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Abstract. Model-based system autonomy is a complex integration of planning from high-level goals 
to low-level command sequences whose execution controls a system. The need for autonomy has 
accelerated in recent years to enable complex missions in automotive, space, and defense. During 
system development, understanding the relationship between system autonomy and the physical 
environment (including hardware) is critical to supporting trade studies, developing concepts of 
operations, characterizing risk, and performing testing. This paper describes the initial results of 
developing Autonomica, an ontology-based methodology and a framework for autonomous behavior 
modeling and analysis. This methodology formalizes an architectural pattern for specifying model-
based autonomy as a vocabulary with description logic semantics and provides authoring and analysis 
capabilities (reasoning, querying, and simulation) for the architectures. The framework implements 
the methodology in an integrated workbench. A running example of a hypothetical spacecraft mission 
to a small space body illustrates the ideas. 

1. Introduction 
Autonomy is the ability of a system to achieve goals while operating independently of external 
control (Fong et al, 2018). The need for autonomy is increasing in many domains. In the automotive 
setting, an autonomous car navigates between two locations, without the control of a human driver, 
on roads along with vehicles, pedestrians, and other obstacles. In aerospace, a robotic spacecraft 
operates independently of ground-based control, with time delays and limited communication 
windows. In defense, an autonomous drone flies without a pilot in hostile airspace tracking its targets 
while avoiding being attacked. In all these cases, the system operates in challenging and dynamic 
environments characterized by large amounts of risk and uncertainty. The system resources (e.g., 
power, sensors, memory) may also be limited or degraded due to the harshness of the operating 
environment. Autonomy becomes increasingly critical to improve productivity, increase robustness, 
and eventually reduce cost. 

Architecting autonomous behavior is a complex endeavor that requires careful specification of the 
control system, the system under control (the hardware and operating environment), and their 
interactions. Within the control system, it involves specifying the autonomy functions of planning, 
scheduling, execution, and monitoring, in addition to traditional functions of estimation and control. 
Such specifications need a well-defined methodology that helps systems architects think about 
relevant details, make decisions, and document them in a coherent way that supports efficient analysis 
for consistency, completeness, and correctness. 



 
State Analysis (SA) (Ingham et al, 2005) is an architectural pattern that was developed over a decade 
ago. It provides a useful vocabulary for specifying model-based autonomy (planning, scheduling, 
and execution), specifically putting emphasis on a clear definition of state and a clean separation of 
estimation and control. It defines the boundaries of the system under control and the control system 
and defines the interfaces between them. However, the 
pattern has not been formalized, nor has it been 
incorporated into a modeling methodology. In 
addition, the semantics of SA has not been formalized. 
We think that addressing these issues would allow SA 
to form the basis for an approach to autonomy 
modeling and analysis. 

This paper describes Autonomica,  a logical modeling 
and analysis methodology for an abstract control 
strategy for autonomous systems.. The methodology 
adopts SA as an architectural pattern and formalizes it 
as an ontological vocabulary in the Ontological 
Modeling Language (OML) [openCAESAR], which 
has description logic (DL) semantics. This allows SA 
models to be easily checked for consistency using an 
off-the-shelf DL reasoner. It also allows encoding the 
well-formedness rules of SA using the SPARQL query 
language (SPARQL). Moreover, the SA vocabulary 
builds on a small set of foundational vocabularies for 
systems engineering called IMCE (Integrated Model 
Centric Engineering) [IMCE], which have been used 
in some NASA space mission development (Europa 
Clipper, Psyche, Sample Return Lander). The 
methodology also identifies and facilitates the steps of 
using the SA vocabulary. Finally, the Autonomica framework supports the methodology by 
integrating some tools, including openCAESAR (openCAESAR 2023) for ontological modeling and 
analysis, MEXEC (Verma et al, 2016) for task planning, scheduling, execution and monitoring, and 
Python/Matlab for simulation. 

The rest of this paper is structured as follows. Section 2 overviews technologies used in this work. A 
running example used to illustrate the ideas is presented in Section 3. Section 4 describes the 
Autonomica methodology, including its usage to model all the relevant levels of autonomy. The 
Autonomica framework that implements the methodology is discussed in section 5. Section 6 
overviews related works. Finally, Section 7 concludes and outlines future work. 

2. Background 
State Analysis. State Analysis (SA) (Ingham et al, 2005, Wagner et al, 2009) is an architectural 
pattern, illustrated in Figure 1 (from (Wagner et al, 2009)), for designing a Control System (CS) that 
controls a System Under Control (SUC).   The SUC is typically hardware and/or a physical 
environment but can include software. The state analysis pattern promotes the following three main 
design principles. (1) State as a first-order consideration: The CS maintains a representation of (best 
estimate of) the state of the SUC with the concept of state variables that have two  timelines: an intent 
timeline that gives the projected future values of the state based on planned goals, and a knowledge 
timeline that gives the past and current values based on evidence collected from the SUC 
(measurements, and commands) and the CS (goals). Note the important distinction between a state 
variable in the CS and the corresponding physical state of the SUC that it estimates. (2) Separation 
of estimation and control: this separation helps avoid design mistakes where control decisions are 

 

