, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(1), pp.101-111.

ROS - Robot Operating System. <https://www.ros.org/>
Sanelli, V, Cashmore, M, Magazzeni, D, & Iocchi, L 2017. ‘Short-Term Human-Robot Interaction

through Conditional Planning and Execution’, Proceedings of the International Cont. on
Automated Planning and Scheduling (ICAPS), 27(1), 540-548.

SPARQL - SPARQL 1.1 Query Language. WC3. <https://www.w3.org/TR/sparql11-query/>
SysML - OMG System Modeling Language - <https://www.omg.org/spec/SysML>
Tipaldi, M & Glielmo, L 2017 ‘A survey on model-based mission planning and execution for

autonomous spacecraft’, IEEE Systems Journal, 12(4), pp.3893-3905, 2017.
TREX. Toolbox for Research and Exploration. <https://trex.psi.edu/>
Verma, V, Gaines, D, Rabideau, G, Joshi, R & Schaffer, S 2016. ‘MEXEC: autonomous science

restart for the Europa mission’.
Wagner, D, Dvorak, D, Baroff, L.E, Bennett, M.B, Ingham, M.D, Mittman, D.S & Mishkin, A.H

2009. ‘A Control Architecture for Safe Human-Robotic Interactions During Lunar Surface
Operations’, AIAA Infotech at Aerospace Conf., Seattle, Washington, 2009.

Wagner, D., Kim, S., Jimemez, A., Elaasar, M., Rouquette, N., Jenkins, S. “CAESAR Model-Based
Approach to Harness Design,” Proc of IEEE Aerospace Conf., Big Sky, MT, March, 2020.

 Biography

Maged Elaasar is a Senior Technology Researcher at the NASA Jet
Propulsion Laboratory, California Institute of Technology, where he leads
R&D projects in Model Based Systems Engineering and Autonomy.
Specifically, Maged leads the Integrated Model Centric Engineering
program, the openCAESAR project, and the Autonomica project. Prior to
that, he was a senior software architect at IBM, where he led the
Rational Software Architect family of modeling tools. He holds a Ph.D. in
ECE and M.Sc. in CS from Carleton University, (2012, 2003), and a B.Sc.
in CS from American University in Cairo (1996). He is also a lecturer in
the CS department at UCLA.

Nicolas Rouquette is a Principal Computer Scientist at the Jet
Propulsion Laboratory. He made key contributions to several revisions of
modeling standards developed by the Object Management Group (OMG)
for UML and SysML, He holds a PhD in Computer Science from the
University of Southern California where he enjoyed guidance on applied
graph algorithms from Pavel Pevzner and then a PostDoc at USC’s Math
department. He also holds an engineering diploma from the French
ESIEE engineering school in Paris.

Klaus Havelund is a Principal and Senior Research Scientist in the
Flight Software and Avionics Systems Section at JPL. He holds a PhD
degree in Computer Science from the University of Copenhagen. He
spent one year as a research associate at Aalborg University. He has
worked at JPL since 2006 and before that at NASA Ames Research
Center since 1997. His research is focused on formal methods. He co-
designed the formal wide spectrum RAISE Specification Language (RSL).
He pioneered the Java PathFinder model checker, one of the first model
checkers for a programming language. He has authored 165 papers and
a textbook, and has organized 32 CS workshops and conferences.

Martin Feather is a Principal Software Assurance Engineer in JPL’s
Office of Safety and Mission Success. His focus is on research to assure
space missions, in particular their software. A recipient of a NASA
Exceptional Achievement Medal, he has been an author on over 180
publications spanning a range of topics. He received his BA and MA in
Mathematics and Computer Science from Cambridge University, UK, and
PhD in Artificial Intelligence from the University of Edinburgh, UK.

Saptarshi Bandyopadhyay is a Robotics Technologist at the NASA Jet
Propulsion Laboratory, California Institute of Technology, where he
develops novel algorithms for future multi-agent and swarm missions.
In 2020, he was named a NASA NIAC fellow for his work on the Lunar
Crater Radio Telescope on the far-side of the Moon. He received his
Ph.D. in Aerospace Engineering in 2016 from the University of Illinois at
Urbana-Champaign, USA, where he specialized in probabilistic swarm
guidance and distributed estimation. He earned his B.Sc and M.Sc. in
Aerospace Engineering in 2010 from the Indian Institute of Technology.

Alberto Candela is a Data Scientist in the Artificial Intelligence Group
at the NASA Jet Propulsion Laboratory, California Institute of
Technology. His research is focused on creating new autonomous
science techniques for remote sensing, mobile robots, and spacecraft.
He received his Ph.D. and M.S in Robotics from Carnegie Mellon
University, and his B.S. in Mechatronics Engineering from Instituto
Tecnológico Autónomo de México (ITAM).

