
BDDs for Representing Data
in Runtime Verification?

Klaus Havelund1 and Doron Peled2

1Jet Propulsion Laboratory,
California Institute of Technology, USA

2 Department of Computer Science
Bar Ilan University, Israel

Abstract. A BDD (Boolean Decision Diagram) is a data structure for the com-
pact representation of a Boolean function. It is equipped with efficient algorithms
for minimization and for applying Boolean operators. The use of BDDs for repre-
senting Boolean functions, combined with symbolic algorithms, facilitated a leap
in the capability of model checking for the verification of systems with a huge
number of states. Recently BDDs were considered as an efficient representation
of data for Runtime Verification (RV). We review here the basic theory of BDDs
and summarize their use in model checking and specifically in runtime verifica-
tion.

1 Introduction

Boolean functions have shown to have many useful applications in computer science.
E.g. Boolean functions early on resulted in lowering the production costs and foot-
prints of digital circuits. A later use of Boolean functions is analysis of software and
hardware [9], where BDDs represent sets of states as Boolean functions. For these ap-
plications, there is a need not only to achieve a compact representation, but also to have
efficient procedures for applying Boolean operators. In particular, the conjunction of
Boolean functions that represent sets of states returns the intersection of these sets, and
the disjunction returns to their union.

More specifically, a Boolean Decision Diagram or BDD, is a rooted directed acyclic
graph (DAG), with nonleaf nodes labeled by Boolean variables, and leafs labeled with
0 (false) or 1 (true). BDDs were already used for representing Boolean functions since
the middle of the previous century [21]. However, it was only in the 80s that Bryant [6]
presented their reduced ordered version (ROBDD), where the ordering between the
Boolean variables are fixed along each path from the root to a leaf, and isomorphic
parts are combined.

The ability to encode sets of states and relations between values and to apply
Boolean operators on ROBDDs was exploited in model checking (see, [10]). It resulted
? The research performed by the first author was carried out at Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under a contract with the National Aeronautics and Space
Administration. The research performed by the second author was partially funded by Israeli
Science Foundation grant 1464/18: “Efficient Runtime Verification for Systems with Lots of
Data and its Applications”.

in a huge increase in the size of systems that can be checked over previous techniques.
Recently ROBDDs have been used to support runtime verification of execution traces
containing large amounts of data, e.g., in monitoring of sequences with data-carrying
events against first-order past-time LTL formulas [15]. In this paper we survey these
applications of BDDs with emphasis on runtime verification.

The paper is organized as follows. Section 2 provides a brief introduction to BDDs.
Section 3 outlines how to represent sets and relations with BDDs. Section 4 gives a
brief introduction to their use in symbolic model checking. Section 5 presents the use
of BDDs in runtime verification of first-order past-time LTL for representing the data
quantified over in traces. Section 6 expands on this framework and illustrates how BDDs
can be used to monitor timed events against first-order past-time LTL with time con-
straints.

2 Introduction to OBDDs

A Boolean function f : {0,1}k 7→ {0,1} maps k-tuples of Boolean values 1 and 0 (for
true and false, respectively) to Boolean values. Each k-tuple can be considered as an
assignment Γ : V 7→ {0,1} from variables in a fixed set V to a Boolean value. A
Boolean function can be expressed using literals, which denote the Boolean variables,
and Boolean operators: conjunction (and), disjunction (or) and negation (not). Con-
junction is denoted here, in a standard way, using concatenation, disjunction is denoted
with + and negation is denoted by putting a line over the negated part; conjunction has
priority over disjunction. A minterm is a conjunction of literals, e.g., x1x3x4 (standing
for x1∧¬x3∧ x4). Each Boolean function can be written in disjunctive normal form as
a sum (disjunction) of minterms.

An OBDD G = ((Q,v0,E),V ,<,L) consists of the following components:

– (Q,v0,E) is a rooted directed acyclic graph with
• Q is finite set of nodes. Each non-leaf node has two distinguished successor

nodes l(v) and h(v).
• v0 ∈ Q is the root node.
• E ⊆Q×Q is a finite set of directed edges. Each non-leaf node has exactly two

outgoing edges to its successors: the low edge (v, l(v)) ∈ E and the high edge
(v,h(v)) ∈ E.

– V is a finite set of Boolean variables (or BDD variables or simply bits).
– < is a total order on V , extended with two maximal values: 0 and 1.
– L : Q 7→ V ∪{0, 1} is a mapping that satisfies the following conditions:
• The leafs are mapped to {0,1} and the non-leaf nodes are mapped to V .
• If (v,v′) ∈ E, then L(v) < L(v′), i.e., variables that label nodes on any path of

the graph appear according to the order <, hence the name Ordered BDD.

An OBDD G represents a Boolean function (expression) over the variables V . The
interpretation of a BDD as a formula is based on the Shannon expansion

f = x f [0/x]+ x f [1/x] (1)

2

where f [0/x] (f [1/x], respectively) denotes the function f when fixing x as 0 (1, respec-
tively); thus, equation (1) separates the function f into two components, according to
the truth value of the variable x. Each node v ∈ Q in the OBDD represents the formula

fv =

{
L(v), for a leaf v
L(v) fl(v)+L(v) fh(v), for a non-leaf v.

(2)

An OBDD G represents the formula fv0 of the root node v0. Another way to interpret
an OBDD is that a path F ⊂ E that starts at the root and ends at a leaf w corresponds to
an assignment Γ, where for each nonleaf node v ∈ Q,

Γ(L(v)) =

{
0, if (v, l(v)) ∈ F
1, if (v,r(v)) ∈ F

(3)

and for each variable x ∈ V that does not label any node on the path Γ(x) can be either
0 or 1. The Boolean function returns for the assignment Γ the truth value L(w). We will,
from now on, use the convention of calling OBDDs simply BDDs.

Fig. 1: The effect of variables order.

BDDs are typically depicted as in Figure 1 (both left and right), where each nonleaf
node is denoted with a circle, and the leafs are denoted with rectangles. Edges of the
form (v, l(v′)) are dashed, while edges of the form (v,h(v)) are full lines.

A benefit of using BDDs is the ability to minimize them, often producing a rep-
resentation that is considerably smaller than other representations. The minimization

3

allows combining isomorphic subgraphs, using the following rules, applied from the
leafs upwards.

1. Combine all the leaf nodes that are labeled 1 and all the leaf nodes that are labeled
0. Redirect incoming edges to the resulting leafs.