Figure 1. State Analysis Architectural Pattern 



 
made on the basis of measurements instead of state estimates, resulting in complex and brittle control 
systems. Instead, estimators update knowledge timelines on the basis of all available evidence: goals, 
sensor measurements, and control commands, whereas controllers query knowledge timelines as 
needed to know when to issue commands. The asymmetry in estimation vs. control reflects a common 
observation among feedback system designers where the crux of the complexity typically occurs in 
estimation instead of control. (3) Goal-directed operation: operator intent is expressed as goals rather 
than concrete commands (at the top level). A goal is a constraint on one or more timelines: what the 
values should be over a certain time period. This may optionally be augmented with additional quality 
and performance measures. Goals are elaborated into a schedule (a process also referred to as 
planning and scheduling), ultimately resulting in commands issued to the SUC and measurements 
obtained from the SUC for monitoring progress toward the eventual achievement of the goals. Goals 
can be control goals (to initiate control, usually referring to intent timelines) or estimation goals (to 
initiate estimation, usually referring to knowledge timelines). State Analysis requires a single 
attribution of estimation and control: each knowledge timeline is updated by a single estimator in the 
CS; and each actuator in the SUC receives commands from a single controller in the CS. 

OML. The Ontological Modeling Language (OML) is used for describing knowledge as semantic 
ontologies with description logic (DL) semantics. OML allows defining two kinds of ontologies: 
vocabularies that define terms (concepts, properties, and relations) and inference rules of a given 
domain, and descriptions that use vocabularies to assert knowledge. One can think of a vocabulary 
as a language, e.g. a Domain-Specific Language (DSL), and a description as a model/program 
expressed in that language. Both vocabularies and descriptions have graphical and textual 
representations. OML ontologies can be checked for logical consistency using DL reasoners, which 
can also generate logical entailments from them. A dataset made of assertions and entailments can 
be loaded to a database and queried using the SPARQL (SPARQL) query language. In section 4, we 
use OML to formalize the SA vocabulary, then use that vocabulary to describe the autonomous 
behavior of the running example. We then analyze that behavior for consistency, query it to check 
well-formedness and gain insights, and generate Python/Matlab skeleton code from it. We show the 
SA vocabulary using OML’s graphical notation, which resembles that of UML class diagrams (or 
Entity-Relation diagrams) with some variations (extra annotations). For illustration, we use OML’s 
canonical textual notation to describe the running example, using the defined vocabulary.  

IMCE. The Integrated Model Centric Engineering (IMCE) vocabularies (IMCE 2023) form a library 
of foundational vocabularies for system engineering that is defined in OML and has been used in 
several applications (Wagner et al. 2020). The library includes vocabularies like base (basic design 
patterns), mission (structural design patterns), and analysis (analysis design patterns). In section 4, 
we reuse these vocabularies in the definition of the SA vocabulary. 

openCAESAR. The open-source project openCAESAR defines the OML specification and provides 
a reference implementation for it in Java. The project also provides an Eclipse-based authoring 
workbench for OML called Rosetta (OML Rosetta 2023) that allows the creation of OML 
vocabularies using its textual or graphical syntaxes. It also provides the ability to author OML 
descriptions. Rosetta also allows analyzing OML models for consistency and running SPARQL 
queries on them. In section 5, we describe how openCAESAR is used to develop the Autonomica 
framework. 

MEXEC. The MEXEC (Multi-mission EXECutive) software (Troesch et al, 2020) is used for 
scheduling task networks and subsequently executing the resulting schedules while monitoring their 
execution. A task network is defined in terms of tasks, which at the higher levels are defined as 
Boolean constraints, specifying their conditional impact on state variables (as in SA). At the lowest 
level, tasks send commands to the system under control. By performing smart scheduling and 
execution, it is possible to react to failures, unexpected events, and execution uncertainties. Current 
conditions (values of state variables) are used to adjust the schedule based on task specifications. The 



 
close coupling between scheduling of tasks and execution and monitoring of tasks, where the 
estimators and controllers update the state variables, results in a closed-loop control that adjusts 
schedules continuously. 

3. Running Example: Small Body Mission 

We ground our work in an example mission to a small body in space (Nesnas et al, 2021), and scope 
our effort on the approach phase (Figure 2), starting when the small body becomes visible in the 
spacecraft’s cameras and ending when the spacecraft starts proximity operations.  

We consider some tasks within this phase of the mission. The first task is Communication with Earth 
(COMM), which needs to occur on a regular schedule, predetermined by the limited availability of 
ground antennas to communicate with this mission. Each communication requires orienting the 
spacecraft antenna towards Earth, during which time its solar panels may be sub-optimally oriented 
towards the Sun. The net effects are a draw-down of battery power (needed by the radio), a transfer 
of data to Earth, and possibly an updated set of instructions from Earth. The second task is a 
Trajectory Correction Maneuver (TCM), which also occurs on a regular schedule, predetermined to 
be able to keep the spacecraft on course towards the small body according to on-board optical 
measurements of the spacecraft's relative position and velocity with respect to the small body. A 
TCM may be skipped if the calculated spacecraft trajectory changes are small enough that, if applied, 
would inject undesirable noise instead of making significant progress. When a TCM is needed, it 
requires the spacecraft to be oriented in the direction that will provide the thrust vector in the 
appropriate direction; like a COMM, this may orient the solar panels away from the Sun. The net 
effects are a draw-down of battery charge (the thrusters must be electrically heated prior to operating), 
and a course correction. The third task is an Observation of the small body (SB), which is interspersed 
between the COMM and TCM tasks. The approach trajectory is designed so that the Sun is 
illuminating the small body from the spacecraft’s point of view. The spacecraft’s cameras face the 
small body, and solar panels face back toward the Sun. The net effects are battery charging, and 
accumulation of data - images of the small body - from which information about the small body (e.g., 
its spin rate) is determined. 

