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SUMMARY & CONCLUSIONS 

NASA's robotic space missions must make use of on-board 
automation and autonomy to control themselves when 
communication with Earth is slow (due to light-time delays 
across the solar system) or unavailable.  As mission concepts 
become more ambitious, increasingly capable forms of 
autonomy are required - ones that go well beyond executing a 
single preformulated script.  Assurance of autonomy - the 
means by which would-be mission proposers, reviewers and 
managers will be provided the confidence to trust their 
expensive assets to autonomous control - is a challenging 
necessity. 

In this paper we look at assurance of some more capable 
forms of autonomy that use models - models of the environment 
in which system is to operate, and models of the asset 
(spacecraft, rover, helicopter, etc.) itself.  The latter models 
must cover the different factors crucial to the asset’s health and 
operation.  For example, managing electrical power - its source, 
storage and consumption -  is needed, and models are used to 
predict the power balance over time.  Likewise important is 
managing the thermal conditions - temperature of the asset, its 
sensitive instruments, its mechanisms, etc.  These models are 
used by the on-board controller to plan and schedule the asset's 
activities and to monitor the health of the hardware to take 
remedial action if need be when things go wrong (due to 
temporary faults, or permanent degradations and failures). 

However, the computational resources on-board are 
typically but a fraction of those available on Earth.  As a result, 
the on-board models are deliberate simplifications of those 
created for ground operations, simplified for tractable execution 
within those limited computational resources.  Several key 
assurance challenges that stem from this are the following: 

• What process should we follow to derive simplified 
models so that the simplifications won’t mislead the 
asset into performing a dangerous activity?   

• How will we know the combination of simplified 
models remains sufficiently accurate (e.g., the power 
model’s simplifications when coupled with the 
thermal model’s simplifications don’t compound one 
another)? 

• What can we have the asset do to detect if things are 
straying too far from model predictions in time to do 
something about it? 

This paper describes approaches to answering these 
questions, through a combination and adaptation of techniques 
for analysis, testing and monitoring drawn from other (non-
space) domains. 

1 INTRODUCTION 

On-board autonomy is recognized across NASA as a key 
enabler for future generations of robotic missions.  This point 
has been cogently made in, for example, [1] and [2].  Such 
autonomy goes beyond straightforward automation.  As 
described in [3], “Automation … is the automatically-controlled 
operation of an apparatus, process, or system using a pre-
planned set of instructions (e.g., a command sequence).” 
whereas “Autonomy is the capacity of a system to achieve goals 
while operating independently from external control.” 

A wide range of future missions and programs would be 
beneficiaries of more autonomy.  These include those with short 
dynamic timescales (e.g., a short-lived Mercury Lander), 
ambitious operations (e.g., an advanced rover’s goal to traverse 
1,800 km on the moon without continuous direction from 
Earth), opportunistic science (e.g., gathering data on transient 
phenomena), activities requiring rapid reaction to potentially 
dangerous unpredictable conditions (e.g., proximity operations 
near oddly-shaped asteroids), and in locations where 
communication is slow (e.g., explorations of objects beyond the 
inner planets) or unavailable (e.g., during solar conjunctions, or 
in subterranean settings). 

1.1 Autonomy’s need for models 

In almost all these cases, the autonomy involved would 
require knowledge of the capabilities and needs of the asset it 
controls.  Typically, such information is provided via 
behavioral models of the spacecraft and its subsystems, which 
are then used by on-board planners to schedule activities, by 
controllers to monitor the performance of those activities, and 
by fault management capabilities to recognize and respond to 
anomalies.  For a description of command execution systems, 
see for example [4], and for a survey of model-based 
approaches, [5].  Fundamental models that would be needed by 
on-board autonomy in space assets include power models 
(electrical power is almost always a scarce resource), and 
thermal models (temperatures have to be carefully managed in 
the extreme conditions of space). 



1.2 Computational capabilities to execute models 

Models are used extensively during the development of 
space missions to evaluate and assess design alternatives, and 
to plan how missions will be operated.  Models are also used by 
ground control as missions take place, for planning the 
commands to send to the assets.  Because these models are 
being run on computers on Earth, they can take advantage of 
powerful computational resources to execute.  However, when 
shifting to autonomy on-board the assets themselves, the 
available computational resources are much more limited in 
terms of both speed and memory.  This is because space assets 
are constrained in the power and volume they can provide to 
processors, and furthermore, processor designs tolerant of the 
radiation environments in space are computationally inferior to 
their terrestrial counterparts, typically a decade behind the state 
of the art. 