2. When l(f) = l(g) and h(f) = h(g), combine the nodes f and g and redirect incom-
ing edges to the single copy.

3. For a node f such that l(f) = h(f), remove f and redirect its incoming edges to
l(f).

The term minimal BDD is sometimes used to emphasize that it is a Reduced Ordered
Boolean Decision Diagram. The algorithm is linear in the size of the BDD1.

As an example, consider the Boolean function f over the variables x1, x2 and x3
that returns the parity (the sum modulo 2) of x1 + x2 + x3. The full binary tree for this
function, where x1 < x2 < x3, appears in Figure 2A. We obtain 2B by combining leafs
with the same Boolean values, then 2C by combining the middle two x3 nodes, and
finally 2D by combining the exterior two x3 nodes. No further minimization steps are
available.

The order of variables in the BDD can greatly impact the size of the BDD. A
classical example is the expression x1x2 + x3x4 + . . .xn−1xn. Given the variable or-
der x1 < x2 < .. . < xn−1 < xn, the BDD grows linearly with n. But for the order
x1 < x3 < .. .xn−1 < x2 < x4 < .. . < xn−2 < xn, the BDD grows exponentially with n.
The two BDDs for n = 6 appear in Figure 1. Note that in the right BDD, the part above
the dotted line, with nodes labeled with x1,x3, . . . ,xn−1, is a full binary tree. For each
Boolean function, there is exactly one (minimized) BDD per each variable ordering [6].
However, in some pathological cases, for example, when describing bit-vector multi-
plication circuits, the size of the minimal BDD grows exponentially with the number
Boolean variables for any variables ordering.

Another benefit of using BDDs, in addition to achieving compact representation
of Boolean functions, is the availability of efficient algorithms for applying Boolean
operators. This makes BDDs useful for applications that process sets of data elements,
such as model checking and runtime verification, as will be shown in Secions 4 and 5.

The restrict operator computes from a BDD representing a function f a BDD rep-
resenting the function f [0/xi] (f [1/xi], respectively). It replaces any edge that leads to
a node labeled with xi with an edge (from the same source node) into xi’s low (high,
respectively), as follows:

1. If, for the root node v, L(v) = xi, then f [0/xi] (f [1/xi], respectively) is the BDD
rooted at l(v) (h(v), respectively).

2. Replace any edge (v,w) ∈ E, where L(w) = xi, by an edge (v, l(w)) ((v,h(w)), re-
spectively), and remove w.

3. Minimize the BDD.

In Figure 3, the left BDD represents some function f , and the right BDD is f [1/x2].

1 To achieve linearity, for rule 2, bucket sort is applied to cluster together the nodes with the
same variable and the same outgoing l edge. Then within each bucket, bucket sort is applied
again according to the outgoing h edge.

4

Fig. 2: A: original, B: reduce leafs, C: combine middle x3’s, D: combine other x3’s.

The operator apply# applies an arbitrary Boolean operator # (e.g., and, or) on
BDDs. It is based on the fact that restriction distributes over function decomposition,
i.e.,

(f #g)[a/x] = f [a/x]#g[a/x]

for a ∈ {0, 1} and x ∈V . Then, using Shannon’s expansion, see Equation (1), we have:

(f #g) = x(f #g)[0/x]+ x(f #g)[1/x] = x(f [0/x]#g[0/x])+ x(f [1/x]#g[1/x])

We calculate the BDD for f #g, for BDDs f and g, using the following recursive proce-
dure apply#(v f ,vg), called initially with the roots of the two BDDs.

1. If v f and vg are leafs, then return a leaf v with L(v) = L(v f)#L(vg). Otherwise,
2. if L(v f) = L(vg) (both parameters are labeled with the same variable), then return

a node v with l(v) = apply#(l(v f), l(vg)) and h(v) = apply#(h(v f), h(vg)),
3. if L(v f)< L(vg) (there is no node labeled with L(v f) in the current path of recursive

calls in the BDD g) then return a node v with l(v) = apply#(l(v f),vg) and h(v) =
apply#(r(v f),vg).
The symmetric case is handled similarly.

A naive application of this procedure can repeatedly recalculate subgraphs starting from
the same pair of BDD nodes. This is avoided by using a dynamic programming princi-
ple, where the results of the recursive calls are hashed according to the call parameters
(v f ,vg). This is demonstrated in Figure 4, where some (arbitrary) Boolean operator #
is applied to the two BDDs that appear at the left. The tree in the middle of Figure 4
is obtained by using the recursive procedure without using dynamic programming. The

5

Fig. 3: A BDD f on the left, and f [1/x2] on the right.

DAG on the right is obtained using dynamic programming. Further reduction may be
possible. Note that the leafs in the middle appear as pairs of nodes, whereas the cor-
responding leafs on the right appear as the Boolean # combinations between the leafs,
e.g., R5,S4 in the middle part corresponds to L(R5)#L(S4) on the right. The size of the
resulting BDD and the time complexity of the apply operator is limited to product of
sizes of these BDDs.

The negation operator on BDDs is trivial; it requires reversing the labeling on the
leafs, from 0 to 1 and from 1 to 0. Another useful operator is existential quantification
over a Boolean variable, i.e., calculating ∃x f for a BDD representing f . Since ∃x f =
f [0/x]∨ f [1/x], this operator can be implemented using restrict twice and then apply
with # = ∨ on the result.

Alternative representations ZDDs, for Zero-suppressed Decision Diagrams, were
suggested by Minato [23]. ZDDs typically demonstrate better reduction than BDDs for
Boolean functions in which the assignments that are satisfied are sparse. The reduction
of ZDDs is slightly different than for BDDs. Reduction rules 1 and 2 remain the same.
Reduction rule 3, which removes a node whose low and high edges point at the same
node and redirects any incoming edge to its successor, is replaced with the following
rule: a node v where its high successor is the constant 0, i.e., L(h(v)) = 0, is removed,
and any incoming edge is redirected to l(v).

Although ZDDs may produce a more compact representation than BDDs, the com-
paction that can be achieved is not exponential, but rather by a factor of the number of
BDD variables V .

6

Fig. 4: apply# on BDDs (left) without (middle) and with (right) dynamic programming.

Multi Terminal Binary Decision Diagrams (MTBDDs) [3] extends the BDD nota-
tion to mappings from Boolean variables to a domain D that can be different than the
Boolean values. Then, the apply operator can be used with, e.g., arithmetic operators
like addition and multiplication instead of the Boolean operators. This is useful, for
example, for the symbolic verification of probabilistic systems [1].