In the approach phase of the mission, the spacecraft needs to manage resources carefully: First, the 
Battery State of Charge must be kept above a minimum threshold; once the battery is fully charged, 
excess power is automatically shunted to a radiator to dissipate it as heat. Second, the Data Storage 
Space reflects the accumulation of small body observations and the release of storage space during 
communication windows when observations are downlinked. If the storage is getting full, a policy 
determines which data to discard. Third, Attitude Control reflects the exclusive nature of the 
spacecraft’s attitude direction requirements: towards the Sun for optimal power generation, towards 
Earth for communication, and towards the small body for observation. As described, a COMM, a 
TCM, and an SB each need attitude control, and the orientations they need are incompatible with one 
another. This means that those three kinds of tasks are mutually exclusive at any point in time. 

 

Figure 2. Small Body Mission Concept 



 
Figure 3 shows a scenario, highly simplified for ease of presentation here. Time flows from left to 
right. The colored segments denote tasks scheduled for execution. Each TCM and COMM task starts 
at a fixed time (indicated by the pushpins), and each depletes the battery at some rate. Each SB starts 
after a COMM (which may finish ahead of time if there is little information to convey), and continues 
until the next TCM starts, during which time the battery is replenished, if possible up to its capacity 
(100%). The blue line indicates the projected state of charge of the battery, the green line the progress 
towards the small body, which is sped up by TCMs. Execution may not follow this projection exactly, 
and may deviate significantly in the event of a failure (e.g., failure of a solar panel). With this 
scenario, we could e.g. investigate how the spacecraft is approaching the small body under variations 
of the length and frequency of these tasks, and how they make changes to the relative distance from 
the spacecraft to the small body. 

 

4. Autonomica Methodology 

 

In this section, we describe the Autonomica methodology for modeling and analyzing autonomous 
behavior. The methodology adopts a refinement of SA as an architectural pattern and formalizes it 
with an OML vocabulary. The vocabulary allows describing the four layers of the pattern (Figure 4): 
the Mission Operations, (MO, section 4.1), the Deliberative Subsystem, (DS, section 4.2), the 
Reactive Subsystem, (RS, section 4.3) and the System Under Control (SUC, section 4.4). The 
combination of the DS and RS corresponds to the CS shown in Figure 1. However, following SA 
principles, it is important to distinguish between the CS functions in the two subsystems. In the DS, 
planning, scheduling, and monitoring of goals are performed (at a lower frequency), while in the RS, 
estimation and control functions are performed (at a higher frequency). These fundamental 
differences in the performed functions motivate splitting the single Control System into two 
functionally distinct layers: DS & RS - Figure 4. 

 

Figure 3. Example a task network of the running example and its impact on key state 

Figure 4. Autonomica Architecture 



 
Inter-layer interactions are depicted as vertical exchanges in Figure 4 (interactions with the mission 
operations are shown as horizontal exchanges). In each subsection below, we present relevant parts 
of the SA vocabulary. We show how the vocabulary is used to describe corresponding aspects from 
the running example. We discuss some of the possible analyses that can be run on the models of each 
layer. These analyses are enabled thanks to the DL semantics of the SA vocabulary and the ability to 
query using SPARQL. We also discuss how a skeleton implementation of each layer is generated 
from the OML descriptions that could be completed and used for simulation. 

4.1. Modeling the Mission Operations 

 

Vocabulary. Figure 5 shows the subset of the State Analysis vocabulary (in OML’s graphical 
notation) supporting modeling Mission Operations. We discuss it below while italicizing the 
vocabulary terms we use. Note that this figure (and other OML figures in section 4) shows reuse of 
some terms from the IMCE vocabularies (base, mission, analysis, and project). 

In this step, we formalize the scenarios a Mission performs as Task Networks, which invoke a set of 
Tasks performed by the autonomous system. A TaskInstance is a concrete Task that specifies a step 
in the scenario and may optionally instantiate (inherit a reusable set of specifications from) a 
TaskTemplate, which is like an abstract task.  A Task is specified with a priority, a start range, an end 
range, a preferred start time, and a preferred duration. A Task is also specified in terms of a set of 
Constraints and/or Impacts it has on Timelines. A Timeline can be of kind State (assigned a value), 
Atomic (representing a single resource that can be deemed in use), Claimable (representing portions 
of a resource which can  deemed in use), Cumulative (assigned a value or deemed to be in use), or 
Cumulative Rate (assigned a value, deemed to be in use, or changed at a rate). A Task’s Constraint 
is a (pre, maintenance, or post) condition that a Timeline’s value meets at the start, throughout, or at 
the end of  the Task. An Impact specifies a value to set, a delta to add, or a rate to add periodically 
to a Timeline relative to (pre: at the beginning, maintenance: during, or post: end of) a Task. An 
Impact is used by the DS to estimate the future values of Timelines. A Task can be specified to invoke 
sub Tasks (hierarchically) and can be constrained to precede (have temporal dependency on) other 
Tasks. 