For example, NASA’s Perseverance rover on Mars uses a 
BAE Systems RAD750 radiation-hardened single board 
computer, which has a couple of orders of magnitude less 
computing power than the Snapdragon 801 on the 
accompanying Ingenuity helicopter.  This rover must fulfill the 
primary science mission, so extremely high assurance of the 
successful and continued operation of its computer was 
demanded, whereas the helicopter’s mission is experimental in 
nature [6] and so open to use of more cutting-edge technology. 

Although there are efforts underway to advance the 
capabilities of highly reliable spaceflight computing (e.g., [7]), 
such capabilities will continue to lag behind ground-based 
resources, especially when compared to supercomputing 
facilities. 

1.3 Simplified models 

As a result, it is infeasible to execute on-board the complex 
and detailed models as would be used on the ground.  Instead, 
the on-board autonomy must make do with deliberately 
simplified models.  The need for such model simplification is 
widespread, not just for execution on space assets [8].  Such 
simplified models may also be referred to as “reduced order 
models” [9] or “low fidelity models”.  

1.4 Concerns with use of simplified models 

Adoption of autonomy by flight projects hinges on their 
willingness to have trust in its correct operation – i.e., 
confidence that it will not harm the space asset(s) it controls, 
and that it will support the accomplishment of mission 
objectives.  Assurance of spacecraft autonomy has long been a 
recognized as a concern, e.g., as expressed almost two decades 
ago in [10]. 

 If autonomy is to manage fundamental space asset 
domains such as power and temperature, and yet can only afford 
to execute simplified models of these factors, this raises the 
obvious question of how to trust the result.  Might the 
simplification of a thermal model, say, mislead the autonomy 
into directing the asset into a dangerous state of overheating? 
On-board autonomy does have the advantage of access to actual 
conditions, as provided by the asset’s sensors.  In contrast, when 

mission control plans future operations, it must extrapolate 
what the conditions will be at the time of those operations.  
Despite this advantage, there is still the concern that autonomy, 
misled by a simplified model, might set the asset on an 
irreversible course of action that will lead to failure.  This 
concern is exacerbated when it is not just one model that is 
simplified, but a set of interconnected models.  The thermal 
model must take into account the heat generated by power-
consuming devices.  But the amount of power that will be 
needed by a device will itself be determined from a power 
model – again, a simplified model. 

1.5 Uncertainty, Unpredictability and Model adaptation 

Further complicating the situations of many space missions 
are the inevitable factors of uncertainty and unpredictability.  
The environments in which space missions take place are often 
fraught with uncertainty.  For example, the gravity field around 
a previously unvisited small body (e.g., an asteroid) will be 
uncertain in advance.  It is important to approach with care to 
avoid the risk of unintended impact.  Operations on the surface 
of a body will often face uncertainty in properties of that 
surface, as seen when OSIRIX-REx’s sample acquisition from 
the surface of asteroid Bennu gathered a surprising excess of 
material, including pebbles, propping open the flap that was 
intended to prevent escaping material [11].  The characteristics 
of the space asset itself can be uncertain.  For example,  
spacecraft instrument or equipment performance uncertainty is 
typically resolved by calibration before use, e.g., calibration of 
thrusters [12].  Over time, and due to the harsh conditions of 
space, equipment can degrade, and can develop failures that 
affect its performance.  These may be expected, especially for 
long-duration missions, but exactly when they will occur is not 
predictable.   

For all these cases, models of the asset and its environment 
may have some degree of uncertainty, and may need to be 
updated to reflect changed understanding and changed 
situations.  If there is not time to relay information to ground 
control to have them determine the model updates, then the 
autonomy must update its own models.  This of course raises 
the concern of how to trust the updated models to not set the 
asset on an irreversible course of action that will lead to failure.   

1.6 Addressing the concerns 

The following four approaches combine as means to 
develop trust in autonomy’s use of on-board models: 

1. Codify best-practice guidance to developing 
simplified models from their sophisticated ground-
based models. 

2. Develop an analysis technique with which to assess 
the safety of simplified models when they are coupled 
together. 

3. Develop “point-of-no-return” monitors to recognize 
when to interrupt the ongoing execution to avoid 
leading to an unsafe state.   