3 Representing Sets and Relations using BDDs

A Boolean function, and consequently a BDD, can represent a set of integer values.
Each integer value i is, in turn, represented as a bit vector (i.e., as a binary number)
xm . . .x1 where i = x1×1+ x2×2+ . . .xm×2m. For example, the integer 6 can be rep-
resented as the bit vector x3x2x1 = 110. To represent a set of integers, the BDD returns
true for any bit vector that represents an element in the set. For example, to represent the
set {4, 6}, we first convert 4 into the bit vector x3x2x1 = 100 and 6 into x3x2x1 = 110.
The Boolean function over x1,x2,x3 is then x1x3, which returns true exactly for these
two bit vector combinations. To keep common conventions, we write a list of Boolean
variables with the least indexed variable at the left but bit vectors and binary numbers
with the least significant digit at the right.

This representation can be extended to represent relations, or, equivalently, a set
of tuples over integers. The Boolean variables are partitioned into n bit vectors x1 =
x1

k1
. . .x1

1, xn = xn
kn
. . .xn

1, each one of them representing an integer value. These bit vec-
tors are then concatenated.

7

3.1 BDDs over integers

BDDs can represent a set of integers, where each value is kept as a bit vector, i.e., using
its binary representation, using the BDD variables. This can be used, e.g., to represent
integer values that an ALU processes or values of discrete timers. An advantage of this
representation is that one can perform arithmetic operations and comparisons over sets
of values, e.g., add a constant value ∆ to each value in a set, or restrict a set to values
that are bigger than a constant ∆, using BDD operations. We demonstrate how such
operations are translated to BDDs.

The Boolean formula addconst(t, t ′,∆) is satisfied by a triple of integer values t, t ′

and ∆, represented as the bit vectors tm . . . t1, t ′m . . . t ′1 and ∆m . . .∆1, respectively, such that
t ′ = t +∆. The formula uses additional bits r1, . . . ,rm, where ri is the carry-over from
the ith bits. Existential quantification is applied to remove the BDD variables r1, . . . ,rm.
We ignore here the issue of addition overflow.

addconst(t, t ′,∆) = ∧1≤i≤m (t ′i ↔ (ti⊕∆i⊕ ri))
where r1 = false and

for 1≤ i < m: ri+1 = ((ri∧ (ti∨∆i))∨ (¬ri∧ ti∧∆i)))

This Boolean function can be translated into a BDD over the variables t1, . . . , tm,
t ′1, . . . , t

′
m and ∆1, . . . ,∆m. It represents a relation on triples (t, t ′,∆). When ∆ is restricted

to a fixed bit vector, the formula represents a relation on pairs (t, t ′).
Suppose that we want to update the set of values represented by a BDD B by adding

a constant 3 to each value. We can do that by using addconst with the bit vector ∆ set
to the binary value 00 . . .011. The BDD obtained by

∃t1 . . .∃tm(B∧addconst(t, t ′,∆)) (4)

is over the variables t ′1, . . . , t
′
m. It represents the values in B incremented by 3. Now we

need to rename the variables t ′1 . . . t
′
m back to t1, . . . , tm. Renaming variables is a standard

BDD operation, and we will denote this as rename(C, t ′, t), where C is a BDD and t ′

and t are bit vectors. We obtain

rename(∃t1 . . .∃tm(B∧addconst(t, t ′,∆)), t ′, t) (5)

As another example, the formula gtconst(t,∆) is satisfied by integers that are bigger
than ∆ (limited to the value 2m−1, where the number of Boolean variables is m). Both
t and ∆ are integers represented as bit vectors, as before. Again, this is encoded as
binary comparison, with Boolean variables r0, . . . ,rm used to propagate the result of the
comparison. As before, these variables are later removed using existential quantifiers

gtconst(t,∆) = rm
where r0 = false and

for 1≤ i≤ m: ri = ((ti∧¬∆i)∨ ((ti↔ ∆i)∧ ri−1))

The functions addconst and gtconst can be adapted for signed integers as well.

8

3.2 BDDs over enumerations of values

A disadvantage of the representation suggested in Section 3.1 is that the number of
BDD variables required can be very large. Representing integers requires dlog pe bits,
where p is the largest possible value. The problem can intensify when the represented
data is over strings with varying lengths.

To alleviate this problem, sets of values and relations can be represented as BDDs
over enumerations of values. When a value associated with a variable in the specifi-
cation appears for the first time in the computation (e.g., during runtime verification,
see Section 5), a new enumeration is associated with it. Enumeration values can be as-
signed consecutively according to their binary value; however, a refined algorithm can
reuse enumerations that were used for values that can no longer affect subsequent re-
sults, see [13]. A hash table is used to point from the value to its enumeration so that
in subsequent appearances of this value the same enumeration will be used. The use of
enumerations instead of the actual values allows a representation with a smaller number
of bits. In addition, enumerations of values that are not far apart often share large bit
patterns, which can also contribute to the BDD compactness.

BDDs can represent relations over mixed domains, where some of them are encoded
using enumerations, and others as binary numbers.

4 Using BDDs for Model Checking

BDDs have gained a huge popularity in the automated verification of finite state systems
referred to as model checking. Comprehensive analysis of systems requires reasoning
about their states and execution sequences, and the main bottleneck is state space ex-
plosion. A BDD can represent a Boolean function that encodes a set of states. Then, it
is possible to apply operators on BDDs to process sets of states, rather than handling
the states one at a time.

Consider a finite-state system with state space St and initial states I ⊆ St. The prop-
erty we we want to check is that its execution must never arrive at states from F ⊆ St
(the failure states). Let prec(s)⊆ St be the set of states from which the system can move
to s ∈ St by performing one atomic transition, i.e., the predecessor states of s, and gen-
eralize it to P(S) =

⋃
s∈S prec(s). Checking that failure states cannot be reached from

initial states is equivalent to checking that I∩P∗(F) 6= /0, where P∗ denotes applying P
repeatedly, 0 or more times. This can be described using the following pseudo-code:

X1 := /0; X2 := F ;
while X1 6= X2 do

X1 := X2; X2 := X1∪P(X1);
If X1∩ I 6= /0 then Return(‘failed’);

Calculating P(X1) and X1∩ I 6= /0 state by state is typically very expensive. This can
severely limit the number of states that can processed. In symbolic model checking [9],
all these operations are performed on BDDs, representing Boolean functions that en-
code sets of states. States are assignments a some fixed set of system (or program)

9

variables, and a set of states corresponds to a relation over the domains of these vari-
ables. Section Section 3.1 demonstrated how arithmetic operators can be applied to sets
of integer values. This would work for the simple case where states consist of the value
of a single integer variables but can be extended to operate on relations over mixed
domains.