Description. We use this subset of the SA vocabulary to describe the approach scenario of the case 
study mission (Figure 3) as shown in Table 1. We specify the scenario as a task network that consists 
of two task instances: TCM1, which instantiates the TCM (Trajectory Correction Maneuver) task 
template, and SBO1, which instantiates the SBO (Small Body Observation) task template and 
precedes TCM1. Both task instances specify maintenance impacts on a SC_SB_rel_distance 

 

Figure 5. Subset of State Analysis vocabulary for Mission Operations 



 
(spacecraft to small body relative distance) timeline with values in the range 0% to 100%. (Notice 
that “ci X : Y” means concept instance X is of type Y). 

Table 1. The mission operations in the running example 
description <http://MO1#> as MO1 { uses <http://mds.jpl.nasa.gov/sa/state-analysis#> as SA 
 ci SC_SB_rel_distance : sa:Timeline [ sa:hasTimelineKind “State” sa:hasValidRange [sa:hasMinValue 0; sa:hasMaxValue 100] ] 
 ci TCM : sa:TaskTemplate 
 ci TCM1 : sa:TaskInstance [ sa:instantiates TCM ] 
 ri TCM1.impact : sa:HasImpact [from TCM1; to RS2:SC_SB_rel_distance;  sa:hasLifecycle “Maint”; sa:hasValueKind “Rate”; sa:hasValue -3]  
 ci SBO : sa:TaskTemplate 
 ci SBO1 : sa:TaskInstance [ sa:instantiates SB; sa:precedes TCM1 ] 
 ri SBO1.impact : sa:HasImpact [ from SB1; to RS2:SC_SB_rel_distance; sa:hasLifecycle “Maint”; sa:hasValueKind “Rate” sa:hasValue 1 ] 
 ci Approach : sa:TaskNetwork [ mission:invokes SB1; mission:invokes TCM1 ] 
 ci SB_Mission : sa:Mission [ mission:performs Approach ] 
} 

4.2. Modeling the Deliberative Subsystem 

 

Recall (from Figure 4) that a DS is the CS subsystem that receives from Mission Operations a task 
network to execute. It plans, schedules and executes those tasks by sending goals (on state variable 
values) to be achieved by the RS. It then monitors their achievement, detects any failures, and handles 
them by replanning. The following subset of the methodology helps model the DS. 

Vocabulary. Figure 6 shows the subset of the State Analysis vocabulary supporting the two steps of 
the Autonomica methodology pertaining to modeling the DS. We discuss them below: 

Step 1 involves defining Goals, functional capabilities of the RS, invoked by the DS via Tasks.  A 
Goal specifies which Timelines it impacts and can be characterized with a set of Parameters. A Goal 
is either a KnowledgeGoal, which is about improving the knowledge of some Timeline, or a 
ControlGoal, which is about influencing the value of some Timeline. 

Step 2 involves defining which Goals of the RS are invoked by Tasks of the DS when they are 
executed. If a Goal has parameters, its invocation involves specifying values as Arguments bound to 
each Parameter. A Goal is invoked when its Task’s preconditions are met, after which the DS 
monitors its achievement (execution), through the Task’s maintenance and post conditions, and 
handles detected failures by replanning (we omit describing this for brevity). 

 

Figure 6. Subset of the State Analysis vocabulary for Deliberative 
Subsystem 



 
Description. We use the above described subset of the vocabulary to specify in Table 2 the DS in 
the running example (Figure 3) and the RS Goals sent by each DS Task. We define four goals: a pair 
of knowledge and control goals on the distance to the small body, and a knowledge and control goal 
on the trajectory. (Notice that keyword ref refers to previously defined instances). 

Table 2. The deliberative subsystem in the running example 
description <http://DS1#> as DS1 { extends <http://MO1#> as MO1 
  ci DS : sa:DeliberativeSubsystem [ mission:performs MO1:TCM1, MO1:SBO1 ] 
  ref ci MO1:SB  [ sa:sends KnowDistance, ReduceDistance, KnowTrajectory, ImproveTrajectory ] 
  ref ci MO1:TCM [ sa:sends KnowTrajectory; sa:sends ImproveTrajectory ] 
  ci KnowDistance : sa:KnowledgeGoal [ sa:impacts MO1:SC_SB_rel_distance ] 
  ci ReduceDistance : sa:ControlGoal [ sa:impacts MO1:SC_SB_rel_distance ] 
  ci KnowTrajectory : sa:KnowledgeGoal [ sa:impacts MO1:SC_SB_rel_distance ] 
  ci ImproveTrajectory : sa:ControlGoal [ sa:impacts MO1:SC_SB_rel_distance ] 
} 

Analysis. The subset of the SA vocabulary for describing the DS also allows answering some 
analytical questions. For example, one audit checks that there are no instances of Timelines that are 
impacted by Tasks are also specified to be impacted by Goals invoked by those Tasks. This check 
can be done by running the SPARQL query shown in Table 3. 