4. Show that the mechanism for autonomously updating 
models will operate correctly and retain safety.   

The sections that follow expand upon each of these. 



2 BEST-PRACTICE GUIDANCE FOR DEVELOPMENT OF 
SIMPLIFIED MODELS 

As illustration, consider a model of a spacecraft’s thermal 
system.  This model will include sources of heat, e.g., sunlight 
impinging on external surfaces; thermal inertia of the 
components within the asset; conduction of heat between 
components abutting one another; and losses of heat, e.g., heat 
radiating into space on the shadowed side of the spacecraft. 

 A simplification of this model might abstract from a pair 
of components and the thermal conductivity between them 
(across a shared interface), to treat them as a single, 
homogeneous block.  This would mean that nuances of gradual 
heat transfer across an interface from one of them to the other 
would be lost in the simplified model.  Assurance is needed that 
the spacecraft’s autonomy will keep the spacecraft safe when it 
relies upon the thermal predictions from this simplified model.  
Work germane to this area is found in [13], which presents a 
method for quantifying uncertainty in conceptual-level design 
via a computationally efficient probabilistic method, showing 
an application to estimate the maximum-expected temperature 
of several critical components on a spacecraft. 

2.1 Models and control systems 

A useful way of viewing this is from the perspective of the 
interplay between the control system and the models it uses to 
keep state estimates.  This is the style of thinking espoused in 
Leveson’s  “Systems-Theoretic Accident Model and Processes” 
(STAMP) [14].  Part of this approach hinges on recognizing that 
a controller must contain a model of the process being 
controlled.  It promotes consideration of how inaccuracies in 
the model could potentially mislead the controller and whether 
the results could be dangerous, and if so leads to designing 
protections against those situations.   

In the case of autonomy using deliberately simplified 
models, the nature of the simplifications inform the reasoning 
of how the controller could possibly be misled, and therefore 
how to protect against that.  Consider the example of a thermal 
model having simplified a pair of connected components into a 
single homogeneous block.  The heat flow across that block 
predicted by the simplified model may be faster than that in 
reality if, for example, there was thermal insulation at the 
interface between those two components.  The question to ask 
is whether this misprediction could pose a danger.  Perhaps the 
source of the incoming heat would not cool as quickly as it was 
predicted, or perhaps the first of those two components would 
experience a dangerous increase in heat. If recognized as 
possible dangers, these might be addressed by having the 
controller assume more pessimistic margins on allowable 
temperatures. 

2.2 NASA’s Modeling and Simulation Standard 

This combination of estimating the simplification-induced 
inaccuracies together with the criticality of those inaccuracies 
is akin to the thinking behind NASA’s Modeling and 
Simulation (M&S) standard [15], which states “This NASA 
Technical Standard establishes a minimum set of requirements 
and recommendations for M&S influencing or supporting 
decisions, particularly critical decisions.” One of the relevant 
requirements imposed by this standard is shown here: 

The standard defines key factors with which to assess the 
credibility of the results produced by models and simulations.  
These factors are grouped into Development: Data Pedigree, 
Verification, Validation; Operations: Input Pedigree, 
Uncertainty Characterization, Results Robustness; and 
Supporting Evidence: M&S History, and M&S Process/Product 
Management.  The standard’s factors are intended for when a 
model or simulation is first constructed.  To instead assess the 
credibility of a model formed as a simplification of an already 
constructed model, some reinterpretation of the key factors is 
warranted.  The following lists several examples of such, giving 
the original phrasing, prefaced by (Standard), and the revised 
phrasing, prefaced by (Reinterpretation): 
• Development 
o Verification 

§ (Standard) Were the models implemented correctly, 
per their requirements/specifications? 

§ (Reinterpretation) Were the simplifications 
implemented correctly? 

o Validation 
§ (Standard) Did the M&S results compare favorably 

to the referent data, and how close is the referent to 
the RWS (Real World System)? 

§ (Reinterpretation) Do the simplified M&S results 
stay sufficiently close to the referent data when used 
for control purposes?  