Let I, F , X1 and X2 be represented as the BDDs f I, f F , f X1, and f X2, respectively.
A less trivial step is encoding P: instead of a function P, one can use a relation between
the current states, represented as bit vectors, using the Boolean variables x = xm . . .x1,
and the previous states, represented as bit vector using x′ = x′m . . .x′1.The BDD R repre-
sents this relation over the BDD variables of x and x′. R∧ f X1 restricts this relation so
that the current state values satisfy f X1. Then ∃x1 . . .xn(f X1∧R) keeps only the state
values of the predecessors to states satisfying f X1. The BDD operation rename is used
to rename the variables of x′ back to x. Finally, we apply disjunction to the obtained
BDD and f X1 to obtain the union of the sets.

f X1 := false; f X2 := f F ;
while f X1 6= f X2 do

f X1 := f X2; f X2 := f X1∨ rename(∃x1 . . .xn(f X1∧R),x′,x);
If (f X1∧ f I) 6= false then Return(‘failed’);

5 Using BDDs for Runtime Verification

Runtime verification provides techniques for monitoring system executions against a
formal specification. The monitored system is instrumented to report to the monitor on
the occurrence of relevant events. The monitor observes the input events and keeps an
internal summary of the prefix of the execution observed so far, which allows computing
whether an evidence for a violation of the specification is already available.

Propositional Linear temporal logic (LTL) asserts about the evolution of an execu-
tion in time, using the future-time modalities 2 (always), 3 (sometimes),© (next-time)
and U (until) [22]. It is possible to add to these modalities their corresponding past-time
versions H (history), P (past), 	 (previous-time) and S (since), although adding them
does not increase the expressive power [12].

RV often focuses on properties expressed in past-time Linear Temporal Logic
(LTL), which includes the modalities H, P,	 and S , where it is implicitly assumed that
the specification needs to hold for all the prefixes of the execution. This assumption is
equivalent to prefixing each property with the 2 operator. These properties correspond
to temporal safety properties [2], where a failure can always be detected on a finite
prefix as soon as it occurs [20].

First-order past-time LTL is obtained by adding predicates and quantification over
data. An example of a first-order temporal specification is the following.

∀ f (close(f)→ Popen(f)) (6)

It asserts that every file that is closed was opened before. Here, we need to keep in the
summary a set of all the opened files so that we can compare them to the closing of files.
In general, the summary in this case extends the one used for the propositional case by

10

keeping for each subformula the set of assignments, essentially a relation between the
free variables occurring in a formula and the values that make the formula true.

Traces Assume a finite set of domains D1, . . . ,Dk. Assume further that the domains
are infinite, e.g., they can be the integers or strings2. Let P a set of names of unary
predicates with typical instances p, q, r. Each predicate name p is associated with some
domain Di = domain(p). A ground predicate is constructed from a predicate name and
a constant of the same type. Thus, if the predicate name is p one can form ground
predicates such as p(“gaga”) and q(42). The restriction to unary predicates is not due
to any principle limitation, but simplifies the presentation. An event is a finite set of
ground predicates. For example, if P = {p,q,r}, then the set {p(“gaga”),q(42)} is an
event. A trace σ = e1e2 . . .en is a finite sequence of events enumerated from 1. We
denote the ith event ei in σ by σ[i].

5.1 Syntax

Let V be a finite set of variables, with typical instances x, y, z. A predicate is constructed
from a predicate name, and a variable or a constant (in which case it is a ground pred-
icate) of the same type. Thus, if the predicate name p and the variable x are associated
with the domain of strings, we have predicates like p(“gaga”) and p(x). The syntax is
as follows:

ϕ ::= true | p(a) | p(x) | ¬ϕ | (ϕ∧ϕ) |	ϕ | (ϕ S ϕ) | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground predicate
p(a) occurs in the most recent event. The formula p(x), for a variable x ∈V , holds with
a binding of x to the value a if a ground predicate p(a) appears in the most recent event.
The formula ∃x ϕ has the obvious meaning that there exists some x such that ϕ (in
which x can appear free) holds. In addition, We can derive the universal quantification
as ∀x ϕ = ¬∃x¬ϕ and and other forms: (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ→ ψ) = (¬ϕ∨ψ),
P ϕ = (true S ϕ), and H ϕ = ¬P ¬ϕ.

5.2 Semantics

Assignments of values to variables are at the core of this semantics. An assignment over
a set of variables W ⊆V maps each variable x∈W to a value from its associated domain
domain(x). For example [x→ 5,y→ “abc”] maps x to 5 and y to “abc”. By γ [x 7→ a]
we mean the overriding of the assignment γ with the binding [x 7→ a]. We denote by ε

the empty assignment. Let free(ϕ) be the set of free (i.e., unquantified) variables of a
formula ϕ. Furthermore, let γ|free(ϕ) denote the restriction (projection) of an assignment
γ to the free variables appearing in ϕ.

Predicate semantics We define a classic semantics for first-order past-time LTL. The
assertion (γ,σ, i) |= ϕ means that the trace σ = e1e2 . . .en satisfies the formula ϕ for an
assignment γ over free(ϕ), where 1 ≤ i ≤ n (the relevant part of the execution is only
the prefix e1e2 . . .ei).

2 For dealing with finite domains see [15].

11

– (γ,σ, i) |= true.
– (γ,σ, i) |= p(a) iff p(a) ∈ σ[i].
– (γ[x 7→ a],σ, i) |= p(x) iff p(a) ∈ σ[i].
– (γ,σ, i) |= ¬ϕ iff not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ∧ψ) iff (γ,σ, i) |= ϕ and (γ,σ, i) |= ψ.
– (γ,σ, i) |=	ϕ iff i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) iff there exists 1 ≤ j ≤ i such that (γ,σ, j) |= ψ and for all j <

k ≤ i it holds that (γ,σ,k) |= ϕ.
– (γ,σ, i) |= ∃x ϕ iff there exists a ∈ domain(x) such that (γ [x 7→ a],σ, i) |= ϕ.