Table 3. A SPARQL query to find timelines impacted by tasks but no goals defined on them 
PREFIX base: <http://imce.jpl.nasa.gov/foundation/base#> PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#> 
SELECT DISTINCT ?task ?timeline WHERE { 
 ?task a sa:Task ; sa:hasImpact [ analysis:characterizes ?timeline ] ; sa:sends ?goal . 
  FILTER NOT EXISTS { ?goal sa:impacts ?timeline } 
} 

Code Generation. The SA model of the DS layer allows generation of an implementation skeleton 
in some executable language. In the running example, a Python implementation that uses the MEXEC 
planner (running as a ROS node) is generated. MEXEC uses an XML format for task networks that 
can directly be generated from the OML description (Table 1). Moreover, the description (in Table 
2) can be used to generate Goal and Task classes. Task classes create Goal instances and publish 
them on ROS topics, subscribed to by the RS, and also subscribe to Timeline updates, published by 
the RS, to use them for monitoring. 

4.3. Modeling the Reactive Subsystem 

 

 

Figure 7. Subset of State Analysis vocabulary for Reactive Subsystem 



 
Recall (from Figure 4) that an RS is the subsystem of the CS that interfaces with the DS subsystem 
to achieve the sent goals in a (relatively slow) closed loop. It achieves those goals by interfacing with 
the system under control (SUC) to perform estimation and control functions in (relatively fast) closed 
loops. This subset of the methodology is for modeling an RS. 

Vocabulary. Figure 6 shows a subset of the State Analysis vocabulary supporting the 3 steps of the 
Autonomica methodology pertaining to RS modeling. 

Step 1 involves defining StateVariables, which on one hand are used to derive Timelines in the DS 
and on the other hand, represent estimated values of PhysicalStates in the SUC. Note that not all 
PhysicalStates in the SUC need to be estimated by the RS; only those that need to be consulted for 
control functions. Each PhysicalState is estimated by at most one StateVariable. 

Step 2 involves defining the Achievers of the RS and which Goals they achieve. Achievers receive 
Goals from the DS and achieve them via closed-loop behavior that involves consulting 
StateVariables. One kind of Achiever is an Estimator which achieves KnowledgeGoals, and the other 
kind is Controller, which achieves ControlGoals. 

Step 3 involves defining the interface between the RS and the SUC layers. This involves specifying 
which PhysicalStates estimates are held in which StateVariables, and how the estimation and control 
functions use them. Specifically, Estimators update StateVariables based on receivesEvidence on 
PhysicalStates such as Measurements from SUC Sensors and Commands from SUC Actuators. 
Similarly, Controllers try to influence PhysicalStates by sendsCommands to SUC Actuators. 

Table 4. The state variables in the running example 
description <http://RS1#> as RS1 { extends <http://MO1#> as MO1 
  ci Camera.fieldOfView : sa:StateVariable 
  ci Thruster.torque : sa:StateVariable 
  ci Spacecraft.traj : sa:StateVariable 
  ci Spacecraf-SB.rel_traj : sa:StateVariable 
  ri Spacecraft-SB.rel_traj.projection : sa:ProjectsTo [ from Spacecraft-SB.rel_traj to MO1:SC-SB.rel_distance ] 
  ri Spacecraft-SB.rel_traj.derivation : sa:Derives [ from Camera.fieldOfView, Thruster.torque, Spacecraft.traj to Spacecraft-SB.rel_traj ] 
} 

Table 5. The intent state variables and goals in the running example 
description <http://RS2#> as RS2 { extends <http://RS1#> as RS1, <http://DS#> as DS 
  ci RS : sa:ReactiveSubsystem [ mission:performs DistanceE, DistanceC, TrajectoryE, TrajectoryC ] 
  ci DistanceE : sa:Estimator [ RS; sa:achieves DS:KnowDistance;  sa:updates RS1:Spacecraft-SB.rel_traj; sa:consults RS1:Spacecraft.traj ] 
  ci DistanceC : sa:Controller [sa:achieves DS:ReduceDistance; sa:consults RS1:Spacecraft-SB.rel_traj ] 
  ci TrajectoryE : sa:Estimator [ sa:achieves DS:KnowTrajectory;  sa:updates RS1:Spacecraft.traj ] 
  ci TrajectoryC : sa:Controller [ sa:achieves ImproveTrajectory; sa:consults RS1:Spacecraft.traj ] 
} 

Table 6. The achievers in the running example 
description <http://RS3#> as RS3 {  extends <http://RS2#> as RS2, <http://RS1#> as RS1, <http://SUC1#> as SUC1  
  ref ci Camera.fieldOfView [ sa:estimates SUC1:Camera.fieldOfView ] 
  ref ci Thruster.torque_thrust [ sa:estimates SUC1:Thruster.torque_thrust ] 
  ref ci Spacecraft.traj  [ sa:estimates SUC1:Spacecraft.traj ] 
  ref ci DistanceE  [ sa:receivesEvidence SUC1:Camera.Image ] 
  ref ci DistanceC [ sa:sendsCommand SUC1:Thruster.cmd ] 
  ref ci TrajectoryE  [ sa:receivesEvidence SUC1:Trajectory.data, SUC1:Thruster.cmd ] 
  ref ci TrajectoryC  [  sa:sendsCommand SUC1:Thruster.cmd ] 
} 