• Operations 
o Uncertainty Characterization 

§ (Standard) Is the uncertainty in the current M&S 
results appropriately characterized? What are the 
sources of uncertainty in the results and how are they 
propagated through to the results of the analysis? 

§ (Reinterpretation) Is the increased uncertainty in the 
simplified model appropriately characterized? What 
simplifications are the sources of increased 
uncertainty in the results and how are they 
propagated through to the control system’s use of the 
simplified model? 

• Supporting Evidence 
o M&S Process/Product Management 

[M&S 6] Shall perform and document the criticality 
assessment for the M&S.  
[Rationale: The criticality assessment ensures 
communication of the amount of influence an M&S has 
on a particular situation relative to the consequences of 
that situation.] 



§ (Standard) How well managed were the M&S 
processes and products? 

§ (Reinterpretation) How well managed was the 
process of deriving the simplified model(s)? 

The standard goes on to explain each of its key factors in 
more detail, and indicates how they are to be assessed.  Just as 
the factors themselves require some reinterpretation to be 
applied to model simplification, so do these details. 

3 COUPLED MODELS 

 As illustration of coupled models, consider combining a 
simplified model of a spacecraft’s thermal system with a 
simplified model of its power system.  Thermal and power can 
interact.  When using a radar, say, it consumes power and 
generates heat.  So when planning to use the radar to take 
science observations, it may be necessary to consider whether 
doing so would cause an excessive build-up of heat.  Even more 
coupling between thermal and power occurs in spacecraft 
designs that do not rely solely on passive distribution of heat, 
but use active – and hence powered –  “heat redistribution 
systems” [16]. 

To address the assurance aspects of coupled models, the 
perspective of Leveson’s STAMP approach is again relevant.  
Much of the rationale behind application of STAMP is based 
on the observation that in today’s complex systems, mishaps 
may occur from untoward interactions among otherwise 
correctly operating components.  A key step in the STAMP 
approach (for details, see [17]) is to examine control actions 
between components, and for each, systematically consider the 
ways in which a control action might be unsafe.  For model 
simplification, instead of focusing on control actions between 
components, focus on data exchange between the coupled 
simplified models.  For each data exchange, consider how one 
model’s inaccuracy, when propagated across a data exchange to 
another model, affects the inaccuracies of that second model.  It 
is particularly important to look for feedback loops and 
determine whether or not they are reinforcing (compounding 
the uncertainty).  Early work in this direction is to be found in 
[18].   

4 POINT-OF-NO-RETURN MONITORS 

Current practice is to use fault protection monitors of 
current state to recognize a dangerous situation (e.g., 
overcurrent) and take immediate action to preserve health and 
safety (e.g., turn off the offending power draw).  It is necessary 
to take this concept further, using runtime monitoring of 
predictive conditions to recognize in advance when action is 
necessary to avoid a future health and safety hazard.   

4.1 Fault protection in space systems 

In the space domain, fault protection monitors are standard 
practice, used as far back as the Voyager spacecraft [19], and 
play an important role in the more general area of fault 
management [20].  Fault protection monitors look for 
symptoms of faults and failures, triggering an emergency 
response when critical conditions are recognized.  A general 
response to these is to go into “Safe Mode,” which configures 

the asset to a state which is safe and predictable so that 
diagnosis of more complex faults can be addressed by the 
Operations Team back on Earth [21].   

On NASA’s Curiosity rover operating on Mars, fault 
protection would be triggered if, for example, the rover’s 
autonomous driving led it onto unexpectedly steep terrain – the 
reaction in this case would be to stop the drive.  In addition, 
there are monitors of the rover’s executing software, checking 
“runtime assertions”.  These assertions express conditions that 
the programmer assumed would hold at that point in the 
execution.  The violation of an assertion is an indication that 
something is amiss – often the first such indication.  As 
recounted in [22]: “One final departure from earlier practice 
was that on the MSL mission all assertions remained enabled 
in flight, whereas before they were disabled after testing.  A 
failing assertion is now tied in with the fault-protection system 
and by default places the spacecraft into a predefined safe state 
where the cause of the failure can be diagnosed carefully before 
normal operation is resumed.” 