For a finite trace σ, we write σ |= ϕ to mean ∀i(1≤ i≤ length(σ)→ (ε,σ, i) |= ϕ).

Set semantics It helps the presentation of the BDD-based algorithm to first refine the
semantics of the logic as a function that calculates the set of assignments satisfying a
formula. Let I[ϕ,σ, i] be the interpretation function, defined below, that returns a set
of assignments such that (γ,σ, i) |= ϕ iff γ|free(ϕ) ∈ I[ϕ,σ, i]. The empty set of assign-
ments /0 behaves as the Boolean constant false and the singleton set {ε} that contains
the empty assignment behaves as the Boolean constant true. We define the union

⋃
and intersection

⋂
operators on sets of assignments, even if they are defined over non

identical sets of variables. In this case, the assignments are extended to the union of
the variables. Thus intersection between two sets of assignments A1 and A2 is defined
like database “join” operator; i.e., it consists of the assignments whose projection on
the common variables agrees with an assignment in A1 and with an assignment in A2.
Union is defined as the dual operator of intersection.

Furthermore, let A be a set of assignments over the set of variables W ; we denote
by hide(A,x) (for “hiding” the variable x) the set of assignments obtained from A after
removing from each assignment the mapping from x to a value. In particular, if A is a
set of assignments over only the variable x, then hide(A,x) is {ε} when A is nonempty,
and /0 otherwise. Afree(ϕ) is the set of all possible assignments of values to the variables
that appear free in ϕ. We add a 0 position for each sequence σ (an “initial state”), where
I returns the empty set for each formula. The assignment-set semantics is shown in the
following. For all occurrences of i, it is assumed that i≥ 1.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
– I[p(x),σ, i] = {[x 7→ a] | p(a) ∈ σ[i]}.
– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[ϕ,σ, i] = I[ϕ,σ, i−1].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

5.3 Algorithm

A runtime verification algorithm for first-order LTL was presented in [4], based on
applying database operations to relations. We present here an RV algorithm that is based
on BDDs [15].

12

BDDs for runtime verification We saw in Section 3 how a set of integers can be
represented as a BDD: the BDD returning true for all bit-patterns corresponding to the
binary encoding of the integers in the set. It was also explained how a value from an
arbitrary value domain D, e.g. strings, can be represented as an integer while recording
the mapping from the value to the integer in a hash map. E.g. the string ”abc” can be
represented as the number 6, which has the binary encoding 110. Consequently a set of
values from the domain D can be represented as a BDD that is satisfied by the binary
encodings of the corresponding integers.

First-order LTL formulas can contain multiple variables; a BDD can represent a set
of assignments to variables as tuples of integers, each tuple position corresponding to
a particular variable. This is the same as representing a relation over the domains of
the variables. As shown in Section 3, such a tuples can be represented by concatenating
the bit vectors of the individual tuple elements. For example, consider the assignment
[x→ 5,y→ “abc”]. This can be thought of as the tuple (5,“abc”) if we associate the
first tuple position with x and the second tuple position with y. If we map 5 and “abc”
to integers, e.g. 1 and 2, the assignment can be thought of as being represented by the
tuple (1,2). This tuple can then finally be represented as the concatenation of the bi-
nary representations 001 and 010 of these integers: 001010. This insight is the core idea
in the BDD representation, first presented in [15], and implemented in the tool DE-
JAVU. Operations on BDDs, such as negation (corresponding to set complementation),
conjunction (corresponding to set intersection), and disjunction (corresponding to set
union) are very efficient. With k bits used for representing the enumerations for a vari-
able, the BDD can represent 2k values for each variable [8]. Furthermore, we often do
not pay much in overhead for keeping surplus bits. Thus, we can start with an overesti-
mated number of bits k such that it is unlikely to see more than 2k different values for
the domain they represent. We can also incrementally extend the BDD with additional
bits when needed during runtime.

Example Consider the formula ∃x Pp(x) (there exists an x such that p(x) occurred in the
past). Consider furthermore the two-event trace 〈{p(“ab”)},{p(“cd”)}〉. We will focus
on the sub-formulas p(x) and Pp(x) and the BDDs that need to be calculated for them
to keep a summary of the observed sequence of events during analysis of this trace.
Figure 5 shows the generated BDDs. After the first event p(“ab”), when computing the
BDD for p(x), x is bound to “ab”. We allocate an enumeration, an integer, in this case
0, and map “ab” to 0 in a hashmap. For the subformula p(x) we create the BDD 5a that
is satisfied exactly by its binary value 000. For The subformula Pp(x), we need a BDD
that is satisfied by all the binary encodings of enumerations for values seen so far. Since
we only observed the value “ab” as an argument to p, the same BDD 5a is also used for
Pp(x). After the second event, the new value “cd” is mapped to the integer 1 (updating
the hashmap), and the BDD 5b that is satisfied by its binary value 001 is created for
the subformula p(x). For the subformula Pp(x) we build the BDD 5c that represents
the set {“ab”,“cd”}, satisfied by the binary values 000 and 001. This BDD is obtained
using the ∨-operation on the BDD 5b constructed at the current step for p(“cd”) and the
BDD 5a, constructed in the previous step. Splitting the variable x into its bits: x3x2x1,
with x1 the least significant bit, the figure shows the Boolean expressions over these bits
corresponding to the BDDs.

13

(a) BDD for p(x) and
Pp(x) after 1st event,
“ab” maps to 0 (000),
i.e.: x3x2x1

(b) BDD for p(x)
after 2nd event,
“cd” maps to 1 (001),
i.e.: x3x2x1

(c) BDD for Pp(x)
after 2’nd event,
000 and 001,
i.e.: x3x2

Fig. 5: BDDs for the sub-formulas p(x) and Pp(x) for the trace 〈{p(“ab”)}, {p(“cd”)}〉,
mapping “ab” to the integer 0 (binary 000), and mapping “cd” to the integer 1 (binary
001).