Description. We further elaborate on the example of Sec. 4.2 using the RS vocabulary defined above. 
Table 4 shows the results of the methodology’s 1st step. For example, we define StateVariables 
Camera.fieldOfView, Thruster.torque, Spacecraft.traj and Spacecraft-SB.rel-traj. We then specify 



 
that the last variable projects to the SC-SB.rel_distance Timeline, and the first three variables together 
derive the last variable. Notice the use of relation instances (ri) for saying this. In the 2nd step, Table 
5 defines the Achievers (Estimators and Controllers) of the RS, which KnowledgeGoals and 
ControlGoals they achieve, and which StateVariables they consult / update. Table 6 shows the results 
of the methodology’s third step which defines the PhysicalStates (Camera.fieldOfView, 
Thruster.torque_thrust, and Spacecraft.traj) estimated by the StateVariables defined above. It also 
describes how the Achievers estimate them and influence them through Measurements and 
Commands (as Evidences). 

Analysis. The SA vocabulary for describing the RS supports answering analytical questions. For 
example, an Autonomica methodology audit checks that every physical state that is (directly or 
indirectly) controlled must also be estimated. Table 7 shows the SPARQL query for this audit. 

Table 7. A SPARQL query to find all states that are controlled but not estimated 
PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#> 
SELECT ?state ?controller WHERE { 
 ?controller a sa:Controller ;  sa:sendsCommandTo/sa:affects ?state . 
 FILTER NOT EXISTS { ?state sa:isEstimatedBy/sa:isUpdatedBy ?estimator . } 
} 

Code Generation. The RS models allow generation of an implementation skeleton in a similar way 
to the DS (section 4.2) models. Table 8 shows a skeleton for a Matlab class of the Trajectory estimator 
whose function takes arguments according to all the evidence involved. 

Table 8. Generated Matlab class representing the definition of a goal achiever 
classdef TrajectoryE  
  methods 
     function obj = receivesEvidence(obj, Spacecraft, Trajectory, Thruster)  
     % TODO: write estimation algorithm here 
     % inputs Thruster.cmd (or null if no data); Trajectory.data (or null if no data) 
     % output: may update Spacecraft.traj 
end end end  

4.4. Modeling the System Under Control 

 Figure 8. Subset of State Analysis vocabulary for System Under Control 



 
Vocabulary. Figure 8 shows a subset of the State Analysis vocabulary supporting the three steps of 
the Autonomica methodology that pertain to SUC modeling. We discuss those steps while 
referencing this figure. 

Step 1 involves defining the PhysicalObjects contained in the SUC, which are being controlled by 
the CS, and which typically include the hardware components of the system along with their 
contained Sensors and Actuators. We also identify other objects contained in the SUC whose state 
directly or indirectly affects or is affected by that of the former set of objects. These objects may 
either be other hardware components or objects in the physical (operational) environment. 

Step 2 involves identifying the PhysicalCharacteristics that characterize the identified 
PhysicalObjects. It also involves specifying which PhysicalCharacteristics directly affect others 
(i.e., may change when they change). Two kinds of PhysicalCharacteristics can be defined: a 
PhysicalMode is a discrete property of an object that can be changed instantly with an Action (e.g., a 
switch being on or off), whereas a PhysicalState, is a property that can change over time (e.g., a 
battery charge level). Note that all the PhysicalModes define an interface (of Actions that can modify 
those modes) presented by the SUC to mission operations. The SUC can also send to mission 
operations a snapshot of the current characteristics of the object. Such an interface allows mission 
operations to manipulate the SUC during simulation (e.g. a test engine can call those actions to 
challenge a CS, a feature that we plan to leverage in future works.) 

Step 3 involves defining the interface between the SUC and the RS (Figure 4). Specifically, this 
involves defining the Measurements that the Sensors in the SUC can occasionally send to the RS. It 
also involves the Commands that Actuators in the SUC occasionally receive from the RS. 

Table 9. The physical objects in the running example 
description <http://SUC1#> as SUC1 { 
  ci SUC : sa:SystemUnderControl  
  ci Environment : sa:PhysicalObject  [ base:isContainedIn SUC ] 
  ci SB : sa:PhysicalObject  [ base:isContainedIn Environment ] 
  ci Spacecraft : sa:PhysicalObject [ base:isContainedIn SUC ] 
  ci Camera : sa:Sensor [ mission:isPerformedBy Spacecraft ] 
  ci Trajectory : sa:Sensor [ mission:isPerformedBy Spacecraft ] 
  ci Thruster : sa:Actuator [ mission:isPerformedBy Spacecraft ] 
} 

Table 10. The physical states in the running example 
description <http://SUC2#> as SUC2 { extends <http://SUC1#> as SUC1 
  ci Camera.FieldOfView : sa:PhysicalState [ analysis:characterizes SUC1:Camera ] 
  ci Thruster.torque_thrust : sa:PhysicalState [ analysis:characterizes SUC1:Thruster; sa:affects Spacecraft.traj ] 
  ci Spacecraft.traj : sa:PhysicalState [ analysis:characterizes SUC1:Spacecraft; sa:affects Spacecraft-SB.rel_traj ] 
  ci Spacecraft-SB.rel_traj : sa:PhysicalState [ analysis:characterizes SB; sa:affects Camera.FieldOfView ] 
} 