4.2 Runtime monitoring 

Runtime monitoring is a general term for detecting 
conditions during execution.  It has long been an active area of 
study: an annual workshop on “Runtime Verification” began in 
2001, and became a conference in 2010 – see https://runtime-
verification.github.io/index.html, and for comprehensive 
overviews, [23] and [24].  Its use in conditions of uncertainty is 
described in [25], stating “A software system can successfully 
operate in multiple dynamic contexts by using runtime models 
that augment information available at design-time with 
information monitored at runtime.” 

In the case of space assets whose models may both be 
deliberate simplifications, and include uncertainty in their 
knowledge, runtime monitoring is a way to recognize when 
conditions diverge from expectations.  For example, the 
experience of operating rovers on Mars has shown that driving 
over highly sloped and sandy terrains can lead to wheel 
slippage.  Had the rover’s estimate of its position been limited 
to wheel odometry alone (how much the wheels have turned), 
its inaccuracy would have forced the mission planners to 
conservatively command short drives in such circumstances, 
checking each day where the rover had actually moved to.  
Fortunately in this case a technique called Visual Odometry 
allowed the rover to keep accurate track of its position during 
driving [26], eliminating most of the uncertainty, and thus 
allowing mission planners to command longer daily drives. 

Furthermore, it may be necessary to not just recognize and 
react to dangerous conditions as and when then occur, but also 
to recognize when a course of action could lead to a dangerous 
condition from which recovery would be impossible.  Thus 
monitoring must be of predictive conditions. 

There are two challenges to this approach: derivation of 
crucial correctness conditions from understanding of the 
coupled reduced-order models, and casting those conditions as 
computations that are tractable for continuous evaluation.  The 
monitored conditions must encompass both the model 
simplifications, and their explicit treatment of uncertainties 



(e.g., placing bounds on the latter to serve as triggers).  As long 
as these monitors are in place, it allows the autonomous short-
to-medium term planning to be less conservative in its 
scheduling.  Instead of being forced to be overly conservative 
(based on pessimistic assumptions about deviations from 
expectations), it can set the asset on course of action confident 
that monitoring will recognize if and when deviations are 
accumulating.  As long as activity is halted before reaching a 
point of no return, safety will be preserved.   

5 FUTURE WORK - AUTONOMOUSLY UPDATED 
MODELS 

During operation, information about the space asset’s 
environment, and about the asset’s own performance, will 
become available.  This information could be used to decrease 
uncertainty in its models, either by communicating the 
information back to mission control to have them decide how 
to update the asset’s on-board models, or, ambitiously, by the 
space asset itself.  Similar model updates would be needed if 
the asset’s performance changes due to degradation or failure 
of its hardware components.  This raises two concerns if it is to 
be done autonomously: 

• Will the update be performed correctly? 
• Will the control system’s use the updated model(s) 

remain correct, i.e., never set the asset on an irreversible 
course of action that would lead to failure? 

Addressing these concerns is an area for future work, in 
parallel with an effort looking into the approaches that will 
perform the autonomous updating.  Together with this effort, 
we are in the process of identifying related work in other 
domains that may be transferrable to space asset autonomy.  We 
mention the following: 

Updating models as information is gained during operation 
is the topic of [27], where it is referred to as “calibration” and 
shows use of a Bayesian technique specifically suited to 
addressing initial and remaining uncertainty.  Particularly 
relevant is the approach in [28], to allow for rapid model 
adaptation.  The intended purpose is to allow an aircraft to 
dynamically replan a safe mission in response to structural 
damage or degradation.  Its approach combines a library of 
component-based reduced-order models.  In the software 
engineering domain, [29] considers the need to assure 
continued compliance with requirements as autonomous 
adaptation takes place, a process they term “perpetual  
assurances  for  self-adaptive systems”. 

An even more ambitious avenue of development would be 
space missions’ use of machine learning derived algorithms 
(e.g., deep neural nets).  The culture of space exploration, 
driven by the need to succeed on the first and only try, currently 
has strong aversion to these, in part because it is challenging to 
identify an attribution for the prediction/decision made by these 
algorithms.  Nevertheless, how to develop trust in these kinds 
of algorithms is an area of active investigation [30]. 

A parallel effort to this work is one exploring test 
automation, to make feasible the large amounts of verification 
testing (mostly in simulation) needed to cover the multivariate 
nature of the environment (illumination, gravity, surfaces, etc.). 
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