Some basic BDD operations We first introduce some basic functions used by the al-
gorithm. Given some ground predicate p(a) observed in the execution, matching with
p(x) in the monitored property, let lookup(x,a) be the enumeration of a in binary form.
If this is the first occurrence of a, then it will be assigned a new enumeration. Other-
wise, lookup returns the enumeration that a received before. We can use a counter3, for
each variable x, counting the number of different values appearing so far for x. When
a new value appears, this counter is incremented, and the value is converted to the bi-
nary representation as discussed above. Enumerations that at any point in time have
not yet been used represent the values not yet seen. In particular, we always leave one
enumeration, 11 . . .11 (all 1’s), for this purpose. This enumeration is never allocated
to represent observed data but represents all data not yet seen. This allows us to use a
finite representation and quantify existentially and universally over all values in infinite
domains, where 11 . . .11 represents the infinite set of values not yet seen. Even though
at any point we may have not seen the entire set of values that will show up during the
execution, we can safely (and efficiently) perform complementation: values that have
not appeared yet in the execution are being accounted for and their enumerations are
reserved already in the BDD before these values appear.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. For example, assume that we use three
Boolean variables (bits) x1, x2 and x3 for representing enumerations over x (with x1
being the least significant bit), and assume that A = {a,b}, lookup(x,a) = 011 and

3 In [13] a form of garbage collection is applied, where enumerations for values that no longer
affect the checked property are reclaimed for later reuse. This involves a more complicated
enumeration mechanism.

14

lookup(x,b) = 001. Then build(x,A) is a BDD representation of the Boolean function
x1∧¬x3.

Intersection and union of sets of assignments are translated simply to conjunction
and disjunction of their BDD representation, respectively, and complementation be-
comes BDD negation. We will denote the Boolean BDD operators as and, or and not.
To implement the existential (universal, respectively) operators, we use the BDD exis-
tential (universal, respectively) operators over the Boolean variables that represent (the
enumerations of) the values of x. Thus, if Bϕ is the BDD representing the assignments
satisfying ϕ in the current state of the monitor, then exists(〈x1, . . . ,xk〉,Bϕ) is the BDD
that represents the assignments satisfying ∃x ϕ in the current state. Finally, BDD(⊥)
and BDD(>) are the BDDs that return always 0 or 1, respectively.

The BDD based algorithm The algorithm shown below extends the algorithm for the
propositional case shown in [18]. It is based on the observation that the semantics of a
formula in the current step can be cast in terms of the semantics of its subformulas in
the current and the previous step. In particular, 	ϕ holds in the current step if ϕ held
in the previous step. The formula (ϕS ψ) is equivalent to (ψ∨ (ϕ∧	(ϕS ψ))), which
means that (ϕS ψ) holds in the current step exactly if ψ holds now, or both ϕ holds
now and (ϕS ψ) held in the previous step. Thus, one only needs to look one step, or
event, backwards in order to compute the new truth value of a formula. The algorithm
operates on a summary of the sequence of events observed so far that consists of two
vectors (arrays) of values indexed by subformulas: now calculated for the current event,
and pre calculated for the the previous event. While in the propositional case [18] these
vectors contain Boolean values, here they contain BDDs.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := BDD(⊥).
2. Observe a new event s (a set of ground predicates) as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(>).
– now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a | p(a) ∈ s}.
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(ϕ) := pre(ϕ).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕSψ)))).
– now(∃x ϕ) := exists(〈x1, . . . ,xk〉,now(ϕ)).

5. if now(η) = BDD(⊥) then report “error”.
6. Goto step 2.

Example We shall illustrate the monitor generation using an example. Consider the
following property stating that if a file f is closed, it must have been opened in the past
with some access mode m (e.g. ’read’ or ’write’ mode):

∀ f (close(f)−→ ∃m P open(f ,m)) (7)

15

Figure 6 (left) shows the monitor evaluation function generated by DEJAVU for this
property. It relies on the enumeration of the subformulas shown in the Abstract Syntax
Tree (AST) in Figure 6 (right). Two arrays are declared, indexed by subformula indexes:
pre for the previous state and now for the current state, although here storing BDDs in-
stead of Boolean values as in [18]. For each observed event, the function evaluate()
computes the now array from highest to lowest index, and returns true (property is sat-
isfied in this position of the trace) iff now(0) is not BDD(⊥). At composite subformula
nodes, BDD operators are applied. For example for subformula 4, the new value is
now(5).or(pre(4)), which is the interpretation of the formula P open(f, m) correspond-
ing to the law: Pϕ = (ϕ∨	 Pϕ). As can be seen, for each new event, the evaluation of
a formula results in the computation of a BDD for each subformula.

class Formula p extends Formula {
var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False)
var tmp: Array[BDD] = null
val var f :: var m :: Nil =

declareVariables("f", "m")

override def evaluate(): Boolean = {
now(5) = build("open")(V("f"),V("m"))
now(4) = now(5).or(pre(4))
now(3) = now(4).exist(var m)
now(2) = build("close")(V("f"))
now(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var f)
val result = !now(0).isZero
tmp = now; now = pre; pre = tmp
result

}
}

0 : forall f . close(f) -> exists m . P open(f,m)

1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

4 : P open(f,m)

5 : open(f,m)

Fig. 6: Monitor (left) and AST (right) for the property.

We shall evaluate the example formula on a trace. Assume that each variable f and
m is represented by three BDD bits: f3 f2 f1 and m3m2m1 respectively, with f1 and m1
being the least significant bits. Consider the input trace, consisting of three events:

〈{open(input,read)},{open(output,write)},{close(out)}〉 (8)

When the monitor evaluates subformula 5 on the first event open(input, read), it will
create a bit string composed of a bit string for each parameter f and m. As previously ex-
plained, bit strings for each variable are allocated in increasing order: 000, 001, 010,....
For this first event the bit pattern f3 f2 f1 is therefore mapped to 000 and the bit pattern
m3m2m1 is mapped to 000 as well. Hence, the assignment [f 7→ input, m 7→ read] is

16

(a) B1 @ 5 and 4
after open(input,read)

(b) B2 @ 5
after open(output,write)

(c) B3 @ 4
after open(output,write)

(d) B4 @ 2
after close(out)

(e) B5 @ 3
after close(out)

(f) B6 @ 1
after close(out)

Fig. 7: Selected BDDs, named B1, . . . ,B6, computed after each event at various sub-
formula nodes, indicated by Bi @ node (see Figure 6), during processing of the trace
〈{open(input,read)}, {open(output,write)}, {close(out)}〉.

represented by the concatenation of the two bit strings m3m2m1 f3 f2 f1 = 000000, where
the three rightmost bits represent the assignment of input to f , and the three leftmost bits
represent the assignment of read to m. Figure 7a shows the corresponding BDD B1. In
this BDD all the bits have to be zero in order to be accepted by the function represented
by the BDD. We will not show how all the tree nodes evaluate, except observing that
node 4 (all the seen values in the past) assumes the same BDD value as node 5, and
conclude that since no close(. . .) event has been observed, the top-level formula (node
0) holds at this position in the trace.