Table 11. The physical interfaces in the running example 
description <http://SUC3#> as SUC3 { extends <http://SUC2#> as SUC2; extends <http://SUC1#> as SUC1 
  ci Camera.Image : sa:Measurement [ sa:measures SUC2:Camera.FieldOfView; sa:isSentBySensor SUC1:Camera ] 
  ci Trajectory.data : sa:Measurement [ sa:measures SUC2:Spacecraft.traj; sa:isSentBySensor SUC1:Trajectory ] 
  ci Thruster.cmd : sa:Command [ sa:modifies SUC2:Spacecraft.traj; sa:isReceivedByActuator SUC1:Thruster ] 
} 

Description. With the vocabulary subset defined above, we can model a simplified version of the 
navigation domain aspects of the Approach scenario of Figures 3. Table 9 shows the results of the 
first sub step, separating the description of the SUC between the Environment (limited to the small 
body, SB, in this example) and the Spacecraft with its sensors and actuators. Scoping the physical 
objects help designers identify the relevant physical characteristics and their affects relationships as 



 
described according to the 2nd sub step in Table 101. Next, designers can shift to defining the 
interfaces between the SUC and the RS in terms of measurements and commands as described in 
Table 11 according to the methodology’s 3rd step. 

Analysis. The subset of the SA vocabulary for describing the SUC allows for answering some 
analytical questions. For example, it allows querying for all the PhysicalStates that could directly or 
indirectly be affected by PhysicalModes. Table 12 shows a SPARQL query that encodes this. 

Table 12. A SPARQL query to find all physical states potentially affected by physical modes 
PREFIX sa: <http://mds.jpl.nasa.gov/state-analysis#> 
SELECT ?mode ?state WHERE { 
  ?mode a sa:PhysicalMode ; sa:affects ?state . 
  ?state a sa:PhysicalState . 
} 

Code Generation. While the OML description models above capture the structure of the SUC, the 
behaviors of how the physical states change over time can be modeled in a computational 
implementation language like Matlab. The methodology supports this paradigm via code generation 
of Matlab Object Oriented classes corresponding to PhysicalObjects, and of Matlab class method 
signatures corresponding to the causality of the effects relationships among PhysicalStates and 
PhysicalModes of PhysicalObjects. For example, Table 13 shows a Matlab function signature 
generated for computing the Camera.FieldOfView physical state. 

Table 13. Excerpts of Matlab classes for computing the camera’s field of view of the small body 
01 
02 
03 
04 
05 
06 
07 
08 
09 

classdef Camera 
  properties 
    fieldOfView 
  end  
  methods 
    function obj = compute_fieldOfView(obj, SB) 
    % TODO: write the Camera.FieldOfView calculation as a function of the inputs. 
    % inputs: SB.rel_traj 
end end end  

classdef SB 
  properties 
    rel_traj 
end end  

5. Autonomica Framework 
In section 4, we described the Autonomica methodology and its SA vocabulary that we designed with 
OML. In this section, we briefly give an overview of the Autonomica Framework, a set of tools that 
we package in a modeling workbench to help autonomy designers apply the Autonomica 
methodology for modeling their architecture (section 5.1), analyze it for consistency (section 5.2), 
run queries on it (section 5.3), and generate an implementation skeleton from it (section 5.4). 

5.1 Modeling Support 
Thanks to SA being formalized as an OML vocabulary, the modeling of an autonomous mission, 
including its MO, DSL, RS and SUC layers can also be done using OML descriptions (ontologies).  
We used an Eclipse-based workbench, called OML Rosetta (Rosetta 2023), provided by the 
openCAESAR project to author the OML ontologies, both the SA vocabulary and the case study 
descriptions. OML Rosetta provides an OML text editor that can be used to author both. However, 
the workbench also provides a diagram viewpoint for OML that we used to visualize the vocabularies 
(shown in the figures above). It also provides a framework (called Sirius) to develop custom UI 
viewpoints for OML descriptions. We used that framework and developed some custom UIs for 
modeling with the SA vocabulary that we do not show here for lack of space. 

 
1 Abbreviations: traj = trajectory (attitude, angular velocity, position and velocity);  rel_traj = relative trajectory. 



 

5.2 Consistency Analysis 
A further benefit of the SA vocabulary being formalized in OML, which has DL semantics, is that it 
is possible to use a DL reasoner to check the consistency of OML descriptions. What is checked is 
that the descriptions are consistent with the semantics of the vocabulary and do not contain logical 
contradiction. Such a contradiction may either be asserted directly in the description or inferred by 
the DL reasoner based on the semantics of the vocabulary. For example, a designer may assert that a 
physical state is measured by two sensors (in the SUC), each of which sends a measurement that is 
received by a different estimator (in the RS). This contradicts the SA semantics that the relationship 
from an estimator to an estimated state is inverse functional. A DL reasoner can detect such a 
contradiction and even provide the designer with an explanation in the form of a minimal set of 
assertions and rules that lead to it. 

5.3 Query Support 
The Rosetta workbench allows a designer to conveniently author and run a set of SPARQL queries 
on an OML description and report results back in various formats (e.g., JSON, XML). We used this 
ability to author SELECT queries to extract information from the description for audits (e.g., Table 
4) or insights (Table 9). 

5.4 Code Generation. 
We added a feature to the Rosetta workbench allowing generating the skeleton code of an 
implementation architected with SA. We generate for each layer an implementation in a high-level 
programming language. For the SUC and RS, we generate Matlab code that contains the expected 
data flows along with stubs for functions that need to be implemented directly in Matlab. Since layers 
of an SA-based architecture need to communicate with each other asynchronously via message 
passing (e.g. sensors in the SUC publish measurements that are received by estimators in the RS), 
we plan to make our implementations target the ROS [ROS] platform, which provides a publish-
subscribe infrastructure for message passing. Another feature of interest in ROS is that it has a global 
clock that synchronizes executions across the layers. 

6. Related Work 
Model-based systems engineering (MBSE) (Ramos et al, 2011) promotes the formalized application 
of modeling for describing systems. An example of that is the use of the Systems Modeling Language 
(SysML) to specify the system’s requirements, structure, behavior, and parametrics using a set of 
standard viewpoints (diagrams and tables). A subset of the language has been given execution 
semantics, which helps directly simulate behavior using the model. However, the computational 
expressiveness of SysML is limited compared to that of other languages like Matlab or Modelica. 
Furthermore, SysML does not prescribe a particular modeling methodology. The Architecture and 
Analysis Definition Language (AADL) [Feiler et al, 2013] is an industry standard language for 
modeling real-time embedded systems. It is distinguished by its emphasis on strong (although semi-
formal) semantics, which has motivated its use in projects emphasizing formal methods. The 
formalism supports definition of software or hardware components, with ports linked together with 
communication channels. It was originally developed for embedded avionics systems, and does not 
provide direct support for specification of autonomy architectures. 

ROSPlan is a framework providing tools for AI Planning in a ROS system (Cashmore et al, 2015). It 
has a variety of nodes which encapsulate planning, problem generation, and plan execution. 
Applications include short-term human-robot interaction (Sanelli et al, 2017) and opportunistic 
planning in autonomous underwater vehicle (AUV) missions (Cashmore et al, 2018). The NASA-
funded autonomous science rover project Toolbox for Research and Exploration (TREX), is 



 
investigating techniques designed to improve operational efficiency and science yield of future lunar 
rover missions. The autonomy framework is implemented in ROS. The approach employs science 
hypotheses, and high-level goals provided by scientists to a rover. The rover performs domain-
specific planning and execution to modify its mission plan based on the data collected and how it 
supports the goals. The framework has been deployed on an analog rover in several sites of geologic 
interest in the United States. (Castano et al, 2022) investigates the problem of operations for 
autonomy, that is, identifying interfaces, tools, and workflows required to effectively operate future 
highly autonomous spacecraft. This work uses an ad hoc ROS environment integrated with MEXEC 
to simulate an autonomous spacecraft and its operations for a flyby mission to the Neptune-Triton 
system. The focus is on operations for autonomous systems rather than on developing architectures. 

For leads to more work on architectures for autonomous spacecraft, see (Tipaldi & Glielmo, 2017), 
which surveys model-based techniques and describes operational concepts for mission planning and 
execution in European space projects; and (Cividanes et al, 2019), which is a more recent and 
extensive survey of spacecraft on-board planning and scheduling, listing many examples. 

The autonomy architecture we use is compatible with the guidance espoused in the Framework for 
Robust Execution and Scheduling of Commands On-Board, FRESCO [Amini et al, 2021]. FRESCO 
specifies guiding principles, functions, interfaces, and interactions from which mission-specific 
autonomous control architectures can be derived.  

7. Conclusions and Future Work 
This paper reports on our initial efforts to define the Autonomica methodology and implement its 
framework. The methodology adopts SA as an architectural pattern and formalizes it as an OML 
vocabulary with DL semantics. The result is a precise SA syntax for describing an autonomy 
architecture whose logical semantics can be checked for consistency and can facilitate analysis with 
SPARQL queries. We used such capabilities to formalize audits for SA that a user can run to detect 
methodological issues with their autonomy description. We also developed a code generator from 
SA descriptions that can produce a (canonical) implementation skeleton suitable for a developer to 
manually complete in a high-level language (we used Matlab). 

We plan to continue developing the Autonomica methodology and framework. Our goal is to 
establish a model-driven approach for developing an operational implementation of autonomy based 
on SA,  where both the architecture and the implementation are version controlled in a git repo with 
continuous integration (CI) scripts that check them on change. We also plan to produce architecture 
views from the model as gate products to facilitate peer review. We also plan to improve the 
generated code skeletons (described in section 5.4) and investigate and use of more advanced features 
of the MEXEC planner to support more elaborate planning (e.g., defining contingencies). We are 
also investigating adding more behavioral specifications to the SA vocabulary to be able to generate 
richer code skeletons. We plan to analyze an SA-based autonomy implementation both statically and 
dynamically. Static analysis of the implementation code and the OML model would extract 
topological information views that should be consistent even if modeling and implementation 
progress concurrently. Dynamic checking would involve testing the implementation driven by 
insights from querying the SA model. We expect this to allow a test engine to focus the testing effort 
and make it more efficient. 
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