Upon the second open(output,write) event, new values (output,write) are observed as
argument to the open event. Hence a new bit string for each variable f and m is allocated,
in both cases 001 (the next unused bit string for each variable). The new combined
bit string for the assignments satisfying subformula 5 then becomes m3m2m1 f3 f2 f1 =

17

001001, forming a BDD representing the assignment [f 7→ output, m 7→ write], and
appearing in Figure 7b as B2. The computation of the BDD for node 4 is computed by
now(4) = now(5).or(pre(4)), which results in the BDD B3, representing the set of the two
assignments observed so far (B3 = or(B1,B2)).

Upon the third close(out) event, a new value out for f is observed, and allocated
the bit pattern f3 f2 f1 = 010, represented by the BDD B4 for subformula 2. At this
point node 4 still evaluates to the BDD B3 (unchanged from the previous step), and the
existential quantification over m in node 3 results in the BDD B5, where the bits m1,
m2 and m3 for m have been removed, and the BDD compacted. Node 1 is computed as
or(not(B4), B5), which results in the BDD B6. This BDD represents all the possible bit
patterns for f except for 010, which corresponds to the value out. This means, however,
that the top-level formula in node 0 is not true (it is violated by bit pattern 010), and
hence the formula is violated on the third event.

6 Using BDDs for Runtime Verification with Time

The last extension of the logic we shall consider in this paper is to allow properties to
refer to the progress of time. The reported events are now assumed to appear with an
integer timing value. We leave open the unit of measurement for time values (millisec-
onds, seconds, minutes, etc.). An example of such a specification is

∀ f (closed(f)→ P≤20 open(f)) (9)

which asserts that every file f that is closed was opened not longer than 20 time units
before.

6.1 Syntax

The syntax for first-order past-time LTL with time is as follows, where we have added
two new formulas, each referring to a time constraint, a natural number δ≥ 0:

ϕ ::= true | p(a) | p(x) | ¬ϕ | (ϕ∧ϕ) |	ϕ | (ϕSϕ) | (ϕS≤δϕ) | (ϕS>δϕ) | ∃x ϕ

The formula (ϕS≤δψ) has the same meaning as (ϕSψ), except that ψ must have oc-
curred within δ time units. The formula (ϕS>δψ) has the same meaning as (ϕSψ),
except that ψ must have occurred more than δ time units ago. Other operators can be
added, as shown in [14]. In addition to the previously defined derived operators we can
define derived timed operators as follows: P≤δϕ = (trueS≤δϕ), P>δϕ = (trueS>δϕ),
H≤δϕ = ¬P≤δ¬ϕ, and H>δϕ = ¬P>δ¬ϕ.

6.2 Semantics

A timed event is a pair (e, t) consisting of an event e and a time stamp t (a natural
number). A trace σ = (e1, t1)(e2, t2) . . .(en, tn) is a finite sequence of timed events, enu-
merated from 1. We denote the ith timed event (ei, ti) in σ by σ[i]. We let σe[i] denote
the event ei and we let σt [i] denote the time ti.

18

We define the predicate semantics for the two new timed operators below. The se-
mantic equations for the remaining formulas are as shown in Section 5.2, although
defined on timed traces, and where σ[i] should be read as σe[i].

– (γ,σ, i) |= (ϕ S≤δ ψ) iff there exists 1 ≤ j ≤ i such that σt [i]− σt [j] ≤ δ and
(γ,σ, j) |= ψ, and for all j < k ≤ i it holds that (γ,σ,k) |= ϕ.

– (γ,σ, i) |=(ϕS>δψ) iff there exists 1≤ j < i such that σt [i]−σt [j]> δ and (γ,σ, j) |=
ψ, and for all j < k ≤ i it holds that (γ,σ,k) |= ϕ.

6.3 Algorithm

We describe now changes to the algorithm in Section 5.3 for handling the two new
formulas with the timing constraints. Recall that for each subformula ϕ of a formula,
the algorithm in Section 5.3 updates two array positions: now(ϕ) and pre(ϕ). These
BDDs represent assignments to free variables that occur in the formula, represented as
a concatenated bit vector of the binary enumerations of the values assigned to the BDD
variables: xn

k . . .x
n
1 . . .x

1
k . . .x

1
1. To keep track of the time, each such bit vector is aug-

mented with a bit vector tm . . . t1 being the binary code of the time that has passed since
that assignment was observed, obtaining tm . . . , t1xn

k . . .x
n
1 . . .x

1
k . . .x

1
1. xn

k . . .x
n
1 . . .x

1
k . . .x

1
1

We add two new arrays, τpre(ϕ) and τnow(ϕ), which for each subformula records the
BDDs that includes these time values. These BDDs are then used to compute now(ϕ)
and pre(ϕ) by removing the time values (by existential quantification over the time
values).

Example We add a timing constraint to the formula (7), stating that when a file is closed
it must have been opened within 3 time units in the past:

∀ f (close(f)−→ ∃m P≤3 open(f ,m)) (10)

Let us apply this property to the the following trace, which is the trace (8) augmented
with the time values 1, 2, and 3 respectively. We keep the time constraint and time
values small and consecutive to keep the BDD small for presentation purposes:

〈({open(input,read)},1),({open(output,write)},2),({close(out)},3)〉 (11)

The BDD for the subformula P≤3 open(f ,m) at the third event close(out), shown in
Figure 8, reflects that two (010 in binary) time units have passed since open(input,read)
occurred (follow leftmost path), and one time unit (001 in binary) has passed since
open(output,write) has occurred (follow rightmost path). The BDD is effectively an
augmentation of the BDD in Figure 7c, with the additional three BDD variables t1, t2,
and t3 for the timer values, with t1 being the least significant bit.

The BDD-based algorithm with time When a new event occurs, for a subformula
with a timing constraint δ, we need to update the timers in τnow that count the time that
has passed since a tuple (assignment) of values satisfying the formula was observed.
The difference between the clock value of the current event and the clock value of the
previous one is ∆. In order to keep the representation of time small, 2δ+1 is the biggest

19

Fig. 8: The BDD for the formula P≤3 open(f ,m) at the third event.

value of t that is stored. To see that this this is sufficient, and necessary, consider the
following. First, during computation, when we observe a ∆ that is bigger than δ, we
cut it down to δ+1 before we add to t. This is valid since we just need to know that it
passed δ. Second, after we add ∆ to t, we compare the new t against δ, and if now t goes
beyond δ we can store just δ+ 1. Finally, since adding ∆ = δ+ 1 to a t ≤ δ (since we
only add ∆ if t ≤ δ) gives max 2δ+1, then this is the biggest number we need to store
in a BDD. Consequently, the number of bits needed to store time for a formula with a
time constraint δ is log2(2δ+1).

The algorithm for first-order past-time LTL with time is obtained by adding the
statements below to step 4 of the algorithm shown in Section 5.3, and by adding the
update τpre := τnow in step 2.

Algorithm for (ϕ S≤δ ψ): We will use BDD0(x) to denote the BDD where all the xi bits
are a constant 0, representing the Boolean expression ¬x1 ∧ . . .∧¬xk. The statements
updating τnow and now are as follows.

τnow(ϕS≤δψ) := (now(ψ)
∧

BDD0(t))
∨
(¬now(ψ)

∧
now(ϕ)

∧
rename(∃t1 . . . tm (addconst(t, t ′,∆)

∧
¬gtconst(t ′,δ)

∧
τpre(ϕS≤δψ)), t ′, t)) ;

now(ϕS≤δψ) := ∃t1 . . . tm τnow(ϕS≤δψ)

That is, either ψ holds now and we reset the timer t to 0, or ψ does not hold now but
ϕ does, and the previous t value is determined by τpre(ϕS≤δψ)), to which we add ∆,
giving t ′, which must not be greater than δ. Then t is removed by quantifying over it,
and t ′ renamed to t (t ′ becomes the new t). The BDD for now(ϕS≤δψ) is obtained from
τnow(ϕS≤δψ) by projecting out the timer value.

Algorithm for (ϕS>δψ): We will use EQ(t,c) to denote that the bit sting t is equal
to c. This is technically defined as EQ(t,c) = ∃z1 . . .zm (BDD0(z)

∧
addconst(z, t,c)),

stating that z = 0 added to c yields t. The updates to τnow and now are as follows.

τnow(ϕS>δψ) :=
(now(ψ)

∧
(¬pre(ϕS>δψ)

∨
¬now(ϕ))

∧
BDD0(t))

∨
20

(now(ϕ)
∧

rename(previous, t ′, t))
where previous = ∃t1 . . . tm (τpre(ϕS>δψ)

∧
((¬gtconst(t,δ)

∧
addconst(t, t ′, ∆))

∨
(gtconst(t, δ)

∧
EQ(t ′,δ+1))));

now(ϕS>δψ) := ∃t1 . . . tm (τnow(ϕS>δψ)
∧

gtconst(t,δ))

That is, when ψ currently holds and either ϕS>δψ did not hold in the previous state or
ϕ does not hold now, we reset the timer t to 0. Alternatively, when ϕ holds we compute
t ′ using the where-clause as follows and then rename it to t: t takes its value from
τpre(ϕS>δψ), which is calculated based on the previous step. This means that (ϕS>δψ)
held in the previous step. If t was then not greater than δ, we add ∆ to t to obtain t ′.
Otherwise (t was already greater than δ), we set t ′ to δ+1 to reduce the size of the time
values we have to store.

References

1. L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, R. Segala, Symbolic Model
Checking of Probabilistic Processes Using MTBDDs and the Kronecker Representa-
tion, TACAS, LNCS Volume 1785, Springer, 2000, 395-410.

2. B. Alpern, F. B. Schneider, Recognizing Safety and Liveness. Distributed Computing
2(3), 1987, 117-126.

3. R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, F. Somenzi,
Algebraic Decision Diagrams and Their Applications. Formal Methods in System De-
sign 10(2/3), 1997, 171-206 .

4. D. A. Basin, F. Klaedtke, S. Müller, E. Zalinescu, Monitoring Metric First-Order Tem-
poral Properties, Journal of the ACM 62(2), 2015, 1-45.

5. S. Bensalem, K. Havelund, Dynamic Deadlock Analysis of Multi-threaded Programs,
Haifa Verification Conference, LNCS Volume 3875, Springer, 2006, 208-223.

6. R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 1986, 677-691.

7. R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams, ACM Computing Survey 24(3), 1992, 293-318.

8. R. E. Bryant, On the Complexity of VLSI Implementations and Graph Representations
of Boolean Functions with Application to Integer Multiplication, IEEE Transactions
on Computers 40(2), 1991, 205-213.

9. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic Model
Checking: 1020 States and Beyond, LICS, 1990, 428-439.

10. E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT Press 2001.
11. E. M. Clarke, K. L. McMillan, X.g Zhao, M. Fujita, Jerry C.-Y. Yang, Spectral Trans-

forms for Large Boolean Functions with Applications to Technology Mapping. Formal
Methods in System Design 10(2/3), 1997, 137-148.

12. D. M. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the Temporal Basis of Fairness.
POPL, ACM Press 1980, 163-173.

13. K. Havelund, D. Peled, BDDs on the Run. ISoLA, LNCS Volume 11247, Springer,
2018, 58-69.

14. K. Havelund, D. Peled, First-Order Timed Runtime Verification using BDDs, ATVA,
LNCS, Springer, to appear, 2020.

15. K. Havelund, D. Peled, D. Ulus, First-Order Temporal Logic Monitoring with BDDs,
FMCAD, IEEE 2017, 116-123.

21

16. K. Havelund, D. Peled, D. Ulus, First-Order Temporal Logic Monitoring with BDDs.
Formal Methods in System Design, published online 7 January, 2019, 1-21.

17. K. Havelund, G. Reger, D. Thoma, E. Zălinescu, Monitoring Events that Carry Data,
book chapter, LNCS Volume 10457, Springer, 2018, 61-102.

18. K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties, TACAS, LNCS
Volume 2280, Springer, 2002, 342-356.

19. JavaBDD, http://javabdd.sourceforge.net.
20. O. Kupferman, M. Y. Vardi, Model Checking of Safety Properties, Formal Methods in

System Design 19(3), 2001, 291-314.
21. C. Y. Lee, Representation of Switching Circuits by Binary-Decision Programs, Bell

Systems Technical Journal, 38, 1959, 985-999.
22. Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical Computer Science

83, 1991, 91-130.
23. Shin-ichi Minato: Zero-Suppressed BDDs for Set Manipulation in Combinatorial

Problems. Design Automation Conference, ACM/IEEE, 1993, 272-277.

22

